中考數學綜合復習教案
中考數學綜合復習教案如何寫?只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示獨立發展的終止或衰亡。下面是小編為大家帶來的中考數學綜合復習教案七篇,希望大家能夠喜歡!
中考數學綜合復習教案【篇1】
掌握用因式分解法解一元二次方程.
通過復習用配方法、公式法解一元二次方程,體會和探尋用更簡單的方法——因式分解法解一元二次方程,并應用因式分解法解決一些具體問題.
重點
用因式分解法解一元二次方程.
難點
讓學生通過比較解一元二次方程的多種方法感悟用因式分解法使解題更簡便.
一、復習引入
(學生活動)解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老師點評:(1)配方法將方程兩邊同除以2后,x前面的系數應為12,12的一半應為14,因此,應加上(14)2,同時減去(14)2.(2)直接用公式求解.
二、探索新知
(學生活動)請同學們口答下面各題.
(老師提問)(1)上面兩個方程中有沒有常數項?
(2)等式左邊的各項有沒有共同因式?
(學生先答,老師解答)上面兩個方程中都沒有常數項;左邊都可以因式分解.
因此,上面兩個方程都可以寫成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因為兩個因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實現降次的?)
因此,我們可以發現,上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現降次,這種解法叫做因式分解法.
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的條件是什么?
解:略 (方程一邊為0,另一邊可分解為兩個一次因式乘積.)
練習:下面一元二次方程解法中,正確的是( )
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,兩邊同除以x,得x=1
三、鞏固練習
教材第14頁 練習1,2.
四、課堂小結
本節課要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用.
(2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.
五、作業布置
教材第17頁 習題6,8,10,11
中考數學綜合復習教案【篇2】
1.掌握一元二次方程的根與系數的關系并會初步應用.
2.培養學生分析、觀察、歸納的能力和推理論證的能力.
3.滲透由特殊到一般,再由一般到特殊的認識事物的規律.
4.培養學生去發現規律的積極性及勇于探索的精神.
重點
根與系數的關系及其推導
難點
正確理解根與系數的關系.一元二次方程根與系數的關系是指一元二次方程兩根的和、兩根的積與系數的關系.
一、復習引入
1.已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值.
2.由上題可知一元二次方程的系數與根有著密切的關系.其實我們已學過的求根公式也反映了根與系數的關系,這種關系比較復雜,是否有更簡潔的關系?
3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關系?
二、探索新知
解下列方程,并填寫表格:
方程 x1 x2 x1+x2 x1?x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
觀察上面的表格,你能得到什么結論?
(1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q之間有什么關系?
(2)關于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數a,b,c之間又有何關系呢?你能證明你的猜想嗎?
解下列方程,并填寫表格:
方程 x1 x2 x1+x2 x1?x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小結:根與系數關系:
(1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q的關系是:x1+x2=-p,x1?x2=q(注意:根與系數關系的前提條件是根的判別式必須大于或等于零.)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數化為1,再利用上面的結論.
即:對于方程 ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1?x2=ca
(可以利用求根公式給出證明)
例1 不解方程,寫出下列方程的兩根和與兩根積:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2 不解方程,檢驗下列方程的解是否正確?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3 已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程.(你有幾種方法?)
例4 已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值.
變式一:已知方程x2-2kx-9=0的兩根互為相反數,求k;
變式二:已知方程2x2-5x+k=0的兩根互為倒數,求k.
三、課堂小結
1.根與系數的關系.
2.根與系數關系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零.
四、作業布置
1.不解方程,寫出下列方程的兩根和與兩根積.
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2.已知方程x2-3x+m=0的一個根為1,求另一根及m的值.
3.已知方程x2+bx+6=0的一個根為-2,求另一根及b的值
中考數學綜合復習教案【篇3】
教學目的:
(一)知識點目標:
1.了解正數和負數在實際生活中的應用。
2.深刻理解正數和負數是反映客觀世界中具有相反意義的理。
3.進一步理解0的特殊意義。
(二)能力訓練目標:
1.體會數學符號與對應的思想,用正、負數表示具有相反意義的量。
2.熟練地用正、負數表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯系實際,激發學生學好數學的熱情。
教學重點:能用正、負數表示具有相反意義的量。
教學難點:進一步理解負數、數0表示的量的意義。
教學方法:小組合作、師生互動。
教學過程:
創設問題情境,引入新課:分小組派代表,注意數學語言規范。
1.認真想一想,你能用學過的知識解決下列問題嗎?
某零件的直徑在圖紙上注明是 ,單位是毫米,這樣標注表示零件直徑的標準尺寸是 毫米,加工要求直徑可以是 毫米,最小可以是 毫米。
2.下列說法中正確的( )
A、帶有“一”的數是負數; B、0℃表示沒有溫度;
C、0既可以看作是正數,也可以看作是負數。
D、0既不是正數,也不是負數。
[師]這節課我們就來繼續認識正、負數及它們在生活中的實際意義,特別是數0。
講授新課:
例1. 仔細找一找,找了具有相反意義的量:
甲隊勝5場;零下6度;向南走50米;運進糧食40噸;乙隊負4場;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一個月內,小明的體重增加2千克,小華體重減少1千克,小強體重無變化,寫出他們這個月的體重增長值;
(2)2001年下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,法國減少2.4%,
英國減少3.5%,意大利增長0.2%,中國增長7.5%。
寫出這些國家2001年商品進出口總額的增長率。
例3. 下列各數中,哪些是正數,哪些是負數?哪些是正整數,哪些是負整數?哪些是正分數(小數),哪些是負分數(小數)?
例4. 小紅從阿地出發向東走了3千米,記作+3千米,接著她又向西走3千米,那么小紅距阿地多少千米?
復習鞏固:練習:課本P6 練習
課時小結:這節課我們學習了哪些知識?你能說一說嗎?
課后作業:課本P7習題1.1 的第3、6、7、8題。
活動與探究:海邊的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潛水艇在海平面下30米處,現以海邊堤岸為基準,將其記為0米,那么附近建筑物及潛水艇的高度各應如何表示?
課后反思:————
中考數學綜合復習教案【篇4】
一、教學目標:
1、知道一次函數與正比例函數的定義。
2、理解掌握一次函數的圖象的特征和相關的性質。
3、弄清一次函數與正比例函數的區別與聯系。
4、掌握直線的平移法則簡單應用。
5、能應用本章的基礎知識熟練地解決數學問題。
二、教學重、難點:
重點:初步構建比較系統的函數知識體系。
難點:對直線的平移法則的理解,體會數形結合思想。
三、教學過程:
1、一次函數與正比例函數的定義:
一次函數:一般地,若y=kx+b(其中k,b為常數且k≠0),那么y是一次函數。
正比例函數:對于y=kx+b,當b=0,k≠0時,有y=kx,此時稱y是x的正比例函數,k為正比例系數。
2、一次函數與正比例函數的區別與聯系:
(1)從解析式看:y=kx+b(k≠0,b是常數)是一次函數;而y=kx(k≠0,b=0)是正比例函數,顯然正比例函數是一次函數的特例,一次函數是正比例函數的推廣。
(2)從圖象看:正比例函數y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx
平行的一條直線。
基礎訓練:
1、寫出一個圖象經過點(1,—3)的函數解析式為:
2、直線y=—2X—2不經過第象限,y隨x的增大而。
3、如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:
4、已知正比例函數y=(3k—1)x,,若y隨x的增大而增大,則k是:
5、過點(0,2)且與直線y=3x平行的直線是:
6、若正比例函數y=(1—2m)x的圖像過點A(x1,y1)和點B(x2,y2)當x1y2,則m的取值范圍是:
7、若y—2與x—2成正比例,當x=—2時,y=4,則x=時,y=—4。
8、直線y=—5x+b與直線y=x—3都交y軸上同一點,則b的值為。
9、已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。
(1)求線段AB的長。
(2)求直線AC的解析式。
中考數學綜合復習教案【篇5】
一、背景知識
《有理數的大小比較》選自浙江版《義務教育課程標準實驗教科書數學七年級(上冊)》第一章《從自然數到有理數》的第5節,有理數大小比較的提出是從學生生活熟悉的情境入手,借助于氣溫的高低及數軸,得出有理數的大小比較方法。課本安排了"做一做"等形式多樣的教學活動,讓學生通過觀察、思考和自己動手操作,體驗有理數大小比較法則的探索過程。
二、教學目標
1、使學生能說出有理數大小的比較法則
2、能熟練運用法則結合數軸比較有理數的大小,特別是應用絕對值概念比較兩個負數的大小,能利用數軸對多個有理數進行有序排列。
3、能正確運用符號"<"">""∵""∴"寫出表示推理過程中簡單的因果關系。
三、教學重點與難點
重點:運用法則借助數軸比較兩個有理數的大小。
難點:利用絕對值概念比較兩個負分數的大小。
四、教學準備
多媒體課件
五、教學設計
(一)交流對話,探究新知
1、說一說
(多媒體顯示)某一天我們5個城市的最低氣溫 從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發學生的求知欲望,可能有些學生會說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學生會說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會說的,老師適當點拔,從而學生在合作交流中不知不覺地完成了以下填空。
比較這一天下列兩個城市間最低氣溫的高低(填"高于"或"低于")
廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。
2、畫一畫:(1)把上述5個城市最低氣溫的數表示在數軸上,(2)觀察這5個數在數軸上的位置,從中你發現了什么?
(3)溫度的高低與相應的數在數軸上的位置有什么?
(通過學生自己動手操作,觀察、思考,發現原點左邊的數都是負數,原點右邊的數都是正數;同時也發現5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數軸上原點右邊的兩個數,右邊的數總比左邊的數大。教師趁機追問,原點左邊的數也有這樣的規律嗎?從而激發學生探索知識的欲望,進一步驗證了原點左邊的數也有這樣的規律。從而使學生親身體驗探索的樂趣,在探究中不知不覺獲得了知識。)由小組討論后,教師歸納得出結論:
在數軸上表示的兩個數,右邊的數總比左邊的數大。
正數都大于零,負數都小于零,正數大于負數。
(二)應用新知,體驗成功
1、練一練(師生共同完成例1后,學生完成隨堂練習1)
例1:在數軸上表示數5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號連接。(師生共同完成)
分析:本題意有幾層含義?應分幾步?
要點總結:小組討論歸納,本題解題時的一般步驟:①畫數軸②描點;③有序排列;④不等號連接。
隨堂練習: P19 T1
2、做一做
(1)在數軸上表示下列各對數,并比較它們的大小
①2和7 ?、?6和-1 ?、?6和-36 ?、?和-1.5
(2)求出圖中各對數的絕對值,并比較它們的大小。
(3)由①、②從中你發現了什么?
(學生小組討論后,代表站起來發言,口述自己組的發現,說明自己組發現的過程,逐步培養學生觀察、歸納、用數學語言表達數學規律的能力。)
要點總結:兩個正數比較大小,絕對值大的數大;兩個負數比較大小,絕對值大的數反而小。
在學生討論的基礎上,由學生總結得出有理數大小的比較法則。
(1)正數都大于零,負數都小于零,正數大于負數。
(2)兩個正數比較大小,絕對值大的數大。
(3)兩個負數比較大小,絕對值大的數反而小。
3、師生共同完成例2后,學生完成隨堂練習2、3、4。
例2比較下列每對數的大小,并說明理由:(師生共同完成)
(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|
分析:第(4)(5)題較難,第(4)題應先通分,第(5)題應先化簡,再比較。同時在講解時,要注意格式。
注:絕對值比較時,分母相同,分子大的數大;分子相同,則分母大的數反而小;分子分母都不相同時,則應先通分再比較,或把分子化相同再比較。
兩個負數比較大小時的一般步驟:①求絕對值;②比較絕對值的大小;③比較負數的大小。
思考:還有別的方法嗎?(分組討論,積極思考)
4、想一想:我們有幾種方法來判斷有理數的大小?你認為它們各有什么特點?
由學生討論后,得出比較有理數的大小共有兩種方法,一種是法則,另一種是利用數軸,當兩個數比較時一般選用第一種,當多個有理數比較大小時,一般選用第二種較好。
練一練:P19 T2、3、4
5、考考你:請你回答下列問題:
(1)有沒有的有理數,有沒有最小的有理數,為什么?
(2)有沒有絕對值最小的有理數?若有,請把它寫出來?
(3)在于-1.5且小于4.2的整數有_____個,它們分別是____。
(4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個數的大小嗎?(本題屬提高題,不要求全體學生掌握)
(新穎的問題會激發學生的好奇心,通過合作交流,自主探究等活動,培養學生思維的習慣和數學語言的表達能力)
6、議一議,談談本節課你有哪些收獲
(由師生共同完成本節課的小結)本節課主要學習了有理數大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數軸,運用這種方法時,首先必須把要比較的數在數軸上表示出來,然后按照它們在數軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個有理數大小時非常簡便。
六、布置作業:P19 A組、B組
基礎好的A、B兩組都做
基礎較差的同學選做A組。
中考數學綜合復習教案【篇6】
一.一元一次不等式組:關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。一元一次不等式組的概念可以從以下幾個方面理解:
(1)組成不等式組的不等式必須是一元一次不等式;
(2)從數量上看,不等式的個數必須是兩個或兩個以上;
(3)每個不等式在不等式組中的位置并不固定,它們是并列的.
二.一元一次不等式組的解集及解不等式組:在一元一次不等式組中,各個不等式的解集的公共部分就叫做這個一元一次不等式組的解集。求這個不等式組解集的過程就叫解不等式組。解一元一次不等式組的步驟:
(1)先分別求出不等式組中各個不等式的解集;
(2)利用數軸或口訣求出這些解集的公共部分,也就是得到了不等式組的解集.
三.不等式(組)的解集的數軸表示:
一元一次不等式組知識點
1.用數軸表示不等式的解集,應記住下面的規律:大于向右畫,小于向左畫,有等號的畫實心原點,無等號的畫空心圓圈;
2.不等式組的解集,可以在數軸上先畫同各個不等式的解集,找出公共部分即為不等式的解集。公共部分也就各不等式解集在數軸上的重合部分;
3..我們根據一元一次不等式組,化簡成最簡不等式組后進行分類,通常就能把一元一次不等式組分成如上四類。
說明:當不等式組中,含有“≤”或“≥”時,在解題時,我們可以不關注這個等號,這樣就這類不等式組化歸為上述四種基本不等式組中的某一種類型。但是,在解題的過程中,這個等號要與不等號相連,不能分開。
四.求一些特解:求不等式(組)的正整數解,整數解等特解(這些特解往往是有限個),解這類問題的步驟:先求出這個不等式的解集,然后借助于數軸,找出所需特解。
【一元一次不等式組考點分析】
(1)考查不等式組的概念;
(2)考查一元一次不等式組的解集,以及在數軸上的表示;
(3)考查不等式組的特解問題;
(4)確定字母的取值。
【一元一次不等式組知識點誤區】
(1)思維誤區,不等式與等式混淆;
(2)不能正確地確定出不等式組解集的公共部分;
(3)在數軸上表示不等式組解集時,混淆界點的表示方法;
(4)考慮不周,漏掉隱含條件;
(5)當有多個限制條件時,對不等式關系的發掘不全面,導致未知數范圍擴大;
(6)對含字母的不等式,沒有對字母取值進行分類討論。
中考數學綜合復習教案【篇7】
教材分析:
一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。
學情分析:
1.學生已學習用求根公式法解一元二次方程。
2.本課的教學對象是九年級學生,學生對事物的認識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。
3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現代化的教學模式和傳統的教學模式相結合的基礎上掌握一元二次方程根與系數的關系。
教學目標:
1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。
2、能力目標:通過韋達定理的教學過程,使學生經歷觀察、實驗、猜想、證明等數學活動過程,發展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養學生的創新意識和創新精神。
3、情感目標:通過情境教學過程,激發學生的求知欲望,培養學生積極學習數學的態度。體驗數學活動中充滿著探索與創造,體驗數學活動中的成功感,建立自信心。
教學重難點:
1、重點:一元二次方程根與系數的關系。
2、難點:讓學生從具體方程的根發現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
板書設計:
一元二次方程根與系數的關系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2=,x1x2=。
問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎?①二次項系數a是否為零,決定著方程是否為二次方程;②當a≠0時,b=0,a、c異號,方程兩根互為相反數;③當a≠0時,△=b-4ac可判定根的情況;④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。
學生學習活動評價設計:
本節課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。
教學反思:
1.一元二次方程根與系數的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數之間的關系,是我們今后繼續研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。
2.以一元二次方程根與系數的關系的探索與推導,向學生展示認識事物的一般規律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力。
3.一元二次方程的根與系數的關系,在中考中多以填空,選擇,解答題的形式出現,考查的頻率較高,也常與幾何、二次函數等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。
4.使學生體會解題方法的多樣性,開闊解題思路,優化解題方法,增強擇優能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數學活動經驗,教師應注意引導。