八年級上冊數學的教案
八年級上冊數學的教案篇1
16.1.2分式的基本性質
一、教學目標
1.理解分式的基本性質.
2.會用分式的基本性質將分式變形.
二、重點、難點
1.重點:理解分式的基本性質.
2.難點:靈活應用分式的基本性質將分式變形.
3.認知難點與突破方法
教學難點是靈活應用分式的基本性質將分式變形.突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質.應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.
三、例、習題的意圖分析
1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.
2.P9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解.
3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5.
四、課堂引入
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3.提問分數的基本性質,讓學生類比猜想出分式的基本性質.
五、例題講解
P7例2.填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
P11例3.約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.
八年級上冊數學的教案篇2
一、函數及其相關概念
1、變量與常量
在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法:用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接
二、正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,如果
2、一次函數的圖像
所有一次函數的圖像都是一條直線。
3、一次函數、正比例函數圖像的主要特征:
一次函數y=kx+b的圖像是經過點(0,b)的直線;正比例函數y=kx的圖像是經過原點(0,0)的直線。(如下圖)
4.正比例函數的性質
一般地,正比例函數y=kx有下列性質:
(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;
(2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。
5、一次函數的性質
一般地,一次函數y=kx+b有下列性質:
(1)當k>0時,y隨x的增大而增大
(2)當k<0時,y隨x的增大而減小
6、正比例函數和一次函數解析式的確定
確定一個正比例函數,就是要確定正比例函數定義式y=kx(k≠0)中的常數k。確定一個一次函數,需要確定一次函數定義式y=kx+b(k≠0)中的常數k和b。解這類問題的一般方法是待定系數法。
圖像分析:
k>0,b>0,圖像經過一、二、三象限,y隨x的增大而增大。
k>0,b<0,圖像經過一、三、四象限,y隨x的增大而增大。
k<0,b>0,圖像經過一、二、四象限,y隨x的增大而減小
k<0,b<0,圖像經過二、三、四象限,y隨x的增大而減小。
注:當b=0時,一次函數變為正比例函數,正比例函數是一次函數的特例。
八年級上冊數學的教案篇3
一、教學目標
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點、難點
1.重點:理解分式有意義的條件.
2.難點:能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學生填寫P127[思考],學生自己依次填出:,,,.
2.學生看問題:一艘輪船在靜水中的最大航速為30/h,它沿江以最大航速順流航行90所用時間,與以最大航速逆流航行60所用時間相等,江水的流速為多少?
請同學們跟著教師一起設未知數,列方程.
設江水的流速為v/h.
輪船順流航行90所用的時間為小時,逆流航行60所用時間小時,所以=.
3.以上的式子,,,,有什么共同點?它們與分數有什么相同點和不同點?
四、例題講解
P128例1.當下列分式中的字母為何值時,分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解
出字母的取值范圍.
[補充提問]如果題目為:當字母為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學生一題二用,也可以讓學生更全面地感受到分式及有關概念.
(補充)例2.當為何值時,分式的值為0?
(1)(2)(3)
[分析]分式的值為0時,必須同時滿足兩個條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.
[答案](1)=0(2)=2(3)=1
五、隨堂練習
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當x取何值時,下列分式有意義?
(1)(2)(3)
3.當x為何值時,分式的值為0?
(1)(2)(3)
六、課后練習
1.下列代數式表示下列數量關系,并指出哪些是正是?哪些是分式?
(1)甲每小時做x個零件,則他8小時做零件個,做80個零件需小時.
(2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是千米/時,輪船的逆流速度是千米/時.
(3)x與的差于4的商是.
2.當x取何值時,分式無意義?
3.當x為何值時,分式的值為0?
八年級上冊數學的教案篇4
教學建議
知識結構
重難點分析
本節的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關系,而且給出了線段的數量關系,為平面幾何中證明線段平行和線段相等提供了新的思路.
本節的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.
教法建議
1.對于中位線定理的引入和證明可采用發現法,由學生自己觀察、猜想、測量、論證,實際掌握效果比應用講授法應好些,教師可根據學生情況參考采用
2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解
教學設計示例
一、教學目標
1.掌握中位線的概念和三角形中位線定理
2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”
3.能夠應用三角形中位線概念及定理進行有關的論證和計算,進一步提高學生的計算能力
4.通過定理證明及一題多解,逐步培養學生的分析問題和解決問題的能力
5.通過一題多解,培養學生對數學的興趣
二、教學設計
畫圖測量,猜想討論,啟發引導.
三、重點、難點
1.教學重點:三角形中位線的概論與三角形中位線性質.
2.教學難點:三角形中位線定理的證明.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具
六、教學步驟
【復習提問】
1.敘述平行線等分線段定理及推論的內容(結合學生的敘述,教師畫出草圖,結合圖形,加以說明).
2.說明定理的證明思路.
3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明?
分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證,只要即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.
4.什么叫三角形中線?(以上復習用投影儀打出)
【引入新課】
1.三角形中位線:連結三角形兩邊中點的線段叫做三角形中位線.
(結合三角形中線的定義,讓學生明確兩者區別,可做一練習,在中,畫出中線、中位線)
2.三角形中位線性質
了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質.
如圖所示,DE是的一條中位線,如果過D作,交AC于,那么根據平行線等分線段定理推論2,得是AC的中點,可見與DE重合,所以.由此得到:三角形中位線平行于第三邊.同樣,過D作,且DEFC,所以DE.因此,又得出一個結論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.
三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.
應注意的兩個問題:①為便于同學對定理能更好的掌握和應用,可引導學生分析此定理的特點,即同一個題設下有兩個結論,第一個結論是表明中位線與第三邊的位置關系,第二個結論是說明中位線與第三邊的數量關系,在應用時可根據需要來選用其中的結論(可以單獨用其中結論).②這個定理的證明方法很多,關鍵在于如何添加輔助線.可以引導學生用不同的.方法來證明以活躍學生的思維,開闊學生思路,從而提高分析問題和解決問題的能力.但也應指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.
由學生討論,說出幾種證明方法,然后教師總結如下圖所示(用投影儀演示).
(l)延長DE到F,使,連結CF,由可得ADFC.
(2)延長DE到F,使,利用對角線互相平分的四邊形是平行四邊形,可得ADFC.
(3)過點C作,與DE延長線交于F,通過證可得ADFC.
上面通過三種不同方法得出ADFC,再由得BDFC,所以四邊形DBCF是平行四邊形,DFBC,又因DE,所以DE.
(證明過程略)
例求證:順次連結四邊形四條邊的中點,所得的四邊形是平行四邊形.
(由學生根據命題,說出已知、求證)
已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.
求證:四邊形EFGH是平行四邊形.‘
分析:因為已知點分別是四邊形各邊中點,如果連結對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關系,從而證出四邊形EFGH是平行四邊形.
證明:連結AC.
∴(三角形中位線定理).
同理,
∴GHEF
∴四邊形EFGH是平行四邊形.
【小結】
1.三角形中位線及三角形中位線與三角形中線的區別.
2.三角形中位線定理及證明思路.
七、布置作業
教材P188中1(2)、4、7
八年級上冊數學的教案篇5
三角形的證明
1、等腰三角形
①定理:兩角分別相等且其中一組等角的對邊相等的兩個三角形全等(AAS)
②全等三角形的對應邊相等、對應角相等
③定理:等腰三角形的兩底角相等,即位等邊對等角
④推論:等腰三角形頂角的平分線、底邊上的中線以及底邊上的高線互相重合
⑤定理:等邊三角形的三個內角都想等,并且每個角都等于60°
⑥定理:有兩個角相等的是三角形是等腰三角形(等角對等邊)
⑦定理:三個角都相等的三角形是等邊三角形
⑧定理;有一個角等于60°的等腰三角形是等邊三角形
⑨定理:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半
⑩反證法:在證明時,先假設命題的結論不成立,然后推導出與定義,基本事實、已有定理或已知條件相矛盾的結果,從而證明命題的結論一定成立。
2、直角三角形
①定理:直角三角形的兩個銳角互余
②定理有兩個角互余的三角形是直角三角形
③勾股定理:直角三角形兩條直角邊的平方和等于斜邊的平方
④如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形
⑤在兩個命題中,如果一個命題的條件和結論分別是另一個命題的結論和條件,那么這兩個命題稱為互逆命題,其中一個命題稱為另一個命題的逆命題
⑥一個命題是真命題,它的逆命題不一定是真命題。如果一個定理的逆命題經過證明是真命題,那么它也是一個定理,其中一個定理稱為另一個定理的逆定理
⑦定理:斜邊和一條直角邊分別相等的兩個直角三角形全等
3、線段的垂直平分線
①定理:線段垂直平分線上的點到這條線段兩個端點的距離相等
②定理:到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
4、角平分線
①定理:角平分線上的點到這個角的兩邊的距離相等
②定理:在一個角的內部,到角的兩邊距離相等的點在這個角的平分線上
八年級上冊數學的教案篇6
一、教學目標:理解分式乘除法的法則,會進行分式乘除運算.
二、重點、難點
1.重點:會用分式乘除的法則進行運算.
2.難點:靈活運用分式乘除的法則進行運算 .
3. 難點與突破方法
分式的運算以有理數和整式的運算為基礎,以因式分解為手段,經過轉化后往經過轉化后往往可視為整式的運算.分式的乘除的法則和運算順序可類比分數的有關內容得到.所以,教給學生類比的數學思想方法能較好地實現新知識的轉化.只要做到這一點就可充分發揮學生的主體性,使學生主動獲取知識.教師要重點處理分式中有別于分數運算的有關內容,使學生規范掌握,特別是運算符號的問題,要抓住出現的問題認真落實.
三、例、習題的意圖分析
1.P13本節的引入還是用問題1求容積的高,問題2求大拖拉機的工作效率是小拖拉機的工作效率的多少倍,這兩個引例所得到的容積的高是 ,大拖拉機的工作效率是小拖拉機的工作效率的 倍.引出了分式的乘除法的實際存在的意義,進一步引出P14[觀察]從分數的乘除法引導學生類比出分式的乘除法的法則.但分析題意、列式子時,不易耽誤太多時間.
2.P14例1應用分式的乘除法法則進行計算,注意計算的結果如能約分,應化簡到最簡.
3.P14例2是較復雜的分式乘除,分式的分子、分母是多項式,應先把多項式分解因式,再進行約分.
4.P14例3是應用題,題意也比較容易理解,式子也比較容易列出來,但要注意根據問題的實際意義可知a>1,因此(a-1)2=a2-2a+1四、課堂引入
1.出示P13本節的引入的問題1求容積的高 ,問題2求大拖拉機的工作效率是小拖拉機的工作效率的 倍.
[引入]從上面的問題可知,有時需要分式運算的乘除.本節我們就討論數量關系需要進行分式的乘除運算.我們先從分數的乘除入手,類比出分式的乘除法法則.
1. P14[觀察] 從上面的算式可以看到分式的乘除法法則.
3.[提問] P14[思考]類比分數的乘除法法則,你能說出分式的乘除法法則?
類似分數的乘除法法則得到分式的乘除法法則的結論.
五、例題講解
P14例1.
[分析]這道例題就是直接應用分式的乘除法法則進行運算.應該注意的是運算結果應約分到最簡,還應注意在計算時跟整式運算一樣,先判斷運算符號,在計算結果.
P15例2.
[分析] 這道例題的分式的分子、分母是多項式,應先把多項式分解因式,再進行約分.結果的分母如果不是單一的多項式,而是多個多項式相乘是不必把它們展開.
P15例.
[分析]這道應用題有兩問,第一問是:哪一種小麥的單位面積產量?先分別求出“豐收1號”、“豐收2號”小麥試驗田的面積,再分別求出“豐收1號”、“豐收2號”小麥試驗田的單位面積產量,分別是 、 ,還要判斷出以上兩個分式的值,哪一個值更大.要根據問題的實際意義可知a>1,因此(a-1)2=a2-2a+1六、隨堂練習
計算
(1) (2) (3)
(4)-8xy (5) (6)
七、課后練習
計算
(1) (2) (3)
(4) (5) (6)
八、答案:
六、(1)ab (2) (3) (4)-20x2 (5)
(6)
七、(1) (2) (3) (4)
(5) (6)
八年級上冊數學的教案篇7
教材分析
1本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式
1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。
2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。
學情分析
1、在學習本課之前應具備的基本知識和技能:
①同類項的定義。
②合并同類項法則
③多項式乘以多項式法則。
2、學習者對即將學習的內容已經具備的水平:
在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。
教學目標
(一)教學目標:
1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。
2、會推導完全平方公式,并能運用公式進行簡單的計算。
(二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理
數、實數、代數式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、、不等式、函數等進行描述。
(四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。
(五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。
教學重點和難點
重點:能運用完全平方公式進行簡單的計算。
難點:會推導完全平方公式
教學過程
教學過程設計如下:
〈一〉、提出問題
[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問題
1、[學生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特點。
(2)結果的項數特點。
(3)三項系數的特點(特別是符號的特點)。
(4)三項與原多項式中兩個單項式的關系。
2、[學生回答]總結完全平方公式的語言描述:
兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學生回答]完全平方公式的數學表達式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判斷:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、一現身手
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[學生小結]
你認為完全平方公式在應用過程中,需要注意那些問題?
(1)公式右邊共有3項。
(2)兩個平方項符號永遠為正。
(3)中間項的符號由等號左邊的兩項符號是否相同決定。
(4)中間項是等號左邊兩項乘積的2倍。
〈五〉、探險之旅
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
板書設計
完全平方公式
兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;
兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2