小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 九年級教案 > 數(shù)學教案 >

2021人教版數(shù)學初三教案

時間: 曉晴2 數(shù)學教案

初中教學在學生的學習生涯中有著非常重要的作用,數(shù)學作為其中一門主課,是初中學習的重點之一,教師做好一份優(yōu)秀的教案,可以使學生更好的學習數(shù)學。今天小編在這給大家整理了一些2021人教版數(shù)學初三教案,我們一起來看看吧!

2021人教版數(shù)學初三教案

2021人教版數(shù)學初三教案1

一元二次方程

教學內(nèi)容

一元二次方程概念及一元二次方程一般式及有關概念.

教學目標

了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應用一元二次方程概念解決一些簡單題目.

1.通過設置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義.

2.一元二次方程的一般形式及其有關概念.

3.解決一些概念性的題目.

4.通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情.

重難點關鍵

1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.

2.難點關鍵:通過提出問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念.

教學過程

一、復習引入

學生活動:列方程.

問題(1)古算趣題:“執(zhí)竿進屋”

笨人執(zhí)竿要進屋,無奈門框攔住竹,橫多四尺豎多二,沒法急得放聲哭。

有個鄰居聰明者,教他斜竿對兩角,笨伯依言試一試,不多不少剛抵足。

借問竿長多少數(shù),誰人算出我佩服。

如果假設門的高為x尺,那么,這個門的寬為_______尺,長為_______尺,

根據(jù)題意,得________.

整理、化簡,得:__________.

二、探索新知

學生活動:請口答下面問題.

(1)上面三個方程整理后含有幾個未知數(shù)?

(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號嗎?還是與多項式一樣只有式子?

老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.

因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.

一般地,任何一個關于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.

一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.

例1.將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.

分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必須運用整式運算進行整理,包括去括號、移項等.

解:略

注意:二次項、二次項系數(shù)、一次項、一次項系數(shù)、常數(shù)項都包括前面的符號.

例2.(學生活動:請二至三位同學上臺演練) 將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.

分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

解:略

三、鞏固練習

教材 練習1、2

補充練習:判斷下列方程是否為一元二次方程?

(1)3x+2=5y-3 (2) x2=4 (3) 3x2-=0 (4) x2-4=(x+2) 2 (5)ax2+bx+c=0

四、應用拓展

例3.求證:關于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.

分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+17≠0即可.

證明:m2-8m+17=(m-4)2+1

∵(m-4)2≥0

∴(m-4)2+1>0,即(m-4)2+1≠0

∴不論m取何值,該方程都是一元二次方程.

? 練習:1.方程(2a—4)x2—2bx+a=0,在什么條件下此方程為一元二次方程?在什么條件下此方程為一元一次方程?

2.當m為何值時,方程(m+1)x/4m/-4+27mx+5=0是關于的一元二次方程

五、歸納小結(jié)(學生總結(jié),老師點評)

本節(jié)課要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.

六、布置作業(yè)

2021人教版數(shù)學初三教案2

直接開平方法

理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學思想,并能應用它解決一些具體問題.

提出問題,列出缺一次項的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.

重點

運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次——轉(zhuǎn)化的數(shù)學思想.

難點

通過根據(jù)平方根的意義解形如x2=n的方程,將知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復習引入

學生活動:請同學們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)(2p)22p.

問題2:目前我們都學過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學生分組討論)

老師點評:回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±

即x+3=,x+3=-

所以,方程的兩根x1=-3+,x2=-3-

解:略.

例2 市政府計劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長率.

分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2

解:設每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.

所以,每年人均住房面積增長率應為20%.

(學生小結(jié))老師引導提問:解一元二次方程,它們的共同特點是什么?

共同特點:把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習

教材第6頁 練習.

四、課堂小結(jié)

本節(jié)課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±轉(zhuǎn)化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±,達到降次轉(zhuǎn)化之目的.若p<0則方程無解.

五、作業(yè)布置

教材第16頁 復習鞏固1.

2021人教版數(shù)學初三教案3

圖案設計

利用平移、軸對稱和旋轉(zhuǎn)的這些圖形變換中的一種或組合進行圖案設計,設計出稱心如意的圖案.

通過復習軸對稱、平移、旋轉(zhuǎn)的知識,然后利用這些知識讓學生開動腦筋,敝開胸懷大膽聯(lián)想,設計出一幅幅美麗的圖案.

1、設計圖案.

2、如何利用平移、軸對稱、旋轉(zhuǎn)等圖形變換中的一種或它們的組合得出圖案.

一、復習引入

1.如圖,已知線段CD是線段AB平移后的圖形,D是B點的對稱點,作出線段AB,并回答AB與CD有什么位置關系.

2.如圖,已知線段CD,作出線段CD關于對稱軸l的對稱線段C′D′,并說明CD與對稱線段C′D′之間有什么關系?

3.如圖,已知線段CD,作出線段CD關于D點旋轉(zhuǎn)90°的旋轉(zhuǎn)后的圖形,并說明這兩條線段之間有什么關系?

1.AB與CD平行且相等;

2.過D點作DE⊥l,垂足為E并延長,使ED′=ED,同理作出C′點,連接C′D′,則C′D′即為所求.

CD的延長線與C′D′的延長線相交于一點,這一點在l上并且CD=C′D′.

3.以D點為旋轉(zhuǎn)中心,旋轉(zhuǎn)后CD⊥C′D,垂足為D,并且CD=C′D.

二、探索新知

請用以上所講的平移、軸對稱、旋轉(zhuǎn)等圖形變換中的一種或幾種組合完成下面的圖案設計.

例1 (學生活動)學生親自動手操作題.

按下面的步驟,請每一位同學完成一個別致的圖案.

(1)準備一張正三角形紙片(課前準備)(如圖a);

(2)把紙片任意撕成兩部分(如圖b,如圖c);

(3)將撕好的如圖b沿正三角形的一邊作軸對稱,得到新的圖形;

(4)將(3)得到的圖形以正三角形的一個頂點作為旋轉(zhuǎn)中心旋轉(zhuǎn),得到如圖(d)(如圖c保持不動);

(5)把如圖(d)平移到如圖(c)的右邊,得到如圖(e);

(6)對如圖(e)進行適當?shù)男揎?,使得到一個別致美麗的如圖(f)的圖案.

老師必要時可以給予一定的指導.

三、課堂小結(jié)

本節(jié)課應掌握:

利用平移、軸對稱和旋轉(zhuǎn)的圖形變換中的一種或組合設計圖案.

2021人教版數(shù)學初三教案4

二次根式

教學目標

1、了解二次根式的概念、

2、掌握二次根式的基本性質(zhì)

教學過程

一、提出問題

上一節(jié)我們學習了平方根和算術平方根的意義,引進了一個新的記號,現(xiàn)在請同學們思考并回答下面兩個問題:

1、表示什么?

2、a需要滿足什么條件?為什么?

二、合作交流,解決問題

讓學生合作交流,然后回答問題(可以補充),歸納為;

1、當a是正數(shù)時,表示a的算術平方根,即正數(shù)a的兩個平方根中的一個正數(shù);

2、當a是零時,表示零,也叫零的算術平方根;

3、a≥0,因為任何一個有理數(shù)的平方都大于或等于零

三、歸納特點,引入二次根式概念

1、基本性質(zhì)、

問題1 你能用一句話概括以上3個結(jié)論嗎?

讓一個學生回答、其他學生補充,概括為:(a≥0)表示非負數(shù)a的算術平方根,也就是說,(a≥0)是一個非負數(shù),即≥0(a≥0)。

問題2 ()2(a≥0)等于什么?說說你的理由并舉例驗證。

讓學生小組討論或自主探索得出結(jié)論:()2=a(a≥0),如()2=4,()2=2等、

以上兩個問題的結(jié)論就是基本性質(zhì),特別是()2=a(a≥0)可以當公式使用,直接應用于計算。反過來,把()2=a(a≥0)寫成a=()2(a≥0)的形式,這說明:任何一個非負數(shù)a都可以寫成一個數(shù)的平方的形式、例如:3=()2,0.3= ()2

提問:

(1)0=()2對不對?

(2)-5=()2對不對?如果不對,錯在哪里?

2、二次根式概念

形如(a≥0)的式子叫做二次根式、

說明:二次根式必須具備以下特點;

(1)有二次根號;

(2)被開方數(shù)不能小于0。

讓學生舉出二次根式的幾個例子,并判斷,(a<0)、、(a<o)是不是二次根式。< p="">

四、范例

例1、要使式子有意義,字母x的取值必須滿足什么條件?

提問:

若將式子改為,則字母x的取值必須滿足什么條件?

五、課堂練習

Pl0頁練習1、2、

六、思考提高

我們已經(jīng)研究了()2(a≥0)等于a,現(xiàn)在研究等于什么

提問:

1、對于抽象問題的研究,常常采用什么策略?

2、在中,a的取值有沒有限制?

3、取一些數(shù)值來驗證。通過驗證,你能發(fā)現(xiàn)什么規(guī)律?

因此,今后我們遇到時,可先改寫成a的絕對值|a|,再按照a取正數(shù)值,0還是負數(shù)值來取值、例如當x<0時,=|4x|=-4x

4、()2與是一樣的嗎?說說你的理由,并與同學交流。

七、小結(jié)

1、什么叫做二次根式?你們能舉出幾個例子嗎?

2、二次根式有哪兩個形式上的特點?

3、二次根式有哪些性質(zhì)?

八、作業(yè)

習題22.1第1、2、3、4題、

教學后記:

3387 主站蜘蛛池模板: 石家庄网站建设|石家庄网站制作|石家庄小程序开发|石家庄微信开发|网站建设公司|网站制作公司|微信小程序开发|手机APP开发|软件开发 | 郑州水质检测中心_井水检测_河南废气检测_河南中环嘉创检测 | 尚为传动-专业高精密蜗轮蜗杆,双导程蜗轮蜗杆,蜗轮蜗杆减速机,蜗杆减速机生产厂家 | 网络推广公司_网络营销方案策划_企业网络推广外包平台-上海澜推网络 | 科箭WMS仓库管理软件-TMS物流管理系统-科箭SaaS云服务 | 智能风向风速仪,风速告警仪,数字温湿仪,综合气象仪(气象五要素)-上海风云气象仪器有限公司 | 杭州ROHS检测仪-XRF测试仪价格-百科 | 早报网| 洛阳防爆合格证办理-洛阳防爆认证机构-洛阳申请国家防爆合格证-洛阳本安防爆认证代办-洛阳沪南抚防爆电气技术服务有限公司 | 减速机电机一体机_带电机减速器一套_德国BOSERL电动机与减速箱生产厂家 | 拼装地板,悬浮地板厂家,悬浮式拼装运动地板-石家庄博超地板科技有限公司 | 仓储笼_仓储货架_南京货架_仓储货架厂家_南京货架价格低-南京一品仓储设备制造公司 | 安徽千住锡膏_安徽阿尔法锡膏锡条_安徽唯特偶锡膏_卡夫特胶水-芜湖荣亮电子科技有限公司 | 制样机-密封锤式破碎机-粉碎机-智能马弗炉-南昌科鑫制样 | 环氧乙烷灭菌器_压力蒸汽灭菌器_低温等离子过氧化氢灭菌器 _低温蒸汽甲醛灭菌器_清洗工作站_医用干燥柜_灭菌耗材-环氧乙烷灭菌器_脉动真空压力蒸汽灭菌器_低温等离子灭菌设备_河南省三强医疗器械有限责任公司 | 泰兴市热钻机械有限公司-热熔钻孔机-数控热熔钻-热熔钻孔攻牙一体机 | 聚氨酯复合板保温板厂家_廊坊华宇创新科技有限公司 | 高铝砖-高铝耐火球-高铝耐火砖生产厂家-价格【荣盛耐材】 | 空心明胶胶囊|植物胶囊|清真胶囊|浙江绿键胶囊有限公司欢迎您! | 帽子厂家_帽子工厂_帽子定做_义乌帽厂_帽厂_制帽厂 | 智能家居全屋智能系统多少钱一套-小米全套价格、装修方案 | 嘉兴恒升声级计-湖南衡仪声级计-杭州爱华多功能声级计-上海邦沃仪器设备有限公司 | 包塑丝_高铁绑丝_地暖绑丝_涂塑丝_塑料皮铁丝_河北创筹金属丝网制品有限公司 | 锡膏喷印机-全自动涂覆机厂家-全自动点胶机-视觉点胶机-深圳市博明智控科技有限公司 | 钢格栅板_钢格板网_格栅板-做专业的热镀锌钢格栅板厂家-安平县迎瑞丝网制造有限公司 | 精密冲床,高速冲床等冲压设备生产商-常州晋志德压力机厂 | 烟台游艇培训,威海游艇培训-烟台市邮轮游艇行业协会 | 深圳市超时尚职业培训学校,培训:月嫂,育婴,养老,家政;化妆,美容,美发,美甲. | 泰兴市热钻机械有限公司-热熔钻孔机-数控热熔钻-热熔钻孔攻牙一体机 | 医疗仪器模块 健康一体机 多参数监护仪 智慧医疗仪器方案定制 血氧监护 心电监护 -朗锐慧康 | 三佳互联一站式网站建设服务|网站开发|网站设计|网站搭建服务商 赛默飞Thermo veritiproPCR仪|ProFlex3 x 32PCR系统|Countess3细胞计数仪|371|3111二氧化碳培养箱|Mirco17R|Mirco21R离心机|仟诺生物 | 钢衬玻璃厂家,钢衬玻璃管道 -山东东兴扬防腐设备有限公司 | 东莞爱加真空科技有限公司-进口真空镀膜机|真空镀膜设备|Polycold维修厂家 | 无锡门窗-系统门窗-阳光房-封阳台-断桥铝门窗厂[窗致美] | 沙盘模型公司_沙盘模型制作公司_建筑模型公司_工业机械模型制作厂家 | 螺杆真空泵_耐腐蚀螺杆真空泵_水环真空泵_真空机组_烟台真空泵-烟台斯凯威真空 | 压力控制器,差压控制器,温度控制器,防爆压力控制器,防爆温度控制器,防爆差压控制器-常州天利智能控制股份有限公司 | 上海公众号开发-公众号代运营公司-做公众号的公司企业服务商-咏熠软件 | 安徽千住锡膏_安徽阿尔法锡膏锡条_安徽唯特偶锡膏_卡夫特胶水-芜湖荣亮电子科技有限公司 | 环球周刊网| 齿轮减速机电机一体机_齿轮减速箱加电机一体化-德国BOSERL蜗轮蜗杆减速机电机生产厂家 |