小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 >

高三教案數學

時間: 新華 教案模板

高三教案數學篇1

一、內容和內容解析

本節課是北師大版高中數學必修5中第三章第4節的內容。主要是二元均值不等式。它是在系統地學習了不等關系和不等式性質,掌握了不等式性質的基礎上展開的,作為重要的基本不等式之一,為后續的學習奠定基礎。要進一步了解不等式的性質及運用,研究最值問題,此時基本不等式是必不可缺的。基本不等式在知識體系中起了承上啟下的作用,同時在生活及生產實際中有著廣泛的應用,因此它也是對學生進行情感價值觀教育的優良素材,所以基本不等式應重點研究。

教學中注意用新課程理念處理教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探究、動手實踐、合作交流、閱讀自學,師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程。

就知識的應用價值上來看,基本不等式是從大量數學問題和現實問題中抽象出來的一個模型,在公式推導中所蘊涵的`數學思想方法如數形結合、抽象歸納、演繹推理、分析法證明等在各種不等式的研究中均有著廣泛的應用;另外,在解決函數最值問題中,基本不等式也起著重要的作用。

就內容的人文價值上來看,基本不等式的探究與推導需要學生觀察、分析、歸納,有助于培養學生創新思維和探索精神,是培養學生數形結合意識和提高數學能力的良好載體。

二、教學目標和目標解析

教學目標:了解基本不等式的幾何背景,能在教師的引導下探究基本不等式的證明過程,理解基本不等式的幾何解釋,并能解決簡單的最值問題;借助于信息技術強化數形結合的思想方法。

在教師的逐步引導下,能從較為熟悉的幾何圖形中抽象出基本不等式,實現對基本不等式幾何背景的初步了解。

學生已經學習了不等式的基本性質,可以運用作差法給出基本不等式的證明,同時,介紹并滲透分析法證明的思想方法,從而完成基本不等式的代數證明。

進一步通過探究幾何圖形,給出基本不等式的幾何解釋,加強學生數形結合的意識。

通過應用問題的解決,明確解決應用題的一般過程。這是一個過程性目標。借助例1,引導學生嘗試用基本不等式解決簡單的最值問題,體會和與積的相互轉化,進一步通過例2,引導學生領會運用基本不等式的三個限制條件(一正二定三相等)在解決最值問題中的作用,并用幾何畫板展示函數圖形,進一步深化數形結合的思想。結合變式訓練完善對基本不等式結構的理解,提升解決問題的能力,體會方法與策略。

三、教學問題診斷

在認知上,學生已經掌握了不等式的基本性質,并能夠根據不等式的性質進行數、式的大小比較,也具備了一定的平面幾何的基本知識。但是,倘若教師不加以引導,學生并不能自覺地通過已有的知識、記憶去發展和構建幾何圖形中的相等或不等關系,這就需要教師逐步地引導,并選用合理的手段去激活學生的思維,增強數形結合的思想意識。

另外,盡可能引領學生充分理解兩個基本不等式等號成立的條件,為利用基本不等式解決簡單的最值問題做好鋪墊。在用基本不等式解決最值時,學生往往容易忽視基本不等式,使用的前提條件a,b>0同時又要注意區別基本不等式的使用條件為,因此,在教學過程中,借助例題落實學生領會基本不等式成立的三個限制條件(一正二定三相等)在解決最值問題中的作用。而對于“一正二定三相等”的進一步強化和應用,將放于下一個課時的內容。

四、教學支持條件分析

為了能很好地展示幾何圖形,體會基本不等式的幾何背景,教學中需要有具體的圖形來幫助學生理解基本不等式的生成,感受數形結合的數學思想,所以,借助于幾何畫板軟件來加強幾何直觀十分必要,同時演示動畫幫助學生驗證基本不等式等號取到的情況,并用電腦3D技術展示基本不等式的又一幾何背景,加深對基本不等式的理解,增強教學效果。

五、教學設計流程圖

教學過程的設計從實際的問題情境出發,以基本不等式的幾何背景為著手點,以探究活動為主線,探求基本不等式的結構形式,并進一步給出幾何解釋,深化對基本不等式的理解。通過典型例題的講解,明確利用基本不等式解決簡單最值問題的應用價值。數形結合的思想貫穿于整個教學過程,并時刻體現在教學活動之中。

六、教法和預期效果分析

本節課通過6個教學環節,強調過程教學,在教師的引導下,啟動觀察、分析、感知、歸納、探究等思維活動,從各個層面認識基本不等式,并理解其幾何背景。課堂教學以學生為主體,基本不等式為主線,在學生原有的認知基本上,充分展示基本不等式這一知識的發生、發展及再創造的過程。

同時,以多媒體課件作為教學輔助手段,賦予學生直觀感受,便于觀察,從而把一個生疏的、內在的知識,變成一個可認知的、可交流的對象,提高了課堂效率。

通過這節課的學習,引領學生多角度、多方位地認識基本不等式,并了解它的幾何意義充分滲透數形結合的思想;能在教師的引導下,主動探索并了解基本不等式的證明過程,強化證明的各類方法;

會用基本不等式解決簡單的(小)值問題并注意等號取到的條件。在教學過程中始終圍繞教學目標進行評價,師生互動,在教學過程的不同環節中及時獲取教學反饋信息,以學生為主體,及時調節教學措施,完成教學目標,從而達到較為理想的教學效果。

高三教案數學篇2

一 教材分析

本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。

根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。

能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。

教學重點:正弦定理的內容,正弦定理的證明及基本應用。

教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。

二 教法

根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點

三 學法:

指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

四 教學過程

第一:創設情景,大概用2分鐘

第二:實踐探究,形成概念,大約用25分鐘

第三:應用概念,拓展反思,大約用13分鐘

(一)創設情境,布疑激趣

“興趣是的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

(二)探尋特例,提出猜想

1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。

2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

3.讓學生總結實驗結果,得出猜想:

在三角形中,角與所對的邊滿足關系

這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

(三)邏輯推理,證明猜想

1.強調將猜想轉化為定理,需要嚴格的理論證明。

2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明

(四)歸納總結,簡單應用

1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。

2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

3.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

(五)講解例題,鞏固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1簡單,結果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

2. 例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。

(六)課堂練習,提高鞏固

1.在△ABC中,已知下列條件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列條件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

學生板演,老師巡視,及時發現問題,并解答。

(七)小結反思,提高認識

通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?

1.用向量證明了正弦定理,體現了數形結合的數學思想。

2.它表述了三角形的邊與對角的正弦值的關系。

3.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。

(從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)

(八)任務后延,自主探究

如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發現正弦定理不適用了,那么自然過渡到下一節內容,余弦定理。布置作業,預習下一節內容。

五 板書設計

板書設計可以讓學生一目了然本節課所學的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。

高三教案數學篇3

數學教案-角

教學建議

一、知識結構

二、重點、難點分析

角的定義既是本節教學的重點,也是難點.本節知識建立在射線、線段等相關知識的基礎上,同時也是進一步學習角的度量、比較、畫法,以及深入研究平面幾何圖形的基礎.

1.角的定義是由實際生活中具有角的形象的物體抽象出來的,理解角的定義一定要明確角的邊為射線,角為平面內的點集.角也可認為是一條射線繞它的端點從一個位置旋轉到另一個位置而形成的圖形,這里的線動成角體現了運動變化的思想.

2.角的表示法,小學沒有介紹,這里首先說明用三個字母記角.對此,要特別強調表示頂點的字母一定要寫在中間,唯有在頂點處只有一個角的情況,才可只用頂點一個字母來記這個角,否則分不清這個字母究竟表示哪一個角.在講往數字或希臘字母來記角時,可再讓學生作些練習,說出所記的角怎樣用三個字母來表示.

三、教法建議

1.本節教學可以在簡單復習直線、射線、線段的基礎上引入,將問題的研究方向轉向這些最基本的幾何圖形與點結合以及互相結合能夠組成什么圖形.可以嘗試讓同學們擺火柴,重點應在具有角的形象的圖形,然后可以在列舉、觀察、分析學習、生活、生產中同樣具有角的形象的物體的基礎上,讓同學們嘗試給出角的定義.

2.關于角的另一種定義,也可以通過實物演示的方式得出,冽如一手扯住線的一端,另一手拉住線的另一端旋轉.重點應是對運動變化的觀點的滲透.平角和周角也可以讓學生給出,真正理解“平”與“直”的含義.

3.教學過程 中可以給出一些判別給定圖形是不是角的練習,幫助學生理解角的相關概念.同時將角的知識與學生的生活實踐緊密的結合起來.可以充分發揮多媒體教學的優勢,結合圖片、動畫、課件輔助教學.

教學設計示例

一、素質教育目標

(一)知識教學點

1.理解角、周角、平角及角的頂點、角的邊等概念.

2.掌握角的表示方法.

(二)能力訓練點

1.通過由學生觀察實物圖形抽象出角的定義,培養學生的抽象概括能力.通過學生獨立閱讀總結角的幾種表示方法,培養學生的閱讀理解能力.

2.通過角的兩個定義的得出,培養學生多角度分析考慮問題的能力.

(三)德育滲透點

1.通過日常生活中具體的角的形象概括出角的定義,說明幾何來源于生活,又反過來為生產、生活服務.鼓勵學生努力學好文化知識,為社會做貢獻.

2.通過旋轉觀點定義角,說明事物是不斷變化和相互轉化的,我們不能用一成不變的觀點去看待某些事物.

(四)美育滲透點

通過學習角使學生體會幾何圖形的對稱美和動態美,培養學生的審美意識,提高學生對幾何的學習興趣.

二、學法引導

1.教師教法:引導發現,嘗試指導與閱讀理解相結合.

2.學生學法:主動發現,自我理解與閱讀法相結合.

三、重點·難點·疑點及解決辦法

(一)重點

角的`概念及角的表示方法.

(二)難點

周角、平角概念的理解.

(三)疑點

平角與直線、周角與射線的區別.

(四)解決辦法

通過演示法使學生正確理解平角、周角的概念,適當加以解釋,簡明扼要,條理清楚即可,不必做過多的解釋.

四、課時安排

1課時

五、教具學具準備

投影儀(電腦、實物投影)、三角板、圓規、自制膠片.

六、師生互動活動設計

1.教師創設情境,學生進入.

2.教師步步設問,提出問題,學生在回答問題、自己畫圖、觀察圖形的過程中掌握角的靜態定義.

3.教師指導,學生閱讀、歸納四種表示角的方法.

4.教師用電腦直觀演示展示角的旋轉定義.

5.反饋練習.

6.師生討論總結.

7.測試.

七、教學步驟

(一)明確目標

使學生能正確認識角的兩種定義及相關概念,掌握角的表示方法,正確理解平角、周角的概念,并能從圖形上進行識別.

(二)整體感知

以現代化教學為手段,調動學生主動參與的積極性,使學生在動手過程中自覺地掌握知識點.

(三)教學過程

創設情境,引出課題

師:前幾節我們具體研究了小學時初步認識的直線、射線、線段.另外,小學時我們還認識了另一種幾何圖形——角.你能說出幾個日常生活中給我們角的形象的物體嗎?(學生會很快說出周圍的課桌、門窗、墻壁的角;圓規張開兩腳;鐘表的時針與分針間形成的角等等.)

【教法說明】為了更形象、更直觀用實物投影顯示一些實物圖形.

讓學生說出口常生活中給我們角的形象的物體,充分發揮學生的想像力,培養其觀察事物的習慣,同時,活躍課堂氣氛,調動學生學習積極性.也培養了學生從具體實物圖形中抽象出幾何圖形的能力.

師:的確如此,在我們日常生活中,角的形象可以說無處不在.因此,一些圖案的設計;機械零件的制圖等等,常常用到角的畫法、角的度量、角的大小比較等知識.從這節課開始我們就具體地研究角.希望同學們認真學習,掌握真本領,將來為社會做貢獻.

探究新知

1.角的靜止觀點定義的得出

提出問題:通過以上舉例和小學時你對角的認識,你能畫出幾個不同形狀的角嗎?

學生活動:在練習本上,畫出幾個不同形狀的角,找一個學生到黑板上畫圖.可能出現下列情況:

師:根據小學所學你能指出所畫角的邊和頂點嗎?(學生結合自己理解和小學所學,會很快指出角的邊和頂點.)

師:同學們請觀察,角的兩邊是前面我們學過的什么圖形?它們的位置關系如何?你能否根據自己的理解和剛才老師的提問,描述一下怎樣的幾何圖形叫做角嗎?

學生活動:學生討論,然后找代表回答.

教師在學生回答的基礎上,給予糾正和補充,最后給出角的正確定義.

[板書]角:有公共端點的兩條射線組成的圖形叫做角,這個公共端點叫角的頂點,這兩條射線叫角的兩邊.

(出示投影1)

指出以上圖形,角的頂點和角的邊.

提出問題:角的大小與角兩邊的長短有關系嗎?

學生討論并演示:拿大小不同的兩副三角板或學生的三角板與教師的三角板對比演示.讓學生盡可能地發表自己的看法和觀點.不要拘泥于課堂上的形式,充分調動學生回答問題的積極性.

教師對學生的回答給予肯定或否定后小結:角的兩邊既然是射線,則可以向一方無限延長,所以角的大小與所畫角的兩邊長短無關,僅與角的兩邊張開的程度有關.

【教法說明】角的定義的得出,不是教師以枯燥的形式強加給學生,而是讓學生自己在畫圖、觀察圖形的過程中,由教師引導提出問題,步步追問,自覺地去認識.在問題解決的過程中,在復習舊知識中,不知不覺學到了新知識——角.這樣縮短了新舊知識間的距離,減輕了學生心理上的壓力,使他們感到新知識并不難,在輕松愉快中學到了知識.同時也會感受到新舊知識之間的聯系.對發展學生用普遍聯系的觀點看待事物有很好的作用.

2.角的表示方法

師:研究角,像直線、射線、線段一樣,可以用字母表示.下面我們閱讀課本第25負第三自然段,總結角的表示方法有幾種,你能否準確地表示一個角并讀出來.

學生活動:學生看書,可以相互討論,然后歸納出角的幾種表示方法.

【教法說明】角的四種表示方法,課本中用一自然段說明,語言通俗,很易理解,學生完全可以通過閱讀,分出四個層次,四種表示角的方法.因此教師要大膽放手,培養學生閱讀理解能力,歸納總結能力.

學生閱讀后,多找幾個學生回答.最后通過不斷補充、完善,歸納整理得出角的四種表示方法,教師整理板書.

[板書]

圖1 圖2 圖3

【教法說明】總結以上四種表示方法時,對前兩種表示方法,應注意的問題要加以強調.第一種表示方法必須注意:頂點字母在中間.第二種表示方法只限于頂點只有一個角.這是以后學生書寫過程中最易出錯的地方.另外,讓學生區分角的符號與小于號.這些應注意的問題最好由學生討論,學生發現后歸納總結.

反饋練習:投影打出以下題目

指出圖中有幾個角,并用適當的方法表示它們.

3.用旋轉的觀點定義角

師:同學們看老師從另一個角度提出新問題.前面我們給角下過定義,是在靜止的情況下,觀察角是由怎樣的兩條射線組成.下面,我們從運動的觀點觀察一下角的形成.

圖1

演示:教師由電腦顯示一條射線,然后射線繞其端點旋轉,到另一個位置停止則形成一個角,如圖1所示.舉例幫助學生理解:鐘擺看成一條射線,從一個位置擺到另一個位置則形成一個角.

學生討論并試述定義:學生敘述不會太嚴密,教師糾正、補充后板書.

【板書】角:角還可以看成是一條射線從一個位置旋轉到另一個位置所形成的圖形.

說明:射線旋轉時,經過的部分是角的內部.讓學生說明平面內除了角的內部外還有幾部分,分別是什么?(角的邊與角的外部)

【教法說明】角的旋轉觀點的定義是教學中的一個難點,學生不易理解.因此,結合電腦的顯示,舉出實例等手段加強教學的直觀性.

4.平角、周角的概念

師:角可以看成是一射線繞其端點旋轉所形成的圖形.那么,旋轉時有無特殊情況呢?

由電腦演示并說明:

射線 繞點 旋轉,終止位置 和起始位置 成一條直線時,所成的角叫平角,如圖2所示.同樣可表示為 ,頂點 ,兩邊為射線 和射線 .繼續旋轉,回到起始位置 時,所成的角叫做周角,如圖3所示.周角的頂點為 ,兩邊重合成一條射線.

圖2

師說明:(1)平角與直線、周角與射線是兩個不同的概念,它們的圖形表面上看一樣,但本質上不同.如:直線上取點表示點在直線上的位置,而平角是由頂點和邊組成的角這一幾何圖形.

(2)在這一書中,所說的角,除非特殊注明,都是指沒有旋轉到成為平角的角.

【教法說明】平角、周角概念學生不容易理解,所以要通過直觀演示后教師加以解釋,但也不要解釋得過多.否則,學生會更糊涂,簡明扼要,條理清楚即可.

反饋練習:投影顯示

1.指出圖中以 為頂點的平角的兩邊

2.指出圖中(包含平角在內)的角有幾個,并分別讀出它們

對以上練習發現問題及時糾正.

變式練習,培養能力

投影出示:

1.如圖1: 可以記作 嗎?為什么?

圖1

2.如圖2: 、 分別是 、 上的點

① 與 是同一個角嗎?

② 與 是同一個角嗎?

3.如圖3: 是什么角?頂點、邊分別是什么?

圖2 圖3

【教法說明】為活躍課堂氣氛,以上練習可以搶答.

(四)總結、擴展

學生看書,回答本節學了哪些主要內容,同桌可以相互討論.最后教師按學生的回答歸納出本節知識脈絡.投影顯示:

八、布置作業

預習下節內容.

九、板書設計

同七、(四)中的格式,在表示方法中加上圖形.

高三教案數學篇4

函數的單調性與導數教案

一、目標

知識與技能:了解可導函數的單調性與其導數的關系 ; 能利用導數研究函數的單調性,會求函數的單調區間。

過程與方法:多讓學生舉命題的例子,培養他們的辨析能力;以及培養他們的分析問題和解決問題的能力;

情感、態度與價值觀:通過學生的參與,激發學生學習數學的興趣。

二、重點難點

教學重點:利用導數研究函數的單調性,會求不超過4次的多項式函數的單調區間

教學難點:利用導數研究函數的單調性,會求不超過4次的多項式函數的單調區間

三、教學過程:

函數的贈與減、增減的快與慢以及函數的最大值或最小值等性質是非常重要的.通過研究函數的這些性質,我們可以對數量的變化規律有一個基本的了解.我們以導數為工具,對研究函數的增減及極值和最值帶來很大方便.

四、學情分析

我們的學生屬于平行分班,沒有實驗班,學生已有的知識和實驗水平有差距。需要教師指導并借助動畫給予直觀的認識。

五、教學方法

發現式、啟發式

新授課教學基本環節:預習檢查、總結疑惑→情境導入、展示目標→合作探究、精講點撥→反思總結、當堂檢測→發導學案、布置預習

六、課前準備

1.學生的學習準備:

2.教師的教學準備:多媒體課件制作,課前預習學案,課內探究學案,課后延伸拓展學案。

七、課時安排:

1課時

八、教學過程

(一)預習檢查、總結疑惑

檢查落實了學生的預習情況并了解了學生的疑惑,使教學具有了針對性。

提問

1.判斷函數的單調性有哪些方法?

(引導學生回答“定義法”,“圖象法”。)

2.比如,要判斷 y=x2 的單調性,如

何進行?(引導學生回顧分別用定義法、圖象法完成。)

3.還有沒有其它方法?如果遇到函數:

y=x3-3x判斷單調性呢?(讓學生短時

間內嘗試完成,結果發現:用“定義法”,

作差后判斷差的符號麻煩;用“圖象法”,圖象很難畫出來。)

4.有沒有捷徑?(學生疑惑,由此引出課題)這就要用到咱們今天要學的導數法。

以問題形式復習相關的舊知識,同時引出新問題:三次函數判斷單調性,定義法、圖象法很不方便,有沒有捷徑?通過創設問題情境,使學生產生強烈的問題意識,積極主動地參與到學習中來。

(二)情景導入、展示目標。

設計意圖:步步導入,吸引學生的注意力,明確學習目標。

(探索函數的單調性和導數的關系) 問:函數的單調性和導數有何關系呢?

教師仍以y=x2為例,借助幾何畫板動態演示,讓學生記錄結果在課前發的表格第二行中:

函數及圖象 單調性 切線斜率k的正負 導數的正負

問:有何發現?(學生回答)

問:這個結果是否具有一般性呢?

(三)合作探究、精講點撥。

我們來考察兩個一般性的例子:

(教師指導學生動手實驗:把準備的牙簽放在表中曲線y=f(x)的圖象上,作為曲線的切線,移動切線并記錄結果在上表第三、四行中。)

問:能否得出什么規律?

讓學生歸納總結,教師簡單板書:

在某個區間(a,b)內,

若f ' (x)>0,則f(x)在(a,b)上是增函數;

若f ' (x)<0,則在f(x)(a,b)上是減函數。

教師說明:

要正確理解“某個區間”的含義,它必需是定義域內的某個區間。

1.這一部分是后面利用導數求函數單調區間的理論依據,重要性不言而喻,而學生又只學習了導數的意義和一些基本運算,要想得到嚴格的證明是不現實的,因此,只要求學生能借助幾何直觀得出結論,這與新課標中的要求是相吻合的。

2.教師對具體例子進行動態演示,學生對一般情況進行實驗驗證。由觀察、猜想到歸納、總結,讓學生體驗知識的發現、發生過程,變灌注知識為學生主動獲取知識,從而使之成為課堂教學活動的主體。

3.得出結論后,教師強調正確理解“某個區間”的含義,它必需是定義域內的某個區間。這一點將在例1的變式3具體體現。

4.考慮到本節課堂容量較大,這里沒有提到函數在個別點處導數為零不影響單調性的情況(如y=x3在x=0處),這一問題將在后續課程中給學生補充。

應用導數求函數的單調區間

例1.求函數y=x2-3x的單調區間。

(引導學生得出解題思路:求導 →

令f ' (x)>0,得函數單調遞增區間,令f ' (x)<0,得函數單調遞減區間 → 下結論)

變式1:求函數y=3x3-3x2的單調區間。

(競賽活動:將全班同學分成兩大組指定分別用單調性的定義,和用求導數的方法解答,每組各推薦一位同學的答案進行投影。)

求單調區間是導數的一個重要應用,也是本節重點,為此,設計了例1及三個變式:

設計例1可引導學生得出用導數法求單調區間的解題步驟

設計變式1及競賽活動可以激發學生的`學習熱情,讓他們學會比較,并深刻體驗導數法的優越性。

鞏固提高

變式2:求函數y=3e x -3x單調區間。

(學生上黑板解答)

變式3:求函數 的單調區間。

設計變式2且讓學生上黑板解答可以規范解題格式,同時使學生了解用導數法可以求更復雜的函數的單調區間。

設計變式3是可使學生體會考慮定義域的必要性

例1及三個變式,依次涉及二次,三次函數,含指數的函數、反比例函數,這樣一題多變,逐步深化,從而讓學生領會:如何應用及哪類單調性問題該應用“導數法”解決。

多媒體展示探究思考題。

在學生分組實驗的過程中教師巡回觀察指導。 (課堂實錄) ,

(四)反思總結,當堂檢測。

教師組織學生反思總結本節課的主要內容,并進行當堂檢測。

設計意圖:引導學生構建知識網絡并對所學內容進行簡單的反饋糾正。(課堂實錄)

(五)發導學案、布置預習。

設計意圖:布置下節課的預習作業,并對本節課鞏固提高。教師課后及時批閱本節的延伸拓展訓練。

九、板書設計

例1.求函數y=3x2-3x的單調區間。

變式1:求函數y=3x3-3x2的單調區間。

變式2:求函數y=3e x -3x單調區間。

變式3:求函數 的單調區間。

十、教學反思

本課的設計采用了課前下發預習學案,學生預習本節內容,找出自己迷惑的地方。課堂上師生主要解決重點、難點、疑點、考點、探究點以及學生學習過程中易忘、易混點等,最后進行當堂檢測,課后進行延伸拓展,以達到提高課堂效率的目的。

在后面的教學過程中會繼續研究本節課,爭取設計的更科學,更有利于學生的學習,也希望大家提出寶貴意見,共同完善,共同進步!

高三教案數學篇5

【教材分析】

1、本節教材的地位與作用

本節主要研究閉區間上的連續函數值和最小值的求法和實際應用,分兩課時,這里是第一課時,它是在學生已經會求某些函數的最值,并且已經掌握了性質:“如果f(x)是閉區間[a,b]上的連續函數,那么f(x)在閉區間[a,b]上有值和最小值”,以及會求可導函數的極值之后進行學習的,學好這一節,學生將會求更多的函數的最值,運用本節知識可以解決科技、經濟、社會中的一些如何使成本最低、產量、效益等實際問題。這節課集中體現了數形結合、理論聯系實際等重要的數學思想方法,學好本節,對于進一步完善學生的知識結構,培養學生用數學的意識都具有極為重要的意義。

2、教學重點

會求閉區間上連續開區間上可導的函數的最值。

3、教學難點

高三年級學生雖然已經具有一定的知識基礎,但由于對求函數極值還不熟練,特別是對優化解題過程依據的理解會有較大的困難,所以這節課的難點是理解確定函數最值的方法。

4、教學關鍵

本節課突破難點的關鍵是:理解方程f′(x)=0的解,包含有指定區間內全部可能的極值點。

【教學目標】

根據本節教材在高中數學知識體系中的地位和作用,結合學生已有的認知水平,制定本節如下的教學目標:

1、知識和技能目標

(1)理解函數的最值與極值的區別和聯系。

(2)進一步明確閉區間[a,b]上的連續函數f(x),在[a,b]上必有、最小值。

(3)掌握用導數法求上述函數的值與最小值的方法和步驟。

2、過程和方法目標

(1)了解開區間內的連續函數或閉區間上的不連續函數不一定有、最小值。

(2)理解閉區間上的連續函數最值存在的可能位置:極值點處或區間端點處。

(3)會求閉區間上連續,開區間內可導的函數的、最小值。

3、情感和價值目標

(1)認識事物之間的的區別和聯系。

(2)培養學生觀察事物的能力,能夠自己發現問題,分析問題并最終解決問題。

(3)提高學生的數學能力,培養學生的創新精神、實踐能力和理性精神。

【教法選擇】

根據皮亞杰的建構主義認識論,知識是個體在與環境相互作用的過程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用。

本節課在幫助學生回顧肯定了閉區間上的連續函數一定存在值和最小值之后,引導學生通過觀察閉區間內的連續函數的幾個圖象,自己歸納、總結出函數值、最小值存在的可能位置,進而探索出函數值、最小值求解的方法與步驟,并優化解題過程,讓學生主動地獲得知識,老師只是進行適當的引導,而不進行全部的灌輸。為突出重點,突破難點,這節課主要選擇以合作探究式教學法組織教學。

【學法指導】

對于求函數的最值,高三學生已經具備了良好的知識基礎,剩下的問題就是有沒有一種更一般的方法,能運用于更多更復雜函數的求最值問題?教學設計中注意激發起學生強烈的求知__,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發揮他們作為認知主體的作用。

【教學過程】

本節課的教學,大致按照“創設情境,鋪墊導入——合作學習,探索新知——指導應用,鼓勵創新——歸納小結,反饋回授”四個環節進行組織。

高三教案數學篇6

一、教學過程

1.復習。

反函數的概念、反函數求法、互為反函數的函數定義域值域的關系。

求出函數y=x3的反函數。

2.新課。

先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數的圖象。有部分學生發出了“咦”的一聲,因為他們得到了如下的圖象(圖1):

教師在畫出上述圖象的學生中選定&39;

生1,將他的屏幕內容通過教學系統放到其他同學的屏幕上,很快有學生作出反應。

生2:這是y=x3的反函數y=的圖象。

師:對,但是怎么會得到這個圖象,請大家討論。

(學生展開討論,但找不出原因。)

師:我們請生1再給大家演示一下,大家幫他找找原因。

(生1將他的制作過程重新重復了一次。)

生3:問題出在他選擇的次序不對。

師:哪個次序?

生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。

師:是這樣嗎?我們請生1再做一次。

(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數y=x3的圖象。)

師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數y=的圖象呢?

(學生再次陷入思考,一會兒有學生舉手。)

師:我們請生4來告訴大家。

生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數也正好是將x與y交換。

師:完全正確。下面我們進一步研究y=x3的圖象及其反函數y=的圖象的.關系,同學們能不能看出這兩個函數的圖象有什么樣的關系?

(多數學生回答可由y=x3的圖象得到y=的圖象,于是教師進一步追問。)

師:怎么由y=x3的圖象得到y=的圖象?

生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y=的圖象。

師:將橫坐標與縱坐標互換?怎么換?

(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

師:我其實是想問大家這兩個函數的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?

(學生重新開始觀察這兩個函數的圖象,一會兒有學生舉手。)

生6:我發現這兩個圖象應是關于某條直線對稱。

師:能說說是關于哪條直線對稱嗎?

生6:我還沒找出來。

(接下來,教師引導學生利用幾何畫板找出兩函數圖象的對稱軸,畫出如下圖形,如圖2所示:)

學生通過移動點A(點B、C隨之移動)后發現,BC的中點M在同一條直線上,這條直線就是兩函數圖象的對稱軸,在追蹤M點后,發現中點的軌跡是直線y=x。

生7:y=x3的圖象及其反函數y=的圖象關于直線y=x對稱。

師:這個結論有一般性嗎?其他函數及其反函數的圖象,也有這種對稱關系嗎?請同學們用其他函數來試一試。

(學生紛紛畫出其他函數與其反函數的圖象進行驗證,最后大家一致得出結論:函數及其反函數的圖象關于直線y=x對稱。)

還是有部分學生舉手,因為他們畫出了如下圖象(圖3):

教師巡視全班時已經發現這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數y=x2(x∈R)沒有反函數,②也不是函數的圖象。

最后教師與學生一起總結:

點(x,y)與點(y,x)關于直線y=x對稱;

函數及其反函數的圖象關于直線y=x對稱。

二、反思與點評

1.在開學初,我就教學幾何畫板4。0的用法,在教函數圖象畫法的過程當中,發現學生根據選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據函數解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節課教學中,我有意選擇了幾何畫板4。0進行教學。

2.荷蘭數學教育家弗賴登塔爾認為,數學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。

計算機作為一種現代信息技術工具,在直觀化方面有很強的表現能力,如在函數的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。

在本節課的教學中,計算機更多的是作為學生探索發現的工具,學生不但發現了函數與其反函數圖象間的對稱關系,而且在更深層次上理解了反函數的概念,對反函數的存在性、反函數的求法等方面也有了更深刻的理解。

當前計算機用于中學數學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發現探索,甚至利用計算機來做數學,在此過程當中更好地理解數學概念,促進數學思維,發展數學創新能力。

3.在引出兩個函數圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。

高三教案數學篇7

教學目的

1.使學生了解數是在人類社會的生產和生活中產生和發展起來的,了解虛數產生歷史過程;

2.理解并掌握虛數單位的定義及性質;

3.掌握復數的定義及復數的分類。

教學重點

虛數單位的定義、性質及復數的分類。

教學難點

虛數單位的性質。

教學過程

一、復習引入

原始社會,由于計數的需要產生了自然數的概念,隨著文字的產生和發展,出現了記數的符號,進而建立了自然數的概念。自然數的全體構成自然數集.

為了表示具有相反意義的量引進了正負數以及表示沒有的零,這樣將數集擴充到有理數集

有些量與量之間的比值,如用正方形的邊長去度量它的對角線所得的結果,無法用有理數表示,為解決這種矛盾,人們又引進了無理數,有理數和無理數合并在一起,構成實數集。

數的概念是人類社會的生產和生活中產生和發展起來的,數學理論的研究和發展也推動著,數已經成為現代社會生活和科學技術時刻離不開的科學語言和工具。

二、新課教學

(一)虛數的產生

我們知道,在實數范圍內,解方程是無能為力的,只有把實數集擴充到復數集才能解決。對于復數(a、b都是實數)來說,當時,就是實數;當時叫虛數,當時,叫做純虛數。可是,歷引進虛數,把實數集擴充到復數集可不是件容易的事,那么,歷是如何引進虛數的呢?

16世紀意大利米蘭學者卡當(1501—1576)在1545年發表的《重要的藝術》一書中,公布了三次方程的一般解法,被后人稱之為“卡當公式”。他是第一個把負數的平方根寫到公式中的數學家,并且在討論是否可能把10分成兩部分,使它們的乘積等于40時,他把答案寫成,盡管他認為和這兩個表示式是沒有意義的、想象的、虛無飄渺的,但他還是把10分成了兩部分,并使它們的乘積等于40。給出“虛數”這一名稱的是法國數學家笛卡爾(1596—1650),他在《幾何學》(1637年發表)中使“虛的數’‘與“實的數”相對應,從此,虛數才流傳開來。

數系中發現一顆新星——虛數,于是引起了數學界的一片困惑,很多大數學家都不承認虛數。德國數學家菜不尼茨(1664—1716)在1702年說:“虛數是神靈遁跡的精微而奇異的隱避所,它大概是存在和虛妄兩界中的兩棲物”。瑞士數學大師歐拉(1707—1783)說:“一切形如,習的數學式子都是不可能有的,想象的數,因為它們所表示的是負數的平方根。對于這類數,我們只能斷言,它們既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它們純屬虛幻。”然而,真理性的東西一定可以經得住時間和空間的考驗,最終占有自己的一席之地。法國數學家達蘭貝爾(。1717—1783)在1747年指出,如果按照多項式的四則運算規則對虛數進行運算,那么它的結果總是的形式(a、b都是實數)(說明:現行教科書中沒有使用記號而使用)。法國數學家棣莫佛(1667—1754)在1730年發現公式了,這就是的探莫佛定理。歐拉在1748年發現了有名的關系式,并且是他在《微分公式》(1777年)一文中第一次用i來表示-1的平方根,首創了用符號i作為虛數的單位。“虛數”實際上不是想象出來的,而它是確實存在的。挪威的測量學家未塞爾(1745—1818)在1779年試圖給于這種虛數以直觀的幾何解釋,并首先發表其作法,然而沒有得到學術界的重視。

德國數學家高斯(1777—1855)在1806年公布了虛數的圖象表示法,即所有實數能用一條數軸表示,同樣,虛數也能用一個平面上的點來表示。在直角坐標系中,橫軸上取對應實數a的點A,縱軸上取對應實數b的點B,并過這兩點引平行于坐標軸的直線,它們的交點C就表示復數。象這樣,由各點都對應復數的平面叫做“復平面”,后來又稱“高斯平面”。高斯在1831年,用實數組(a,b)代表復數,并建立了復數的某些運算,使得復數的某些運算也象實數一樣地“代數化”。他又在1832年第一次提出了“復數”這個名詞,還將表示平面上同一點的兩種不同方法——直角坐標法和極坐標法加以綜合。統一于表示同一復數的代數式和三角式兩種形式中,并把數軸上的點與實數—一對應,擴展為平面上的點與復數—一對應。高斯不僅把復數看作平面上的點,而且還看作是一種向量,并利用復數與向量之間—一對應的關系,闡述了復數的幾何加法與乘法。至此,復數理論才比較完整和系統地建立起來了。

經過許多數學家長期不懈的努力,深刻探討并發展了復數理論,才使得在數學領域游蕩了200年的幽靈——虛數揭去了神秘的面紗,顯現出它的本來面目,原來虛數不虛呵。虛數成為了數系大家庭中一員,從而實數集才擴充到了復數集。

()的數叫復數,常用一個字母z表示,即()

()叫復數的代數形式;

都有;

()的實部記作;b叫復數()的虛部,用表示;

(2)(4)(5)

(7)(8)10

()當時z是實數,當時,z是虛數。

例2.()取什么值時,復數是()

(1)實數(2)純虛數(3)零

解:∵,∴,

(1)z為實數,則解得:或

(2)z為實數,則解得:

(3)z為零,則解得:

高三教案數學篇8

教學目的:

(1)使學生初步理解集合的概念,知道常用數集的概念及記法

(2)使學生初步了解“屬于”關系的意義

(3)使學生初步了解有限集、無限集、空集的意義

教學重點:集合的基本概念及表示方法

教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示

一些簡單的集合

授課類型:新授課

課時安排:1課時

教具:多媒體、實物投影儀

內容分析:

集合是中學數學的一個重要的基本概念在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數中用到的有數集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎

把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎例如,下一章講函數的概念與性質,就離不開集合與邏輯

本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

這節課主要學習全章的引言和集合的基本概念學習引言是引發學生的學習興趣,使學生認識學習本章的意義本節課的教學重點是集合的基本概念

集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明

教學過程:

一、復習引入:

1.簡介數集的發展,復習公約數和最小公倍數,質數與和數;

2.教材中的章頭引言;

3.集合論的創始人——康托爾(德國數學家)(見附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號?是如何表示的?

(3)集合中元素的特性是什么?

集合的有關概念:

由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.

定義:一般地,某些指定的對象集在一起就成為一個集合.

1、集合的概念

(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

(2)元素:集合中每個對象叫做這個集合的元素

2、常用數集及記法

(1)非負整數集(自然數集):全體非負整數的集合記作N,

(2)正整數集:非負整數集內排除0的集記作N或N+

(3)整數集:全體整數的集合記作Z,

(4)有理數集:全體有理數的集合記作Q,

(5)實數集:全體實數的集合記作R

注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0

(2)非負整數集內排除0的集記作N或N+Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z

57001 主站蜘蛛池模板: 综合管廊模具_生态,阶梯护坡模具_检查井模具制造-致宏模具厂家 | 广东护栏厂家-广州护栏网厂家-广东省安麦斯交通设施有限公司 | 苗木价格-苗木批发-沭阳苗木基地-沭阳花木-长之鸿园林苗木场 | 粉末包装机-给袋式包装机-全自动包装机-颗粒-液体-食品-酱腌菜包装机生产线【润立机械】 | 山东钢衬塑罐_管道_反应釜厂家-淄博富邦滚塑防腐设备科技有限公司 | 智能风向风速仪,风速告警仪,数字温湿仪,综合气象仪(气象五要素)-上海风云气象仪器有限公司 | 深圳美安可自动化设备有限公司,喷码机,定制喷码机,二维码喷码机,深圳喷码机,纸箱喷码机,东莞喷码机 UV喷码机,日期喷码机,鸡蛋喷码机,管芯喷码机,管内壁喷码机,喷码机厂家 | 结晶点测定仪-润滑脂滴点测定仪-大连煜烁 | 济南电缆桥架|山东桥架-济南航丰实业有限公司 | 密集架-密集柜厂家-智能档案密集架-自动选层柜订做-河北风顺金属制品有限公司 | 安徽净化工程设计_无尘净化车间工程_合肥净化实验室_安徽创世环境科技有限公司 | 智能楼宇-楼宇自控系统-楼宇智能化-楼宇自动化-三水智能化 | 橡胶接头|可曲挠橡胶接头|橡胶软接头安装使用教程-上海松夏官方网站 | 耐高温电缆厂家-远洋高温电缆 | 步入式高低温测试箱|海向仪器| 不锈钢轴流风机,不锈钢电机-许昌光维防爆电机有限公司(原许昌光维特种电机技术有限公司) | 诸城网站建设-网络推广-网站优化-阿里巴巴托管-诸城恒泰互联 | 仿清水混凝土_清水混凝土装修_施工_修饰_保护剂_修补_清水混凝土修复-德州忠岭建筑装饰工程 | 苏州防水公司_厂房屋面外墙防水_地下室卫生间防水堵漏-苏州伊诺尔防水工程有限公司 | 中红外QCL激光器-其他连续-半导体连续激光器-筱晓光子 | 浙江寺庙设计-杭州寺院设计-宁波寺庙规划_汉匠 | 隔离变压器-伺服变压器--输入输出电抗器-深圳市德而沃电气有限公司 | 深圳彩钢板_彩钢瓦_岩棉板_夹芯板_防火复合彩钢板_长鑫 | HYDAC过滤器,HYDAC滤芯,现货ATOS油泵,ATOS比例阀-东莞市广联自动化科技有限公司 | 同步带轮_同步带_同步轮_iHF合发齿轮厂家-深圳市合发齿轮机械有限公司 | 自动钻孔机-全自动数控钻孔机生产厂家-多米(广东)智能装备有限公司 | 砂尘试验箱_淋雨试验房_冰水冲击试验箱_IPX9K淋雨试验箱_广州岳信试验设备有限公司 | 空气弹簧|橡胶气囊|橡胶空气弹簧-上海松夏减震器有限公司 | 四探针电阻率测试仪-振实密度仪-粉末流动性测定仪-宁波瑞柯微智能 | 地脚螺栓_材质_标准-永年县德联地脚螺栓厂家 | 济南宣传册设计-画册设计_济南莫都品牌设计公司 | 北京企业宣传片拍摄_公司宣传片制作-广告短视频制作_北京宣传片拍摄公司 | 冰雕-冰雪世界-大型冰雕展制作公司-赛北冰雕官网 | 安德建奇火花机-阿奇夏米尔慢走丝|高维|发那科-北京杰森柏汇 | 合肥礼品公司-合肥礼品定制-商务礼品定制公司-安徽柏榽商贸有限公司 | 拼装地板,悬浮地板厂家,悬浮式拼装运动地板-石家庄博超地板科技有限公司 | 世纪豪门官网 世纪豪门集成吊顶加盟电话 世纪豪门售后电话 | 耐火浇注料-喷涂料-浇注料生产厂家_郑州市元领耐火材料有限公司 耐力板-PC阳光板-PC板-PC耐力板 - 嘉兴赢创实业有限公司 | 耐火浇注料-喷涂料-浇注料生产厂家_郑州市元领耐火材料有限公司 耐力板-PC阳光板-PC板-PC耐力板 - 嘉兴赢创实业有限公司 | 生物颗粒燃烧机-生物质燃烧机-热风炉-生物颗粒蒸汽发生器-丽水市久凯能源设备有限公司 | 土壤养分检测仪|土壤水分|土壤紧实度测定仪|土壤墒情监测系统-土壤仪器网 |