小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 九年級教案 > 數學教案 >

中考數學教科書教案

時間: 沐欽 數學教案

中考數學教科書教案都有哪些?數學起源于人類早期的生產活動。巴比倫人自古以來就積累了一定的數學知識,能夠應用實際問題。下面是小編為大家帶來的中考數學教科書教案七篇,希望大家能夠喜歡!

中考數學教科書教案

中考數學教科書教案篇1

教學目標:

1、理解切線的判定定理,并學會運用。

2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。

教學重點:

切線的判定定理和切線判定的方法。

教學難點:

切線判定定理中所闡述的圓的切線的兩大要素:一是經過半徑外端;二是直線垂直于這條半徑;學生開始時掌握不好并極容易忽視一。

教學過程:

一、復習提問

【教師】

問題1.怎樣過直線l上一點P作已知直線的垂線?

問題2.直線和圓有幾種位置關系?

問題3.如何判定直線l是⊙O的切線?

啟發:

(1)直線l和⊙O的公共點有幾個?

(2)圓心O到直線L的距離與半徑的數量關系 如何?

學生答完后,教師強調(2)是判定直線 l是⊙O的切線的常用方法,即: 定理:圓心O到直線l的距離OA 等于圓的半 (如圖1,投影顯示)

再啟發:若把距離OA理解為 OA⊥l,OA=r;把點A理解為半徑在圓上的端點 ,請同學們試將上面定理用新的理解改寫成新的命題,此命題就 是這節課要學的“切線的判定定理”(板書課題)

二、引入新課內容

【學生】命題:經過半徑的在圓上的端點且垂直于半 徑的直線是圓的切線。

證明定理:啟發學生分清命題的題設和結論,寫出已 知、求證,分析證明思路,閱讀課本P60。

定理:經過半徑外端并且垂直于這條半徑的直線是圓的切線。

定理的證明:已知:直線l經過半徑OA的外端點A,直線l⊥OA,

求證:直線l是⊙O的切線

證明:略

定理的符號語言:∵直線l⊥OA,直線l經過半徑OA的外端A

∴直線l為⊙O的切線。

是非題:

(1)垂直于圓的半徑的直線一定是這個圓的切線。 ( )

(2)過圓的半徑的外端的直線一定是這個圓的切線。 ( )

三、例題講解

例1、已知:直線AB經過⊙O上的點C,并且OA=OB,CA=CB。

求證:直線AB是⊙O的切線。

引導學生分析:由于AB過⊙O上的點C,所以連結OC,只要證明AB⊥OC即可。

證明:連結OC.

∵OA=OB,CA=CB,

∴AB⊥OC

又∵直線AB經過半徑OC的外端C

∴直線AB是⊙O的切線。

練習1、如圖,已知⊙O的半徑為R,直線AB經過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。

練習2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。

求證:CD是⊙O的切線。

例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。

求證:DE是⊙O的切線。

思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?

四、小結

1.切線的判定定理。

2.判定一條直線是圓的切線的方法:

①定義:直線和圓有唯一公共點。

②數量關系:直線到圓心的距離等于該圓半徑(即d = r).[

③切線的判定定理:經過半徑外端且與這條半徑垂直的直線是圓的切線。

3.證明一條直線是圓的切線的輔助線和證法規律。

凡是已知公共點(如:直線經過圓上的點;直線和圓有一個公共點;)往往是"連結"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。

五、布置作業:略

《切線的判定》教后體會

本課例《切線的判定》作為市考試院調研課型兼區級研討課,我以“教師為引導,學生為主體”的二期課改的理念出發,通過學生自我活動得到數學結論作為教學重點,呈現學生真實的思維過程為教學宗旨,進行教學設計,目的在于讓學生對知識有一個本質的、有效的理解。本節課切實反映了平時的教學情況,為前來調研和研討的老師提供了真實的樣本。反思本節課,有以下幾個成功與不足之處:

成功之處:

一、 教材的二度設計順應了學生的認知規律

這批學生習慣于單一知識點的學習,即得出一個知識點,必須由淺入深反復進行練習,鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結論,導致錯誤,久之便會失去學習數學的興趣和信心。本教時課本上將切線判定定理和性質定理的導出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學生往往會因第一時間得不到及時的鞏固,對定理本質的東西不能很好地理解,在運用時抓不住關鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學生更是因知識點多不知所措,在云里霧里。二度設計將切線的判定方法作為第一課時,切線的性質定理以及兩個定理的綜合運用作為第二課時,這樣的設計即是對前面所學的“直線與圓相切的判定方法”的復習,又是對后面學習綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學呈現了一個循序漸進、溫過知新的過程。從學生的反饋情況判斷,教學效果較為理想。

二、重視學生數感的培養呼應了課改的理念

數感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學習就會輕松。擁有數感,不僅會對數學知識反應靈敏,更會在生活中不知不覺運用數學思維方式解決實際問題。本節課中,兩個例題由教師誘導,學生發現完成的,而三個習題則完全放手讓學生去思考完成,不乏有不會做和做得復雜的學生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學生嘗試總結規律,也是對學生能力的培養,在本節課中,輔助線的規律是由學生得出,事實證明,學生有這樣的理解、概括和表達能力。通過思考得出正確的結論,這個結論往往是刻骨銘心的,長此以往,對數和形的感覺會越來越好。

中考數學教科書教案篇2

【教學目標】

1、會根據具體問題中的數量關系列一元二次方程并求解。

2、能根據問題的實際意義,檢驗所得結果是否合理。

3、進一步掌握列方程解應用題的步驟和關鍵。

【教學過程】

一、復習回顧:

1、解一元二次方程都有哪些方法?(學生口答)

2、列一元一次方程解應用題有哪些步驟?(學生口答)

①審題;②設未知數;③找相等關系;④列方程;⑤解方程;⑥答

二、問題探究:

(一)思考課本探究1回答下列問題:

(1)設每輪傳染中平均一個人傳染x個人,那么患流感的這個人在第一輪傳染中傳染了 人;第一輪傳染后,共有 人患了流感。

(2)在第二輪傳染中,傳染源是 人,這些人中每一個人又傳染了 人,那么第二輪傳染了 人,第二輪傳染后,共有 人患流感。

(3)根據等量關系列方程并求解。為什么要舍去一解?

(4)通過對這個問題的探究,你對類似的傳播問題中的數量關系有新的認識嗎?

(5)完成教材思考:如果按照這樣的傳播速度,三輪傳染后,有多少人患流感?

(學生在交流中解決問題,教師深入小組討論,對疑惑較多的問題要點撥;前兩個問是解題的關鍵,可作適當點撥。最后思考題,可讓學生試試獨立完成。教給學生如何審題,分析題。)

中考數學教科書教案篇3

教材分析

一元二次方程是中學數學的一個重要內容之一,在初中數學中占有重要地位。從知識的發展來看,一元二次方程的學習,是一元一次方程、方程組及不等式知識的延續和深化,也是今后學生學習可化為一元二次方程的方程、一元二次不等式、二次函數等知識的基礎。從知識的橫向來看,一元二次方程的學習對其它學科也有重要的意義,比如物理中的變速運動等問題就要通過解一元二次方程來解決。這節課是一元二次方程的概念課,通過豐富的實例,抽象出一元二次方程的概念。本節課的教學不僅使學生進一步體會方程是刻畫現實世界中數量關系的一個有效的數學模型,而且提高了學生分析、比較、抽象和概括的能力。為接下來的學習起到很好的鋪墊作用

學情分析

九年級的學生,在講本節課之前,已經系統的學習了一元一次方程及相關概念,學習了整式、分式和二次根式,從知識結構上看他們已經具備了繼續探究一元二次方程的基礎。這個階段的學生自主探究和合作交流的能力很強,并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強烈的求知欲,當遇到新的問題時,會自然的產生進一步探究的欲望。而我所教(11)班是年級中一個普通班,學生數學底子薄,基礎差,學生由于學習困難,基礎差,沒有自信,也就對數學的學習興趣越來越弱,有人甚至要放棄對數學的學習,作為他們的老師,首先培養他們自信心,啟發他們對數學的喜愛,慢慢培養他們的自信心,使數學基本概念、基本運算方法悄然走進學生的生活、走進他們對知識的運用中去。

教學目標

一、知識與技能:

1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;

2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項與系數;

3.通過本節課的學習,培養學生觀察、比較、分析、探究和歸納的能力。

二、過程與方法

1. 在回顧一元一次方程的概念的基礎上,讓學生通過分析實際問題中的數量關系列出方程,從而引導他們發現問題,然后通過自主探究和合作交流,抽象出一元二次方程的概念;

2. 借助于多媒體從實際問題抽象出概念,在通過鞏固訓練、回顧梳理、拓展提高到作業布置,完成本節課的教學

三、情感態度與價值觀

1. 通過本節課的學習使學生認識到數學來源于生活實踐,又反過來作用于生活的辯證唯物主義觀點,激發學生學數學、用數學的意識;

2. 通過本節知識的學習,使學生認識到知識的產生、變化和發展的過程。

教學重點和難點

重點:一元二次方程的概念及一般形式。

難點:1.由實際問題向數學問題的轉化過程。2.正確識別一般式中的“項”及“系數”。

中考數學教科書教案篇4

一、學生知識狀況分析

學生已經學習了一元二次方程及其解法,對于方程的解及解方程并不陌生,實際問題的應用,有些抽象,雖然學生在七、八年級已經進行了有關的訓練,但還是有一定的難度。

本節內容針對的學生是才進入九年級的學生,他們已經具備了一定的抽象思維和建模能力,也具備一定的生活經驗和初步的解一元二次方程的經驗。

二、教學任務分析

本節課的主要是發展學生抽象思維,強化學生的應用意識,使學生能通過抽象思維將一個應用題抽象成一元二次方程使問題得以解決,這也是方程教學的重要任務。但學生抽象意識和能力的發展不是自發的,需要通過大量的應用實例,在實際問題的解決中讓學生感受到其廣泛應用,并在具體應用中增強學生的應用能力。因此,本節教學中需要選用大量的實際問題,通過列方程解決問題,并且在問題解決過程中,促進學生分析問題、解決問題意識和能力的提高以及抽象思維的初步形成。顯然,這個任務并非某個教學活動所能達成的,而應在教學活動中創設大量的問題解決的情境,在具體情境中發展學生的有關能力。為此,本節課的教學目標是:

知識目標:

通過分析問題中的數量關系,抽象出方程解決問題,認識方程模型的重要性,并總結運用方程解決實際問題的一般過程。

能力目標:

1、經歷分析,抽象和建模的過程,進一步體會方程是刻畫現實世界中數量關系的一個有效的數學模型;

2、能夠抽象出一元二次方程解決有關實際問題,能根據具體問題的實際意義檢驗結果的合理性,進一步培養學生分析問題、解決問題的意識和能力;

情感態度價值觀:

在問題解決中,經歷一定的合作交流活動,進一步發展學生合作交流的意識和能力。

三、學法指導

本課是學生學習完一元二次方程的解法后的應用課,雖然學生在七八年級已經進行了一定的訓練,但本課對學生而言還是有一定的難度。本課采用啟發式、問題串討論式、合作學習相結合的方式,引導學生從已有的知識和生活經驗出發,以教材提供的素材為基礎,引導學生對對問題中的數量進行分析從而抽象出方程解決問題;學生之間的合作交流、互助學習,能更好地調動學生的學習積極性,更符合學生的認知規律。無論是例題的分析還是練習的分析,盡可能地鼓勵學生動腦、動手、動口,為學生提供展示自己聰明才智的機會,并且在此過程中發現學生分析問題、解決問題的獨到見解以及思維的誤區,更好地進行學法指導。

四、教學過程分析

本課時分為以下五個教學環節:第一環節:回憶鞏固,情境導入;第二環節:做一做,探索新知;第三環節:練一練,鞏固新知;第四環節:收獲與感悟;第五環節:布置作業。

第一環節;情境導入

活動內容:提出問題:還記得梯子下滑的問題嗎?

在這個問題中,梯子頂端下滑1米時,梯子底端滑動的距離大于1米,那么梯子頂端下滑幾米時,梯子底端滑動的距離和它相等呢?如果梯子長度是13米,梯子頂端下滑的距離與梯子底端滑動的距離可能相等嗎?如果相等,那么這個距離是多少?

分組討論:

怎么設未知數?在這個問題中存在怎樣的等量關系?如何利用勾股定理抽象出方程?

活動目的:以學生所熟悉的梯子下滑問題為素材,以前面所學的勾股定理為切入點,用熟悉的情境激發學生解決問題的欲望,用學生已有的知識為支點抽象出一元二次方程使問題得以解決,進一步讓學生體會數形結合的思想。

活動的實際效果:大部分學生能夠聯系以前學過的勾股定理的三邊關系抽象出方程對上述問題進行思考,能夠在老師的引導下主動地探究問題,取得了比較理想的效果,而且也調動了學生的學習熱情,激發了學生的思維,為后面的探索奠定了良好的基礎。

第二環節探索新知

活動內容:見課本P53頁例1:

如圖:某海軍基地位于A處,在其正南方向200海里處有一重要目標B,在B的正東方向200海里處有一重要目標C,小島D位于AC的中點,島上有一補給碼頭。小島F位于BC中點。一艘軍艦從A出發,經B到C勻速巡航,一艘補給船同時從D出發,沿南偏西方向勻速直線航行,欲將一批物品送達軍艦。

已知軍艦的速度是補給船的2倍,軍艦在由B到C的途中與補給船相遇,那么相遇時補給船航行了多少海里?(結果精確到0.1海里)

在教學中要給學生充分的時間去審清題意,分析各量之間的關系,不能粗線條解決。在講解過程中可逐步分解難點:審清題意;找準各條有關線段的長度關系;通過抽象思維建立方程模型,之后求解。

實際應用問題比較抽象,因此教學中老師要給學生充分的時間去審清題意,讓學生自己反復審題,弄清各量之間的關系,分析題目中的已知條件和要求解的問題,并在這個前提下抽象出圖形中各條線段所表示的量,弄清它們之間的關系,從而抽象出方程模型解決問題。

在學生分析題意遇到困難時,教學中可設置問題串分解難點:

(1)要求DE的長,需要如何設未知數?

(2)怎樣建立含DE未知數的等量關系?從已知條件中能找到嗎?

(3)利用勾股定理建立等量關系,如何構造直角三角形?

(4)選定后,三條邊長都是已知的嗎?DE,DF,EF分別是多少?

學生在問題串的引導下,逐層分析,在分組討論后抽象出題目中的等量關系即:

速度等量:V軍艦=2×V補給船

時間等量:t軍艦=t補給船

三邊數量關系:

弄清圖形中線段長表示的量:已知AB=BC=200海里,DE表示補給船的路程,AB+BE表示軍艦的路程。

學生在此基礎上選準未知數,用未知數表示出線段:DE、EF的長,根據勾股定理抽象出方程求解,并判斷解的合理性。

鞏固練習:1、一個直角三角形的斜邊長為7cm,一條直角邊比另一條直角邊長1cm,那么這個直角三角的面積是多少?

文本框:8cm2、如圖:在RtACB中,∠C=90°,點P、Q同時由A、B兩點出發分別沿AC、BC方向向點C勻速移動,它們的速度都是1m/s,幾秒后PCQ的面積為RtACB面積的一半?

3、在寬為20m,長為32m的矩形耕地上,修筑同樣寬的三條道路(兩條縱向,一條橫向,橫向與縱向互相垂直),把耕地分成大小相等的六塊作試驗田,要使試驗田面積為570平方米,問道路應為多寬?

說明:三個題目的設計從簡單問題入手,第一題通過勾股定理抽象出一元二次方程解決直角三角形邊長問題;第2題構造了一個可變的直角三角形,抽象出方程解決面積問題;第三題也是面積問題,在這個問題中常設道路寬為x米,通過平移道路使六塊田地變成一塊田地,從而根據矩形面積公式抽象出方程解決問題。

活動目的:一元二次方程的應用題的類型較多,像數字問題、面積問題、平均增長(或降低)率問題、利潤問題等;本節課以教材上的引例作為出發點,作為素材來呈現,可以將應用類型作適當的拓展,在練習中將教材中的應用問題歸類呈現出來,便于學生理解和掌握。本課由數形結合問題拓展到面積問題,后面可以在練習中增加數字問題,為學生呈現更多的應用類型,讓學生在不同的情境中體會數學抽象和建模的重要性。

活動實際效果:應用問題設置都經過精心準備。通過問題串的設立,將比較復雜、難以理解的題目分成多個小的題目去理解,使學生在不知不覺中克服困難,體會到通過抽象出方程解應用題的三個重要環節:整體系統的審清題意;尋找等量關系;正確求解并檢驗解的合理性。采取的是一講一練,從鞏固練習的準確程度上來看,學生掌握得比較好,能夠達到預期的效果。

第三環節:練一練,鞏固新知

活動內容:1、在一塊正方形的鋼板上裁下寬為20cm的一個長條,剩下的`長方形鋼板的面積為4800cm2。求原正方形鋼板的面積。

2、有這樣一道阿拉伯古算題:有兩筆錢,一多一少,其和等于20,積等于96,多的一筆錢被許諾賞給賽義德,那么賽義德得到多少錢?

3、《九章算術》“勾股”章有一題:甲、乙二人同時從同一地點出發,甲的速度為7,乙的速度為3。乙一直向東走,甲先向南走了10步,后又斜向北偏東方向走了一段后與乙相遇。那么相遇時,甲、乙各走了多遠?

活動目的:通過三道問題的解決,查缺補漏,了解學生的掌握情況和靈活運用知識的程度。在教學過程中要以學生為主體,引導學生自主發現、合作交流。活動實際效果:學生在前面活動中積累的經驗,可以幫助學生比較順利地分析上述問題,遇有疑難可以讓學生在合作交流中解決,學生在訓練過程中更加理解數學抽象和建模的重要性.大部分學生能夠獨立解決問題。

第四環節:收獲與感悟

活動內容:提問:

1、列方程解應用題的關鍵;2、列方程解應用題的步驟;3、列方程應注意的一些問題。

學生在學習小組中回顧與反思,并進行組間交流發言。

活動目的:鼓勵學生回顧本節課知識方面有哪些收獲,解題技能方面有哪些提高,還有什么疑難問題希望得到解決;通過對三個問題的解決,加深學生通過抽象思維抽象出方程解決實際問題的意識和能力;并且通過學生間的合作學習幫助不同層次的孩子解決實際困難,增強孩子學好數學的信心。

活動實際效果:學生通過回顧本節課的學習過程,體會利用抽象思維抽象出一元二次方程解決實際問題的方法和技巧,進一步提高自己解決問題的能力。

第五環節:布置作業

1、甲乙兩個小朋友的年齡相差4歲,兩個人的年齡相乘積等于45,你知道這兩個小朋友幾歲嗎?

2、一塊長方形草地的長和寬分別為20m和15m,在它四周外圍環繞著寬度相等的小路,已知小路的面積為246,求小路的寬度。

3、一個兩位數等于其數字之積的3倍,其十位數比個位數小2,求這兩位數。

中考數學教科書教案篇5

知識點:

因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

教學目標:

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

考查重難點與常見題型:

考查因式分解能力,在中考試題中,因式分解出現的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。

教學過程:

因式分解知識點

多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

(1)提公因式法

如多項式

其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。

(2)運用公式法,即用

寫出結果。

(3)十字相乘法

對于二次項系數為l的二次三項式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項式尋找滿足

a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

(5)求根公式法:如果有兩個根X1,X2,那么

1、教學實例:學案示例

2、課堂練習:學案作業

3、課堂:

4、板書:

5、課堂作業:學案作業

6、教學反思:

中考數學教科書教案篇6

教學目標

1、知識與技能

會應用平方差公式進行因式分解,發展學生推理能力。

2、過程與方法

經歷探索利用平方差公式進行因式分解的過程,發展學生的逆向思維,感受數學知識的完整性。

3、情感、態度與價值觀

培養學生良好的互動交流的習慣,體會數學在實際問題中的應用價值。

重、難點與關鍵

1、重點:利用平方差公式分解因式。

2、難點:領會因式分解的解題步驟和分解因式的徹底性。

3、關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的方面上來。

教學方法

采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維。

教學過程

一、觀察探討,體驗新知

【問題牽引】

請同學們計算下列各式。

(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。

【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演。

(1)(a+5)(a—5)=a2—52=a2—25;

(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。

【教師活動】引導學生完成下面的兩道題目,并運用數學“互逆”的思想,尋找因式分解的規律。

1、分解因式:a2—25;2、分解因式16m2—9n。

【學生活動】從逆向思維入手,很快得到下面答案:

(1)a2—25=a2—52=(a+5)(a—5)。

(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。

【教師活動】引導學生完成a2—b2=(a+b)(a—b)的同時,導出課題:用平方差公式因式分解。

平方差公式:a2—b2=(a+b)(a—b)。

評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數、含字母的代數式(單項式、多項式)。

二、范例學習,應用所學

【例1】把下列各式分解因式:(投影顯示或板書)

(1)x2—9y2;(2)16x4—y4;

(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;

(5)m2(16x—y)+n2(y—16x)。

【思路點撥】在觀察中發現1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。

【教師活動】啟發學生從平方差公式的角度進行因式分解,請5位學生上講臺板演。

【學生活動】分四人小組,合作探究。

解:(1)x2—9y2=(x+3y)(x—3y);

(2)16x4—y4=(4x2+y2)(4x2—y2)=(4x2+y2)(2x+y)(2x—y);

(3)12a2x2—27b2y2=3(4a2x2—9b2y2)=3(2ax+3by)(2ax—3by);

(4)(x+2y)2—(x—3y)2=[(x+2y)+(x—3y)][(x+2y)—(x—3y)]=5y(2x—y);

(5)m2(16x—y)+n2(y—16x)

=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。

中考數學教科書教案篇7

教學目標

1、知識與技能

了解因式分解的意義,以及它與整式乘法的關系。

2、過程與方法

經歷從分解因數到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用。

3、情感、態度與價值觀

在探索因式分解的方法的活動中,培養學生有條理的思考、表達與交流的能力,培養積極的進取意識,體會數學知識的內在含義與價值。

重、難點與關鍵

1、重點:了解因式分解的意義,感受其作用。

2、難點:整式乘法與因式分解之間的關系。

3、關鍵:通過分解因數引入到分解因式,并進行類比,加深理解。

教學方法

采用“激趣導學”的教學方法。

教學過程

一、創設情境,激趣導入

【問題牽引】

請同學們探究下面的2個問題:

問題1:720能被哪些數整除?談談你的想法。

問題2:當a=102,b=98時,求a2—b2的值。

二、豐富聯想,展示思維

探索:你會做下面的填空嗎?

1、ma+mb+mc=()();

2、x2—4=()();

3、x2—2xy+y2=()2。

【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式。

三、小組活動,共同探究

【問題牽引】

(1)下列各式從左到右的變形是否為因式分解:

①(x+1)(x—1)=x2—1;

②a2—1+b2=(a+1)(a—1)+b2;

③7x—7=7(x—1)。

(2)在下列括號里,填上適當的項,使等式成立。

①9x2(______)+y2=(3x+y)(_______);

②x2—4xy+(_______)=(x—_______)2。

四、隨堂練習,鞏固深化

課本練習。

【探研時空】計算:993—99能被100整除嗎?

五、課堂總結,發展潛能

由學生自己進行小結,教師提出如下綱目:

1、什么叫因式分解?

2、因式分解與整式運算有何區別?

六、布置作業,專題突破

選用補充作業。

板書設計

35366 主站蜘蛛池模板: 重庆私家花园设计-别墅花园-庭院-景观设计-重庆彩木园林建设有限公司 | 长沙网站建设制作「网站优化推广」-网页设计公司-速马科技官网 | 昆明网络公司|云南网络公司|昆明网站建设公司|昆明网页设计|云南网站制作|新媒体运营公司|APP开发|小程序研发|尽在昆明奥远科技有限公司 | 杭州标识标牌|文化墙|展厅|导视|户内外广告|发光字|灯箱|铭阳制作公司 - 杭州标识标牌|文化墙|展厅|导视|户内外广告|发光字|灯箱|铭阳制作公司 | 无刷电机_直流无刷电机_行星减速机-佛山市藤尺机电设备有限公司 无菌检查集菌仪,微生物限度仪器-苏州长留仪器百科 | 云南标线|昆明划线|道路标线|交通标线-就选云南云路施工公司-云南云路科技有限公司 | 全自动不干胶贴标机_套标机-上海今昂贴标机生产厂家 | 能耗监测系统-节能监测系统-能源管理系统-三水智能化 | 苏州教学设备-化工教学设备-环境工程教学模型|同科教仪 | ET3000双钳形接地电阻测试仪_ZSR10A直流_SXJS-IV智能_SX-9000全自动油介质损耗测试仪-上海康登 | 定制奶茶纸杯_定制豆浆杯_广东纸杯厂_[绿保佳]一家专业生产纸杯碗的厂家 | 工业废水处理|污水处理厂|废水治理设备工程技术公司-苏州瑞美迪 今日娱乐圈——影视剧集_八卦娱乐_明星八卦_最新娱乐八卦新闻 | 爱德华真空泵油/罗茨泵维修,爱发科-比其尔产品供应东莞/杭州/上海等全国各地 | 玉米深加工设备-玉米深加工机械-新型玉米工机械生产厂家-河南粮院机械制造有限公司 | 氢氧化钙设备_厂家-淄博工贸有限公司 | 湖州织里童装_女童男童中大童装_款式多尺码全_织里儿童网【官网】-嘉兴嘉乐网络科技有限公司 | 云阳人才网_云阳招聘网_云阳人才市场_云阳人事人才网_云阳人家招聘网_云阳最新招聘信息 | 海德莱电力(HYDELEY)-无功补偿元器件生产厂家-二十年专业从事电力电容器 | 滚筒线,链板线,总装线,流水线-上海体能机电有限公司 | 电位器_轻触开关_USB连接器_广东精密龙电子科技有限公司 | 商用绞肉机-熟肉切片机-冻肉切丁机-猪肉开条机 - 广州市正盈机械设备有限公司 | 室内室外厚型|超薄型|非膨胀型钢结构防火涂料_隧道专用防火涂料厂家|电话|价格|批发|施工 | 电磁流量计_智能防腐防爆管道式计量表-金湖凯铭仪表有限公司 | 纳米涂料品牌 防雾抗污纳米陶瓷涂料厂家_虹瓷科技 | RTO换向阀_VOC高温阀门_加热炉切断阀_双偏心软密封蝶阀_煤气蝶阀_提升阀-湖北霍科德阀门有限公司 | 拉力机-万能试验机-材料拉伸试验机-电子拉力机-拉力试验机厂家-冲击试验机-苏州皖仪实验仪器有限公司 | 温州在线网 | 锂电混合机-新能源混合机-正极材料混料机-高镍,三元材料混料机-负极,包覆混合机-贝尔专业混合混料搅拌机械系统设备厂家 | 专业的新乡振动筛厂家-振动筛品质保障-环保振动筛价格—新乡市德科筛分机械有限公司 | 优秀的临床医学知识库,临床知识库,医疗知识库,满足电子病历四级要求,免费试用 | 车载加油机品牌_ 柴油加油机厂家 | 不锈钢酒柜|恒温酒柜|酒柜定制|酒窖定制-上海啸瑞实业有限公司 | 电线电缆厂家|沈阳电缆厂|电线厂|沈阳英联塑力线缆有限公司 | 陕西华春网络科技股份有限公司 | 翅片管散热器价格_钢制暖气片报价_钢制板式散热器厂家「河北冀春暖气片有限公司」 | 二手光谱仪维修-德国OBLF光谱仪|进口斯派克光谱仪-热电ARL光谱仪-意大利GNR光谱仪-永晖检测 | 苹果售后维修点查询,苹果iPhone授权售后维修服务中心 – 修果网 拼装地板,悬浮地板厂家,悬浮式拼装运动地板-石家庄博超地板科技有限公司 | 合肥防火门窗/隔断_合肥防火卷帘门厂家_安徽耐火窗_良万消防设备有限公司 | 动力配电箱-不锈钢配电箱-高压开关柜-重庆宇轩机电设备有限公司 聚天冬氨酸,亚氨基二琥珀酸四钠,PASP,IDS - 远联化工 | 上海冠顶工业设备有限公司-隧道炉,烘箱,UV固化机,涂装设备,高温炉,工业机器人生产厂家 | 不锈钢管件(不锈钢弯头,不锈钢三通,不锈钢大小头),不锈钢法兰「厂家」-浙江志通管阀 |