小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 >

八年級上冊數學教案反思

時間: 新華 教案模板

八年級上冊數學教案反思篇1

教材分析

1本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式

1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。

2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。

學情分析

1、在學習本課之前應具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學習者對即將學習的內容已經具備的水平:

在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。

教學目標

(一)教學目標:

1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。

2、會推導完全平方公式,并能運用公式進行簡單的計算。

(二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理

數、實數、代數式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、、不等式、函數等進行描述。

(四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。

(五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。

教學重點和難點

重點:能運用完全平方公式進行簡單的計算。

難點:會推導完全平方公式

教學過程

教學過程設計如下:

〈一〉、提出問題

[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結果的項數特點。

(3)三項系數的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關系。

2、[學生回答]總結完全平方公式的語言描述:

兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學生回答]完全平方公式的數學表達式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、一現身手

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學生小結]

你認為完全平方公式在應用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、探險之旅

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

板書設計

完全平方公式

兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

八年級上冊數學教案反思篇2

【教學目標】

1、了解三角形的中位線的概念

2、了解三角形的中位線的性質

3、探索三角形的中位線的性質的一些簡單的應用

【教學重點、難點】

重點:三角形的中位線定理。

難點:三角形的中位線定理的證明中添加輔助線的思想方法。

【教學過程】

(一)創設情景,引入新課

1、如圖,為了測量一個池塘的寬BC,在池塘一側的平地上選一點A,再分別找出線段AB、AC的中點D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?

2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張梯形紙片

(1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

(2)要把所剪得的兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?

3、引導學生概括出中位線的概念。

問題:(1)三角形有幾條中位線?(2)三角形的`中位線與中線有什么區別?

啟發學生得出:三角形的中位線的兩端點都是三角形邊的中點,而三角形中線只有一個端點是邊中點,另一端點上三角形的一個頂點。

4、猜想:DE與BC的關系?(位置關系與數量關系)

(二)、師生互動,探究新知

1、證明你的猜想

引導學生寫出已知,求證,并啟發分析。

(已知:⊿ABC中,D、E分別是AB、AC的中點,求證:DE∥BC,DE=1/2BC)

啟發1:證明直線平行的方法有哪些?(由角的相等或互補得出平行,由平行四邊形得出平行等)

啟發2:證明線段的倍分的方法有哪些?(截長或補短)

學生分小組討論,教師巡回指導,經過分析后,師生共同完成推理過程,板書證明過程,強調有其他證法。

證明:如圖,以點E為旋轉中心,把⊿ADE繞點E,按順時針方向旋轉180゜,得到⊿CFE,則D,E,F同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

∴∠ADE=∠F,AD=CF,

∴AB∥CF。

又∵BD=AD=CF,

∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

∴DF∥BC(根據什么?),

∴DE1/2BC

2、啟發學生歸納定理,并用文字語言表達:三角形中位線平行于第三邊且等于第三邊的一半。

(三)學以致用、落實新知

1、練一練:已知三角形邊長分別為6、8、10,順次連結各邊中點所得的三角形周長是多少?

2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點分別為D、E、F,則⊿DEF的周長是多少?

3、例題:已知:如圖,在四邊形ABCD中,E,F,G,H分別是AB,BC,CD,DA的中點。

求證:四邊形EFGH是平行四邊形。

啟發1:由E,F分別是AB,BC的中點,你會聯想到什么圖形?

啟發2:要使EF成為三角的中位線,應如何添加輔助線?應用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

證明:如圖,連接AC。

∵EF是⊿ABC的中位線,

∴EF1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

同理,HG1/2AC。

∴EFHG。

∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)

挑戰:順次連結上題中,所得到的四邊形EFGH四邊中點得到一個四邊形,繼續作下去。。。你能得出什么結論?

(四)學生練習,鞏固新知

1、請回答引例中的問題(1)

2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC,BD的中點。求證:∠PNM=∠PMN

(五)小結回顧,反思提高

今天你學到了什么?還有什么困惑?

八年級上冊數學教案反思篇3

教學目標

1.知識與技能

領會運用完全平方公式進行因式分解的方法,發展推理能力.

2.過程與方法

經歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

3.情感、態度與價值觀

培養良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.

重、難點與關鍵

1.重點:理解完全平方公式因式分解,并學會應用.

2.難點:靈活地應用公式法進行因式分解.

3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的.

教學方法

采用“自主探究”教學方法,在教師適當指導下完成本節課內容.

教學過程

一、回顧交流,導入新知

【問題牽引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知識遷移】

2.計算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

【教師活動】引導學生完成下面兩道題,并運用數學“互逆”的思想,尋找因式分解的規律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

【學生活動】從逆向思維的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例學習,應用所學

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值.

【思路點撥】根據完全平方式的定義,解此題時應分兩種情況,即兩數和的平方或者兩數差的平方,由此相應求出a的值,即可求出a3.

三、隨堂練習,鞏固深化

課本P170練習第1、2題.

【探研時空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、課堂總結,發展潛能

由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在運用公式因式分解時,要注意:

(1)每個公式的形式與特點,通過對多項式的項數、次數等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當的組合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.

五、布置作業,專題突破

八年級上冊數學教案反思篇4

教學建議

知識結構

重難點分析

本節的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關系,而且給出了線段的數量關系,為平面幾何中證明線段平行和線段相等提供了新的思路.

本節的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

教法建議

1.對于中位線定理的引入和證明可采用發現法,由學生自己觀察、猜想、測量、論證,實際掌握效果比應用講授法應好些,教師可根據學生情況參考采用

2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

教學設計示例

一、教學目標

1.掌握中位線的概念和三角形中位線定理

2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

3.能夠應用三角形中位線概念及定理進行有關的論證和計算,進一步提高學生的計算能力

4.通過定理證明及一題多解,逐步培養學生的分析問題和解決問題的能力

5.通過一題多解,培養學生對數學的興趣

二、教學設計

畫圖測量,猜想討論,啟發引導.

三、重點、難點

1.教學重點:三角形中位線的概論與三角形中位線性質.

2.教學難點:三角形中位線定理的證明.

四、課時安排

1課時

五、教具學具準備

投影儀、膠片、常用畫圖工具

六、教學步驟

【復習提問】

1.敘述平行線等分線段定理及推論的內容(結合學生的敘述,教師畫出草圖,結合圖形,加以說明).

2.說明定理的證明思路.

3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明?

分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證,只要即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

4.什么叫三角形中線?(以上復習用投影儀打出)

【引入新課】

1.三角形中位線:連結三角形兩邊中點的線段叫做三角形中位線.

(結合三角形中線的定義,讓學生明確兩者區別,可做一練習,在中,畫出中線、中位線)

2.三角形中位線性質

了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質.

如圖所示,DE是的一條中位線,如果過D作,交AC于,那么根據平行線等分線段定理推論2,得是AC的中點,可見與DE重合,所以.由此得到:三角形中位線平行于第三邊.同樣,過D作,且DEFC,所以DE.因此,又得出一個結論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

應注意的兩個問題:①為便于同學對定理能更好的掌握和應用,可引導學生分析此定理的特點,即同一個題設下有兩個結論,第一個結論是表明中位線與第三邊的位置關系,第二個結論是說明中位線與第三邊的數量關系,在應用時可根據需要來選用其中的結論(可以單獨用其中結論).②這個定理的證明方法很多,關鍵在于如何添加輔助線.可以引導學生用不同的.方法來證明以活躍學生的思維,開闊學生思路,從而提高分析問題和解決問題的能力.但也應指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.

由學生討論,說出幾種證明方法,然后教師總結如下圖所示(用投影儀演示).

(l)延長DE到F,使,連結CF,由可得ADFC.

(2)延長DE到F,使,利用對角線互相平分的四邊形是平行四邊形,可得ADFC.

(3)過點C作,與DE延長線交于F,通過證可得ADFC.

上面通過三種不同方法得出ADFC,再由得BDFC,所以四邊形DBCF是平行四邊形,DFBC,又因DE,所以DE.

(證明過程略)

例求證:順次連結四邊形四條邊的中點,所得的四邊形是平行四邊形.

(由學生根據命題,說出已知、求證)

已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

求證:四邊形EFGH是平行四邊形.‘

分析:因為已知點分別是四邊形各邊中點,如果連結對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關系,從而證出四邊形EFGH是平行四邊形.

證明:連結AC.

∴(三角形中位線定理).

同理,

∴GHEF

∴四邊形EFGH是平行四邊形.

【小結】

1.三角形中位線及三角形中位線與三角形中線的區別.

2.三角形中位線定理及證明思路.

七、布置作業

教材P188中1(2)、4、7

八年級上冊數學教案反思篇5

(一)運用公式法:

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

(二)平方差公式

1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個數的平方差,等于這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。

(三)因式分解

1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。

2.因式分解,必須進行到每一個多項式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等于這兩個數的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個公式叫完全平方公式。

(2)完全平方式的形式和特點

①項數:三項

②有兩項是兩個數的的平方和,這兩項的符號相同。

③有一項是這兩個數的積的兩倍。

(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

(五)分組分解法

我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)?(a+b)。

這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式。

八年級上冊數學教案反思篇6

第三十四學時:14.2.1平方差公式

一、學習目標:

1.經歷探索平方差公式的過程。

2.會推導平方差公式,并能運用公式進行簡單的運算。

二、重點難點

重點:平方差公式的推導和應用;

難點:理解平方差公式的結構特征,靈活應用平方差公式。

三、合作學習

你能用簡便方法計算下列各題嗎?

(1)20__×1999(2)998×1002

導入新課:計算下列多項式的積.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。

即:(a+b)(a—b)=a2—b2

四、精講精練

例1:運用平方差公式計算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:計算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

隨堂練習

計算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小結

(a+b)(a—b)=a2—b2

56728 主站蜘蛛池模板: 数显水浴恒温振荡器-分液漏斗萃取振荡器-常州市凯航仪器有限公司 | 等离子表面处理机-等离子表面活化机-真空等离子清洗机-深圳市东信高科自动化设备有限公司 | 塑料检查井_双扣聚氯乙烯增强管_双壁波纹管-河南中盈塑料制品有限公司 | 掺铥光纤放大器-C/L波段光纤放大器-小信号光纤放大器-合肥脉锐光电技术有限公司 | 山东石英砂过滤器,除氟过滤器「价格低」-淄博胜达水处理 | 油冷式_微型_TDY电动滚筒_外装_外置式电动滚筒厂家-淄博秉泓机械有限公司 | 凝胶成像系统(wb成像系统)百科-上海嘉鹏 | 厂房出租_厂房出售_产业园区招商_工业地产 - 中工招商网 | 液晶拼接屏厂家_拼接屏品牌_拼接屏价格_监控大屏—北京维康 | 桥架-槽式电缆桥架-镀锌桥架-托盘式桥架 - 上海亮族电缆桥架制造有限公司 | 全自动过滤器_反冲洗过滤器_自清洗过滤器_量子除垢环_量子环除垢_量子除垢 - 安士睿(北京)过滤设备有限公司 | 横河变送器-横河压力变送器-EJA变送器-EJA压力变送器-「泉蕴仪表」 | 过滤器_自清洗过滤器_气体过滤器_苏州华凯过滤技术有限公司 | 上海三信|ph计|酸度计|电导率仪-艾科仪器| 防堵吹扫装置-防堵风压测量装置-电动操作显示器-兴洲仪器 | 中天寰创-内蒙古钢结构厂家|门式刚架|钢结构桁架|钢结构框架|包头钢结构煤棚 | MES系统工业智能终端_生产管理看板/安灯/ESOP/静电监控_讯鹏科技 | 杭州画室_十大画室_白墙画室_杭州美术培训_国美附中培训_附中考前培训_升学率高的画室_美术中考集训美术高考集训基地 | 集菌仪_智能集菌仪_全封闭集菌仪_无菌检查集菌仪厂家-那艾 | 兰州牛肉面加盟,兰州牛肉拉面加盟-京穆兰牛肉面 | 嘉兴泰东园林景观工程有限公司_花箱护栏| 绿萝净除甲醛|深圳除甲醛公司|测甲醛怎么收费|培训机构|电影院|办公室|车内|室内除甲醛案例|原理|方法|价格立马咨询 | ZHZ8耐压测试仪-上海胜绪电气有限公司 | 安全光栅|射频导纳物位开关|音叉料位计|雷达液位计|两级跑偏开关|双向拉绳开关-山东卓信机械有限公司 | 广东燎了网络科技有限公司官网-网站建设-珠海网络推广-高端营销型外贸网站建设-珠海专业h5建站公司「了了网」 | 办公室家具公司_办公家具品牌厂家_森拉堡办公家具【官网】 | 砂尘试验箱_淋雨试验房_冰水冲击试验箱_IPX9K淋雨试验箱_广州岳信试验设备有限公司 | 定制液氮罐_小型气相液氮罐_自增压液氮罐_班德液氮罐厂家 | 灌装封尾机_胶水灌装机_软管灌装封尾机_无锡和博自动化机械制造有限公司 | 实验室隔膜泵-无油防腐蚀隔膜泵-耐腐蚀隔膜真空泵-杭州景程仪器 电杆荷载挠度测试仪-电杆荷载位移-管桩测试仪-北京绿野创能机电设备有限公司 | 医疗仪器模块 健康一体机 多参数监护仪 智慧医疗仪器方案定制 血氧监护 心电监护 -朗锐慧康 | 冷水机,风冷冷水机,水冷冷水机,螺杆冷水机专业制造商-上海祝松机械有限公司 | 空气净化器租赁,空气净化器出租,全国直租_奥司汀净化器租赁 | 焊缝跟踪系统_激光位移传感器_激光焊缝跟踪传感器-创想智控 | 细石混凝土泵_厂家_价格-烟台九达机械有限公司 | 民用音响-拉杆音响-家用音响-ktv专用音响-万昌科技 | 紫外线老化试验箱_uv紫外线老化试验箱价格|型号|厂家-正航仪器设备 | 玉米深加工设备|玉米加工机械|玉米加工设备|玉米深加工机械-河南成立粮油机械有限公司 | 复合土工膜厂家|hdpe防渗土工膜|复合防渗土工布|玻璃纤维|双向塑料土工格栅-安徽路建新材料有限公司 | 致胜管家软件服务【在线免费体验】 | YJLV22铝芯铠装电缆-MYPTJ矿用高压橡套电缆-天津市电缆总厂 |