小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 >

八年級上冊數學教案

時間: 新華 教案模板

八年級上冊數學教案篇1

【教學目標】

1、了解三角形的中位線的概念

2、了解三角形的中位線的性質

3、探索三角形的中位線的性質的一些簡單的應用

【教學重點、難點】

重點:三角形的中位線定理。

難點:三角形的中位線定理的證明中添加輔助線的思想方法。

【教學過程】

(一)創設情景,引入新課

1、如圖,為了測量一個池塘的寬BC,在池塘一側的平地上選一點A,再分別找出線段AB、AC的中點D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?

2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張梯形紙片

(1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

(2)要把所剪得的兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?

3、引導學生概括出中位線的概念。

問題:(1)三角形有幾條中位線?(2)三角形的`中位線與中線有什么區別?

啟發學生得出:三角形的中位線的兩端點都是三角形邊的中點,而三角形中線只有一個端點是邊中點,另一端點上三角形的一個頂點。

4、猜想:DE與BC的關系?(位置關系與數量關系)

(二)、師生互動,探究新知

1、證明你的猜想

引導學生寫出已知,求證,并啟發分析。

(已知:⊿ABC中,D、E分別是AB、AC的中點,求證:DE∥BC,DE=1/2BC)

啟發1:證明直線平行的方法有哪些?(由角的相等或互補得出平行,由平行四邊形得出平行等)

啟發2:證明線段的倍分的方法有哪些?(截長或補短)

學生分小組討論,教師巡回指導,經過分析后,師生共同完成推理過程,板書證明過程,強調有其他證法。

證明:如圖,以點E為旋轉中心,把⊿ADE繞點E,按順時針方向旋轉180゜,得到⊿CFE,則D,E,F同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

∴∠ADE=∠F,AD=CF,

∴AB∥CF。

又∵BD=AD=CF,

∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

∴DF∥BC(根據什么?),

∴DE1/2BC

2、啟發學生歸納定理,并用文字語言表達:三角形中位線平行于第三邊且等于第三邊的一半。

(三)學以致用、落實新知

1、練一練:已知三角形邊長分別為6、8、10,順次連結各邊中點所得的三角形周長是多少?

2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點分別為D、E、F,則⊿DEF的周長是多少?

3、例題:已知:如圖,在四邊形ABCD中,E,F,G,H分別是AB,BC,CD,DA的中點。

求證:四邊形EFGH是平行四邊形。

啟發1:由E,F分別是AB,BC的中點,你會聯想到什么圖形?

啟發2:要使EF成為三角的中位線,應如何添加輔助線?應用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

證明:如圖,連接AC。

∵EF是⊿ABC的中位線,

∴EF1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

同理,HG1/2AC。

∴EFHG。

∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)

挑戰:順次連結上題中,所得到的四邊形EFGH四邊中點得到一個四邊形,繼續作下去。。。你能得出什么結論?

(四)學生練習,鞏固新知

1、請回答引例中的問題(1)

2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC,BD的中點。求證:∠PNM=∠PMN

(五)小結回顧,反思提高

今天你學到了什么?還有什么困惑?

八年級上冊數學教案篇2

一、教學目標:(1)熟練地進行同分母的分式加減法的運算.

(2)會把異分母的分式通分,轉化成同分母的分式相加減.

二、重點、難點

1.重點:熟練地進行異分母的分式加減法的運算.

2.難點:熟練地進行異分母的分式加減法的運算.

3.認知難點與突破方法

進行異分母的分式加減法的運算是難點,異分母的分式加減法的運算,必須轉化為同分母的分式加減法,,然后按同分母的分式加減法的法則計算,轉化的關鍵是通分,通分的關鍵是正確確定幾個分式的最簡公分母,確定最簡公分母的一般步驟:(1)取各分母系數的最小公倍數;(2)所出現的字母(或含字母的式子)為底的冪的因式都要取;(3)相同字母(或含字母的式子)的冪的因式取指數的.在求出最簡公分母后,還要確定分子、分母應乘的因式,這個因式就是最簡公分母除以原分母所得的商.

異分母的分式加減法的一般步驟:(1)通分,將異分母的分式化成同分母的分式;(2)寫成“分母不便,分子相加減”的形式;(3)分子去括號,合并同類項;(4)分子、分母約分,將結果化成最簡分式或整式.

三、例、習題的意圖分析

1. P18問題3是一個工程問題,題意比較簡單,只是用字母n天來表示甲工程隊完成一項工程的時間,乙工程隊完成這一項工程的時間可表示為n+3天,兩隊共同工作一天完成這項工程的 .這樣引出分式的加減法的實際背景,問題4的目的與問題3一樣,從上面兩個問題可知,在討論實際問題的數量關系時,需要進行分式的加減法運算.

2. P19[觀察]是為了讓學生回憶分數的加減法法則,類比分數的加減法,分式的加減法的實質與分數的加減法相同,讓學生自己說出分式的加減法法則.

3.P20例6計算應用分式的加減法法則.第(1)題是同分母的分式減法的運算,第二個分式的分子式個單項式,不涉及到分子變號的問題,比較簡單,所以要補充分子是多項式的例題,教師要強調分子相減時第二個多項式注意變號;

第(2)題是異分母的分式加法的運算,最簡公分母就是兩個分母的乘積,沒有涉及分母要因式分解的題型.例6的練習的題量明顯不足,題型也過于簡單,教師應適當補充一些題,以供學生練習,鞏固分式的加減法法則.

(4)P21例7是一道物理的電路題,學生首先要有并聯電路總電阻R與各支路電阻R1, R2, …, Rn的關系為 .若知道這個公式,就比較容易地用含有R1的式子表示R2,列出 ,下面的計算就是異分母的分式加法的運算了,得到 ,再利用倒數的概念得到R的結果.這道題的數學計算并不難,但是物理的知識若不熟悉,就為數學計算設置了難點.鑒于以上分析,教師在講這道題時要根據學生的物理知識掌握的情況,以及學生的具體掌握異分母的分式加法的運算的情況,可以考慮是否放在例8之后講.

四、課堂堂引入

1.出示P18問題3、問題4,教師引導學生列出答案.

引語:從上面兩個問題可知,在討論實際問題的數量關系時,需要進行分式的加減法運算.

2.下面我們先觀察分數的加減法運算,請你說出分數的加減法運算的法則嗎?

3. 分式的加減法的實質與分數的加減法相同,你能說出分式的加減法法則?

4.請同學們說出 的最簡公分母是什么?你能說出最簡公分母的確定方法嗎?

五、例題講解

(P20)例6.計算

[分析] 第(1)題是同分母的分式減法的運算,分母不變,只把分子相減,第二個分式的分子式個單項式,不涉及到分子是多項式時,第二個多項式要變號的問題,比較簡單;第(2)題是異分母的分式加法的運算,最簡公分母就是兩個分母的乘積.

(補充)例.計算

(1)

[分析] 第(1)題是同分母的分式加減法的運算,強調分子為多項式時,應把多項事看作一個整體加上括號參加運算,結果也要約分化成最簡分式.

解:

=

=

=

=

(2)

[分析] 第(2)題是異分母的分式加減法的運算,先把分母進行因式分解,再確定最簡公分母,進行通分,結果要化為最簡分式.

解:

=

=

=

=

=

六、隨堂練習

計算

(1) (2)

(3) (4)

七、課后練習

計算

(1) (2)

(3) (4)

八、答案:

四.(1) (2) (3) (4)1

五.(1) (2) (3)1 (4)

八年級上冊數學教案篇3

教學目標

1.知識與技能

領會運用完全平方公式進行因式分解的方法,發展推理能力.

2.過程與方法

經歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

3.情感、態度與價值觀

培養良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.

重、難點與關鍵

1.重點:理解完全平方公式因式分解,并學會應用.

2.難點:靈活地應用公式法進行因式分解.

3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的.

教學方法

采用“自主探究”教學方法,在教師適當指導下完成本節課內容.

教學過程

一、回顧交流,導入新知

【問題牽引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知識遷移】

2.計算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

【教師活動】引導學生完成下面兩道題,并運用數學“互逆”的思想,尋找因式分解的規律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

【學生活動】從逆向思維的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例學習,應用所學

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值.

【思路點撥】根據完全平方式的定義,解此題時應分兩種情況,即兩數和的平方或者兩數差的平方,由此相應求出a的值,即可求出a3.

三、隨堂練習,鞏固深化

課本P170練習第1、2題.

【探研時空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、課堂總結,發展潛能

由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在運用公式因式分解時,要注意:

(1)每個公式的形式與特點,通過對多項式的項數、次數等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當的組合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.

五、布置作業,專題突破

八年級上冊數學教案篇4

一、 內容和內容解析

1.內容

三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.

2.內容解析

本節內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現實生活中的真實性,激發學生熱愛生活、勇于探索的思想感情.

理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續以及三角形全等、相似等后繼知識一個準備.

本節的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.

二、目標和目標解析

1.教學目標

(1)理解三角形的高、中線與角平分線等概念;

(2)會用工具畫三角形的高、中線與角平分線;

2.教學目標解析

(1)經歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.

(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質.

(3)掌握三角形的高、中線與角平分線的畫法.

(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.

三、教學問題診斷分析

三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.

三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.

三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個 端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯系又有本質的區別.

八年級上冊數學教案篇5

1、平行四邊形

性質:對邊相等;對角相等;對角線互相平分。

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,并且等于第三邊的一半。

2、特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質:矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質

判定:有一個角是直角的平行四邊形是矩形;

對角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等于斜邊的一半。

(2)菱形

性質:菱形的四條邊都相等;

菱形的對角線互相垂直,并且每一條對角線平分一組對角;

菱形具有平行四邊形的一切性質

判定:有一組鄰邊相等的平行四邊形是菱形;

對角線互相垂直的平行四邊形是菱形;

四邊相等的四邊形是菱形。

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;

等腰梯形的兩條對角線相等;

同一個底上的兩個角相等的梯形是等腰梯形。

八年級上冊數學教案篇6

三角形的證明

1、等腰三角形

①定理:兩角分別相等且其中一組等角的對邊相等的兩個三角形全等(AAS)

②全等三角形的對應邊相等、對應角相等

③定理:等腰三角形的兩底角相等,即位等邊對等角

④推論:等腰三角形頂角的平分線、底邊上的中線以及底邊上的高線互相重合

⑤定理:等邊三角形的三個內角都想等,并且每個角都等于60°

⑥定理:有兩個角相等的是三角形是等腰三角形(等角對等邊)

⑦定理:三個角都相等的三角形是等邊三角形

⑧定理;有一個角等于60°的等腰三角形是等邊三角形

⑨定理:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半

⑩反證法:在證明時,先假設命題的結論不成立,然后推導出與定義,基本事實、已有定理或已知條件相矛盾的結果,從而證明命題的結論一定成立。

2、直角三角形

①定理:直角三角形的兩個銳角互余

②定理有兩個角互余的三角形是直角三角形

③勾股定理:直角三角形兩條直角邊的平方和等于斜邊的平方

④如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形

⑤在兩個命題中,如果一個命題的條件和結論分別是另一個命題的結論和條件,那么這兩個命題稱為互逆命題,其中一個命題稱為另一個命題的逆命題

⑥一個命題是真命題,它的逆命題不一定是真命題。如果一個定理的逆命題經過證明是真命題,那么它也是一個定理,其中一個定理稱為另一個定理的逆定理

⑦定理:斜邊和一條直角邊分別相等的兩個直角三角形全等

3、線段的垂直平分線

①定理:線段垂直平分線上的點到這條線段兩個端點的距離相等

②定理:到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

4、角平分線

①定理:角平分線上的點到這個角的兩邊的距離相等

②定理:在一個角的內部,到角的兩邊距離相等的點在這個角的平分線上

54312 主站蜘蛛池模板: 护栏打桩机-打桩机厂家-恒新重工 | 济南铝方通-济南铝方通价格-济南方通厂家-山东鲁方通建材有限公司 | 医养体检包_公卫随访箱_慢病随访包_家签随访包_随访一体机-济南易享医疗科技有限公司 | 【孔氏陶粒】建筑回填陶粒-南京/合肥/武汉/郑州/重庆/成都/杭州陶粒厂家 | 穿线管|波纹穿线管|包塑金属软管|蛇皮管?闵彬专注弱电工程? | 抓斗式清污机|螺杆式|卷扬式启闭机|底轴驱动钢坝|污水处理闸门-方源水利机械 | 上海道勤塑化有限公司| 智能门锁电机_智能门锁离合器_智能门锁电机厂家-温州劲力智能科技有限公司 | 南汇8424西瓜_南汇玉菇甜瓜-南汇水蜜桃价格 | 不发火防静电金属骨料_无机磨石_水泥自流平_修补砂浆厂家「圣威特」 | 天津热油泵_管道泵_天津高温热油泵-天津市金丰泰机械泵业有限公司【官方网站】 | 天津电机维修|水泵维修-天津晟佳机电设备有限公司 | 水成膜泡沫灭火剂_氟蛋白泡沫液_河南新乡骏华消防科技厂家 | 六自由度平台_六自由度运动平台_三自由度摇摆台—南京全控科技 | 舞台木地板厂家_体育运动木地板_室内篮球馆木地板_实木运动地板厂家_欧氏篮球地板推荐 | 固诺家居-全屋定制十大品牌_整体衣柜木门橱柜招商加盟 | 北京网站建设首页,做网站选【优站网】,专注北京网站建设,北京网站推广,天津网站建设,天津网站推广,小程序,手机APP的开发。 | 奇酷教育-Python培训|UI培训|WEB大前端培训|Unity3D培训|HTML5培训|人工智能培训|JAVA开发的教育品牌 | 塑钢件_塑钢门窗配件_塑钢配件厂家-文安县启泰金属制品有限公司 深圳南财多媒体有限公司介绍 | ◆大型吹塑加工|吹塑加工|吹塑代加工|吹塑加工厂|吹塑设备|滚塑加工|滚塑代加工-莱力奇塑业有限公司 | 热缩管切管机-超声波切带机-织带切带机-无纺布切布机-深圳市宸兴业科技有限公司 | 塑胶跑道施工-硅pu篮球场施工-塑胶网球场建造-丙烯酸球场材料厂家-奥茵 | 外贸网站建设-外贸网站设计制作开发公司-外贸独立站建设【企术】 | 众品地板网-地板品牌招商_地板装修设计_地板门户的首选网络媒体。 | 广州食堂承包_广州团餐配送_广州堂食餐饮服务公司 - 旺记餐饮 | 重庆小面培训_重庆小面技术培训学习班哪家好【终身免费复学】 | 集菌仪_智能集菌仪_全封闭集菌仪_无菌检查集菌仪厂家-那艾 | 盐水蒸发器,水洗盐设备,冷凝结晶切片机,转鼓切片机,絮凝剂加药系统-无锡瑞司恩机械有限公司 | 电力测功机,电涡流测功机,磁粉制动器,南通远辰曳引机测试台 | 蚂蚁分类信息系统 - PHP同城分类信息系统 - MayiCMS | 蓝牙音频分析仪-多功能-四通道-八通道音频分析仪-东莞市奥普新音频技术有限公司 | 北京自然绿环境科技发展有限公司专业生产【洗车机_加油站洗车机-全自动洗车机】 | 电抗器-能曼电气-电抗器专业制造商 | 金现代信息产业股份有限公司--数字化解决方案供应商 | 卫生人才网-中国专业的医疗卫生医学人才网招聘网站! | 石英陶瓷,石英坩埚,二氧化硅陶瓷-淄博百特高新材料有限公司 | 石油/泥浆/不锈钢防腐/砂泵/抽砂泵/砂砾泵/吸砂泵/压滤机泵 - 专业石油环保专用泵厂家 | 天助网 - 中小企业全网推广平台_生态整合营销知名服务商_天助网采购优选 | 切铝机-数控切割机-型材切割机-铝型材切割机-【昆山邓氏精密机械有限公司】 | 层流手术室净化装修-检验科ICU改造施工-华锐净化工程-特殊科室建设厂家 | 济南保安公司加盟挂靠-亮剑国际安保服务集团总部-山东保安公司|济南保安培训学校 |