小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 > 優秀教案 >

八年級上冊數學教案怎么寫

時間: 新華 優秀教案

八年級上冊數學教案怎么寫篇1

16.1.2分式的基本性質

一、教學目標

1.理解分式的基本性質.

2.會用分式的基本性質將分式變形.

二、重點、難點

1.重點:理解分式的基本性質.

2.難點:靈活應用分式的基本性質將分式變形.

3.認知難點與突破方法

教學難點是靈活應用分式的基本性質將分式變形.突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質.應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.

三、例、習題的意圖分析

1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.

2.P9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.

教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解.

3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5.

四、課堂引入

1.請同學們考慮:與相等嗎?與相等嗎?為什么?

2.說出與之間變形的過程,與之間變形的過程,并說出變形依據?

3.提問分數的基本性質,讓學生類比猜想出分式的基本性質.

五、例題講解

P7例2.填空:

[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.

P11例3.約分:

[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.

P11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.

八年級上冊數學教案怎么寫篇2

一、學情分析

學生在學習直角三角形全等判定定理“HL”之前,已經掌握了一般三角形全等的判定方法,在本章的前一階段的學習過程中接觸到了證明三角形全等的推論,在本節課要掌握這個定理的證明以及利用這個定理解決相關問題還是一個較高的要求。

二、教學任務分析

本節課是三角形全等的最后一部分內容,也是很重要的一部分內容,凸顯直角三角形的特殊性質。在探索證明直角三角形全等判定定理“HL”的同時,進一步鞏固命題的相關知識也是本節課的任務之一。因此本節課的教學目標定位為:

1.知識目標:

①能夠證明直角三角形全等的“HL”的判定定理,進一步理解證明的必要性 ②利用“HL’’定理解決實際問題

2.能力目標:

①進一步掌握推理證明的方法,發展演繹推理能力

三、教學過程分析

本節課設計了六個教學環節:第一環節:復習提問;第二環節:引入新課;第三環節:做一做;第四環節:議一議;第五環節:課時小結;第六環節:課后作業。

1:復習提問

1.判斷兩個三角形全等的方法有哪幾種?

2.已知一條邊和斜邊,求作一個直角三角形。想一想,怎么畫?同學們相互交流。

3、有兩邊及其中一邊的對角對應相等的兩個三角形全等嗎?如果其中一個角是直角呢?請證明你的結論。

我們曾從折紙的過程中得到啟示,作了等腰三角形底邊上的中線或頂角的角平分線,運用公理,證明三角形全等,從而得出“等邊對等角”。那么我們能否通

1 / 5

過作等腰三角形底邊的高來證明“等邊對等角”.

要求學生完成,一位學生的過程如下:

已知:在△ABC中, AB=AC.

求證:∠B=∠C.

證明:過A作AD⊥BC,垂足為C,

∴∠ADB=∠ADC=90°

又∵AB=AC,AD=AD,

∴△ABD≌△ACD.

∴∠B=∠C(全等三角形的對應角相等)

在實際的教學過程中,有學生對上述證明方法產生了質疑。質疑點在于“在證明△ABD≌△ACD時,用了“兩邊及其中一邊的對角對相等的兩個三角形全等”.而我們在前面學習全等的時候知道,兩個三角形,如果有兩邊及其一邊的對角相等,這兩個三角形是不一定全等的.可以畫圖說明.(如圖所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD與△ABC不全等)” .

也有學生認同上述的證明。

教師順水推舟,詢問能否證明:“在兩個直角三角形中,直角所對的邊即斜邊和一條直角邊對應相等的兩個直角三角形全等.”,從而引入新課。

2:引入新課

(1).“HL”定理.由師生共析完成

已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求證:Rt△ABC≌Rt△A′B′C′

證明:在Rt△ABC中,AC=AB一BC(勾股定理).

又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股

定理).

AB=A'B',BC=B'C',AC=A'C'.

∴Rt△ABC≌Rt△A'B'C' (SSS).

教師用多媒體演示:

定理 斜邊和一條直角邊對應相等的兩個直角三角形全等.

這一定理可以簡單地用“斜邊、直角邊”或“HL”表示.

2 / 5

22A'B'

從而肯定了第一位同學通過作底邊的高證明兩個三角形

全等,從而得到“等邊對等角”的證法是正確的.

練習:判斷下列命題的真假,并說明理由:

(1)兩個銳角對應相等的兩個直角三角形全等;

(2)斜邊及一銳角對應相等的兩個直角三角形全等;

(3)兩條直角邊對應相等的兩個直角三角形全等;

(4)一條直角邊和另一條直角邊上的中線對應相等的兩個直角三角形全等. 對于(1)、(2)、(3)一般可順利通過,這里教師將講解的重心放在了問題

(4),學生感覺是真命題,一時有無法直接利用已知的定理支持,教師引導學生證明.

已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分別是AC、A'C'邊上的中線且BD—B'D' (如圖).

求證:Rt△ABC≌Rt△A'B'C'.

證明:在Rt△BDC和Rt△B'D'C'中,

∵BD=B'D',BC=B'C',

∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).

CD=C'D'.

又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.

∴在Rt△ABC和Rt△A 'B 'C '中,

∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',

∴Rt△ABC≌CORt△A'B'C(SAS).

通過上述師生共同活動,學生板書推理過程之后可發動學生去糾錯,教師最后再總結。

3:做一做

問題 你能用三角尺平分一個已知角嗎? 請同學們用手中的三角尺操作完成,并在小組內交流,用自己的語言清楚表達自己的想法.

(設計做一做的目的為了讓學生體會數學結論在實際中的應用,教學中就要求學生能用數學的語言清楚地表達自己的想法,并能按要求將推理證明過程寫出來。)

4:議一議

3 / 5

BEADCDA'D'BB'

八年級上冊數學教案怎么寫篇3

教學建議

知識結構

重難點分析

本節的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關系,而且給出了線段的數量關系,為平面幾何中證明線段平行和線段相等提供了新的思路.

本節的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

教法建議

1.對于中位線定理的引入和證明可采用發現法,由學生自己觀察、猜想、測量、論證,實際掌握效果比應用講授法應好些,教師可根據學生情況參考采用

2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

教學設計示例

一、教學目標

1.掌握中位線的概念和三角形中位線定理

2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

3.能夠應用三角形中位線概念及定理進行有關的論證和計算,進一步提高學生的計算能力

4.通過定理證明及一題多解,逐步培養學生的分析問題和解決問題的能力

5.通過一題多解,培養學生對數學的興趣

二、教學設計

畫圖測量,猜想討論,啟發引導.

三、重點、難點

1.教學重點:三角形中位線的概論與三角形中位線性質.

2.教學難點:三角形中位線定理的證明.

四、課時安排

1課時

五、教具學具準備

投影儀、膠片、常用畫圖工具

六、教學步驟

【復習提問】

1.敘述平行線等分線段定理及推論的內容(結合學生的敘述,教師畫出草圖,結合圖形,加以說明).

2.說明定理的證明思路.

3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明?

分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證,只要即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

4.什么叫三角形中線?(以上復習用投影儀打出)

【引入新課】

1.三角形中位線:連結三角形兩邊中點的線段叫做三角形中位線.

(結合三角形中線的定義,讓學生明確兩者區別,可做一練習,在中,畫出中線、中位線)

2.三角形中位線性質

了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質.

如圖所示,DE是的一條中位線,如果過D作,交AC于,那么根據平行線等分線段定理推論2,得是AC的中點,可見與DE重合,所以.由此得到:三角形中位線平行于第三邊.同樣,過D作,且DEFC,所以DE.因此,又得出一個結論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

應注意的兩個問題:①為便于同學對定理能更好的掌握和應用,可引導學生分析此定理的特點,即同一個題設下有兩個結論,第一個結論是表明中位線與第三邊的位置關系,第二個結論是說明中位線與第三邊的數量關系,在應用時可根據需要來選用其中的結論(可以單獨用其中結論).②這個定理的證明方法很多,關鍵在于如何添加輔助線.可以引導學生用不同的.方法來證明以活躍學生的思維,開闊學生思路,從而提高分析問題和解決問題的能力.但也應指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.

由學生討論,說出幾種證明方法,然后教師總結如下圖所示(用投影儀演示).

(l)延長DE到F,使,連結CF,由可得ADFC.

(2)延長DE到F,使,利用對角線互相平分的四邊形是平行四邊形,可得ADFC.

(3)過點C作,與DE延長線交于F,通過證可得ADFC.

上面通過三種不同方法得出ADFC,再由得BDFC,所以四邊形DBCF是平行四邊形,DFBC,又因DE,所以DE.

(證明過程略)

例求證:順次連結四邊形四條邊的中點,所得的四邊形是平行四邊形.

(由學生根據命題,說出已知、求證)

已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

求證:四邊形EFGH是平行四邊形.‘

分析:因為已知點分別是四邊形各邊中點,如果連結對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關系,從而證出四邊形EFGH是平行四邊形.

證明:連結AC.

∴(三角形中位線定理).

同理,

∴GHEF

∴四邊形EFGH是平行四邊形.

【小結】

1.三角形中位線及三角形中位線與三角形中線的區別.

2.三角形中位線定理及證明思路.

七、布置作業

教材P188中1(2)、4、7

八年級上冊數學教案怎么寫篇4

1、平行四邊形

性質:對邊相等;對角相等;對角線互相平分。

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,并且等于第三邊的一半。

2、特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質:矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質

判定:有一個角是直角的平行四邊形是矩形;

對角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等于斜邊的一半。

(2)菱形

性質:菱形的四條邊都相等;

菱形的對角線互相垂直,并且每一條對角線平分一組對角;

菱形具有平行四邊形的一切性質

判定:有一組鄰邊相等的平行四邊形是菱形;

對角線互相垂直的平行四邊形是菱形;

四邊相等的四邊形是菱形。

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;

等腰梯形的兩條對角線相等;

同一個底上的兩個角相等的梯形是等腰梯形。

八年級上冊數學教案怎么寫篇5

教材分析

1本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式

1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。

2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。

學情分析

1、在學習本課之前應具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學習者對即將學習的內容已經具備的水平:

在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。

教學目標

(一)教學目標:

1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。

2、會推導完全平方公式,并能運用公式進行簡單的計算。

(二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理

數、實數、代數式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、、不等式、函數等進行描述。

(四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。

(五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。

教學重點和難點

重點:能運用完全平方公式進行簡單的計算。

難點:會推導完全平方公式

教學過程

教學過程設計如下:

〈一〉、提出問題

[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結果的項數特點。

(3)三項系數的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關系。

2、[學生回答]總結完全平方公式的語言描述:

兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學生回答]完全平方公式的數學表達式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、一現身手

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學生小結]

你認為完全平方公式在應用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、探險之旅

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

板書設計

完全平方公式

兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

八年級上冊數學教案怎么寫篇6

一、創設情境

在學習與生活中,經常要研究一些數量關系,先看下面的問題.

問題1如圖是某地一天內的氣溫變化圖.

看圖回答:

(1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

(2)這一天中,最高氣溫是多少?最低氣溫是多少?

(3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

(3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

從圖中我們可以看到,隨著時間t(時)的變化,相應地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數量關系呢?

二、探究歸納

問題2銀行對各種不同的存款方式都規定了相應的利率,下表是20__年7月中國工商銀行為“整存整取”的存款方式規定的年利率:

觀察上表,說說隨著存期x的增長,相應的年利率y是如何變化的.

解隨著存期x的增長,相應的年利率y也隨著增長.

問題3收音機刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的.下面是一些對應的數值:

觀察上表回答:

(1)波長l和頻率f數值之間有什么關系?

(2)波長l越大,頻率f就________.

解(1)l與f的乘積是一個定值,即

lf=300000,

或者說.

(2)波長l越大,頻率f就越小.

問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關系:S=_________.

利用這個關系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結果填入下表:

由此可以看出,圓的半徑越大,它的面積就_________.

解S=πr2.

圓的半徑越大,它的面積就越大.

在上面的問題中,我們研究了一些數量關系,它們都刻畫了某些變化規律.這里出現了各種各樣的量,特別值得注意的是出現了一些數值會發生變化的量.例如問題1中,刻畫氣溫變化規律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數值.像這樣在某一變化過程中,可以取不同數值的量,叫做變量(variable).

上面各個問題中,都出現了兩個變量,它們互相依賴,密切相關.一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

八年級上冊數學教案怎么寫篇7

教學目標

1.知識與技能

領會運用完全平方公式進行因式分解的方法,發展推理能力.

2.過程與方法

經歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

3.情感、態度與價值觀

培養良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.

重、難點與關鍵

1.重點:理解完全平方公式因式分解,并學會應用.

2.難點:靈活地應用公式法進行因式分解.

3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的.

教學方法

采用“自主探究”教學方法,在教師適當指導下完成本節課內容.

教學過程

一、回顧交流,導入新知

【問題牽引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知識遷移】

2.計算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

【教師活動】引導學生完成下面兩道題,并運用數學“互逆”的思想,尋找因式分解的規律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

【學生活動】從逆向思維的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例學習,應用所學

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值.

【思路點撥】根據完全平方式的定義,解此題時應分兩種情況,即兩數和的平方或者兩數差的平方,由此相應求出a的值,即可求出a3.

三、隨堂練習,鞏固深化

課本P170練習第1、2題.

【探研時空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、課堂總結,發展潛能

由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在運用公式因式分解時,要注意:

(1)每個公式的形式與特點,通過對多項式的項數、次數等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當的組合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.

五、布置作業,專題突破

八年級上冊數學教案怎么寫篇8

一、 內容和內容解析

1.內容

三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.

2.內容解析

本節內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現實生活中的真實性,激發學生熱愛生活、勇于探索的思想感情.

理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續以及三角形全等、相似等后繼知識一個準備.

本節的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.

二、目標和目標解析

1.教學目標

(1)理解三角形的高、中線與角平分線等概念;

(2)會用工具畫三角形的高、中線與角平分線;

2.教學目標解析

(1)經歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.

(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質.

(3)掌握三角形的高、中線與角平分線的畫法.

(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.

三、教學問題診斷分析

三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.

三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.

三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個 端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯系又有本質的區別.

48489 主站蜘蛛池模板: 英超直播_英超免费在线高清直播_英超视频在线观看无插件-24直播网 | 伺服电机_直流伺服_交流伺服_DD马达_拓达官方网站 | 辐射仪|辐射检测仪|辐射巡测仪|个人剂量报警仪|表面污染检测仪|辐射报警仪|辐射防护网 | 电动车头盔厂家_赠品头盔_安全帽批发_山东摩托车头盔—临沂承福头盔 | 转子泵_凸轮泵_凸轮转子泵厂家-青岛罗德通用机械设备有限公司 | 珠海网站建设_响应网站建设_珠海建站公司_珠海网站设计与制作_珠海网讯互联 | 飞象网 - 通信人每天必上的网站 全球化工设备网—化工设备,化工机械,制药设备,环保设备的专业网络市场。 | 锯边机,自动锯边机,双面涂胶机-建业顺达机械有限公司 | 合肥仿石砖_合肥pc砖厂家_合肥PC仿石砖_安徽旭坤建材有限公司 | 哲力实业_专注汽车涂料汽车漆研发生产_汽车漆|修补油漆品牌厂家 长沙一级消防工程公司_智能化弱电_机电安装_亮化工程专业施工承包_湖南公共安全工程有限公司 | 27PR跨境电商导航 | 专注外贸跨境电商 | 北京开源多邦科技发展有限公司官网| 钢绞线万能材料试验机-全自动恒应力两用机-混凝土恒应力压力试验机-北京科达京威科技发展有限公司 | 烟台游艇培训,威海游艇培训-烟台市邮轮游艇行业协会 | 温州中研白癜风专科_温州治疗白癜风_温州治疗白癜风医院哪家好_温州哪里治疗白癜风 | 珠海冷却塔降噪维修_冷却塔改造报价_凉水塔风机维修厂家- 广东康明节能空调有限公司 | 光照全温振荡器(智能型)-恒隆仪器 | 定量包装机,颗粒定量包装机,粉剂定量包装机,背封颗粒包装机,定量灌装机-上海铸衡电子科技有限公司 | 设定时间记录电子秤-自动累计储存电子秤-昆山巨天仪器设备有限公司 | 深圳展厅设计_企业展馆设计_展厅设计公司_数字展厅设计_深圳百艺堂 | 缠膜机|缠绕包装机|无纺布包装机-济南达伦特机械设备有限公司 | 软文发布-新闻发布推广平台-代写文章-网络广告营销-自助发稿公司媒介星 | 元拓建材集团官方网站| 杭州中央空调维修_冷却塔/新风机柜/热水器/锅炉除垢清洗_除垢剂_风机盘管_冷凝器清洗-杭州亿诺能源有限公司 | 标策网-专注公司商业知识服务、助力企业发展 | 水压力传感器_数字压力传感器|佛山一众传感仪器有限公司|首页 | 陶瓷加热器,履带式加热器-吴江市兴达电热设备厂 | MTK核心板|MTK开发板|MTK模块|4G核心板|4G模块|5G核心板|5G模块|安卓核心板|安卓模块|高通核心板-深圳市新移科技有限公司 | 天空彩票天下彩,天空彩天空彩票免费资料,天空彩票与你同行开奖,天下彩正版资料大全 | 软装设计-提供软装装饰和软装配饰及软装陈设的软装设计公司 | 济南玻璃安装_济南玻璃门_济南感应门_济南玻璃隔断_济南玻璃门维修_济南镜片安装_济南肯德基门_济南高隔间-济南凯轩鹏宇玻璃有限公司 | 棉柔巾代加工_洗脸巾oem_一次性毛巾_浴巾生产厂家-杭州禾壹卫品科技有限公司 | 米顿罗计量泵(科普)——韬铭机械| 广域铭岛Geega(际嘉)工业互联网平台-以数字科技引领行业跃迁 | 上海璟文空运首页_一级航空货运代理公司_机场快递当日达 | 超高频感应加热设备_高频感应电源厂家_CCD视觉检测设备_振动盘视觉检测设备_深圳雨滴科技-深圳市雨滴科技有限公司 | 洗瓶机厂家-酒瓶玻璃瓶冲瓶机-瓶子烘干机-封口旋盖压盖打塞机_青州惠联灌装机械 | 防火卷帘门价格-聊城一维工贸特级防火卷帘门厂家▲ | 济南菜鸟驿站广告|青岛快递车车体|社区媒体-抖音|墙体广告-山东揽胜广告传媒有限公司 | 卸料器-卸灰阀-卸料阀-瑞安市天蓝环保设备有限公司 | 体视显微镜_荧光生物显微镜_显微镜报价-微仪光电生命科学显微镜有限公司 |