小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

初中的數學教案怎么寫

時間: 新華 教學設計

好的教案應該有合理的板書設計,突出教學重點和難點,展示知識結構,幫助學生理解和記憶。如何撰寫優秀的初中的數學教案怎么寫?這里分享一些初中的數學教案怎么寫寫作案例,供大家參考。

初中的數學教案怎么寫篇1

一、教學目標:

知識與技能:理解掌握有理數的減法法則,會將有理數的減法運算轉化為加法運算。

過程與方法:通過把減法運算轉化為加法運算,向學生滲透轉化思想,通過有理數的減法運算,培養學生的運算能力。

情感態度與價值觀:通過揭示有理數的減法法則,滲透事物間普遍聯系、相互轉化的辯證唯物主義思想。

二、教學重點:運用有理數的減法法則,熟練進行減法運算。

三、教學難點:理解有理數減法法則。

四、教材分析:本節是在學習了正負數、相反數、有理數加法運算之后,以初中代數第一冊第53頁的有理數減法法則及有理數減法運算的例1、例2為課堂教學內容。有理數的減法運算是一種基本的有理數運算,對今后正確熟練地進行有理數的混合運算,并對解決實際問題都有十分重要的作用。

五、教學方法:師生互動法

六、教具:幻燈片

七、課時:1課時

八、教學過程:

1、計算(口答):

(1)1+(-2)

(2)-10+(+3)

(3)+10+(-3)

2、出示幻燈片二:

如圖:

這是20__年11月某天北京的溫度為-3~3℃,它的確切含義是什么?這一天北京的溫差是多少?

教師引導觀察

教師總結:這就是我們今天要學習的內容(引入新課,板書課題)

1、師:誰能把10-3=7這個式子中的性質符號補出來呢?

(+10)-(+3)=7

再計算:(+10)+(-3),師讓學生觀察兩式結果,由此得到:

(+10)-(+3)=(+10)+(-3)

觀察減法是否可以轉化為加法計算呢?是如何轉化的呢?

(教師發揮主導作用,注意學生的參與意識)

2、再看一題:

計算:(-10)-(-3)

教師啟發:要解決這個問題,根據有理數減法的意義,這就是要求一個數使它與-3相加會得到-10,那么這個數是多少?

問題:計算:(-10)+(+3)

教師引導,學生觀察上述兩題結果,由此得到

(-10)-(-3)=(-10)+(+3)

教師進一步引導學生觀察式子,你能得到什么結論呢?

教師總結:由以上兩式可以看出減法運算可以轉化成加法運算。

教師提問:通過以上的學習,同學們想一想兩個有理數相減的法則是什么?

教師對學生回答給予點評,總結有理數減法法則:減去一個數,等于加上這個數的相反數。

強調法則:(1)減法轉化為加法,減數要變成相反數(2)法則適用于任何兩個有理數相減(3)用字母表示一般形式為a-b=a+(-b)

3、例題講解:

出示幻燈片三(例1和例2)

例1計算:

(1)6-(-8)

(2)(-2)-3

(3)(-2.8)-(-1.7)

(4)0-4

(5)5+(-3)-(-2)

(6)(-5)-(-2.4)+(-1)

教師板書做示范,強調解題的規范性,然后師生共同總結解題步驟,(1)轉化(2)進行加法運算。

例2:小明家蔬菜大棚的氣溫是24℃,此時棚外的氣溫是-13℃,棚內氣溫比棚外氣溫高多少攝氏度?

師巡視指導,最后師生講評兩個學生的解題過程。

課后練習1、2

教師巡視指導

師組織學生自己編題

1、談談本節課你有哪些收獲和體會?[

2、本節課涉及的數學思想和數學方法是什么

教師點評:有理數減法法則是一個轉化法則,要求同學們掌握并能應用進行計算。

課堂檢測(包括基礎題和能力提高題)

1、-9-(-11)

2、3-15

3、-37-12

4、水銀的凝固點是-38.87℃,酒精的凝固點是-117.3℃。水銀的凝固點比酒精的凝固點高多少攝氏度?

學生思考后搶答,盡量照顧不同層次的學生參與的積極性。

學生觀察思考如何計算

學生觀察思考

互相討論

學生口述解題過程

由兩個學生板演,其他學生在練習本上做

第1小題學生搶答

第2小題找兩個學生板演。

學生回答

學生相互交流自己的收獲和體會,教師參與互動并給予鼓勵性評價。

綜合考查學以致用

既復習鞏固有理數加法法則,同時為進行有理數減法運算打下基礎

創設問題情境,激發學生的認知興趣。

讓學生通過嘗試,自己認識減法可以轉化為加法計算。

學生通過一個問題易于充分發揮學習的主動性,同時也培養了學生分析問題的能力

可以培養學生嚴謹的學風和良好的學習習慣,同時鍛煉學生的表達能力

可以照顧不層次的學生,調動學生學習積極性。

通過練習讓學生進一步鞏固新知,體驗知識的應用性。

能增強學生學習的&39;主動性和參與意識。

學生嘗試小結,疏理知識,自由發表學習心得,能鍛煉學生的語言表達能力和歸納概括能力。

鍛煉學生綜合運用知識,獨立解題的能力

板書設計:

2.6有理數的減法

有理數減法法則:

(+10)-(+3)=(+10)+(-3)

(-10)-(-3)=(-10)+(+3)

減去一個數等于加上這個數的相反數.例1:

例2:

練習:

教學反思:

本節課我在問題探索過程中,以提問的形式展現新問題,激發學生的好奇心,學生學習的積極性很高,討論交流的氣氛很熱烈,解決問題后有一種成就感,從而使學生更積極主動的學習,并且營造了良好的學習氛圍,從而收到較好的學習效果。

初中的數學教案怎么寫篇2

一元一次方程——初中數學第一冊教案(精選2篇)

一元一次方程——初中數學第一冊篇1

一元一次方程的復習

復習目標:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)會解一元一次方程。

(3)會根據具體問題中的數量關系列出一元一次方程并求解。

重點、難點:

1.重點:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

會用一元一次方程解決實際問題。

2.難點:

一元一次方程的解法的靈活應用。

尋找實際問題中的等量關系。

【典型例題】

例1.

分析:明確一元一次方程的概念。方程中含有一個未知數,未知數的次數是1,且含有未知數的式子為整式,未知數的系數不為0。

在這里特別注意:未知數的次數及系數。

這三個方程中含有兩個未知數x、y,要想成為一元一次方程就要使其中一個未知數的系數為0。

解:

例2.

分析:此題要明確兩點:(1)當方程中含有多個字母時,指出關于哪個字母的方程,這個字母就是方程的未知數,而其它的字母是代替已知數的字母系數,這類方程也叫字母系數方程。(2)方程的解,即使方程左右兩邊相等的未知數的值。

此題從問題出發,求解關于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是關于y的方程的解,即關于y的方程中字母y=1,因此可將y=1代入方程,從而求出m的值。

解:

將m=1代入關于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步驟為以上五步,但在解方程時,要注意靈活運用。

例4.

分析:此題的括號較多,如果按照一般的做法先去小括號,再去中括號,最后去大括號的方法比較麻煩,所以要觀察分析方程找一種比較簡單的方法。

解:

例5.

分析:此題中分母出現小數,如果用一般的方法先去分母,則比較麻煩,公分母就不好找,所以采取一個巧妙的方法,先利用“分數的基本性質”將方程中分母中的小數化為整數,再用去分母……解之。

解:

注:用分數的基本性質化簡用的是分子、分母擴大相同倍數分數值不變,與去分母不同。

解:

例6.已知某鐵路橋長1000米,現有列火車從橋上通過,測得火車從開始上橋到完全過橋共用1分鐘,整個火車完全在橋上的時間為40秒,求火車的速度。

分析:列方程解應用題的關鍵要找出題目中的等量關系,而由題意可知,此題有兩個不變的量,即車的速度和車身的長度。在題目中不變的量,即可為等量,從而列出方程。例如以車身長度為等量,可列方程,設車的速度為xm/s,60x-1000=1000-40x,以車的速度為等量,可列方程,設車身長為xm

解一:設車的速度為xm/s

經檢驗,符合題意。

答:車的速度為20m/s。

解二:設車身的長度為xm

經檢驗,符合題意。

答:車的速度為(1000+200)/60=20m/s

例7.某音樂廳五月初決定在暑假期間舉辦學生專場音樂會,入場券分為團體票和零售票

售票的一半。如果在六月份內,團體票按每張16元出售,并計劃在六月份售完全部余票,那么零售票應按每張多少元出售才能使兩個月的票款收入持平?

分析:此題的等量關系比較好找,即五六月份的票款相等,但團體票及零售票的張數不知道,可用字母表示出來,設而不求。

解:設團體票共2a張,零售票共a張,零售票價x元

經檢驗,符合題意。

答:零售票價為19.2元。

【模擬試題】

一.填空題。

1.已知方程的解比關于x的方程的解大2,則_________。

2.關于x的方程的解為整數,則__________。

3.若是關于x的一元一次方程,則k=_________,x=_________。

4.若代數式與的值互為相反數,則m=_________。

5.一元一次方程的解為x=0,那么a、b應滿足的條件是__________。

二.解方程。

1.

2.

3.

4.

三.列方程解應用題。

1.一商販以每個雞蛋0.24元購進一批雞蛋,但在途中不慎碰壞12個,剩下的雞蛋以每個0.28元售出,結果獲利11.2元,問該商販當初買進多少個雞蛋?

2.分別戴著紅色和黃色旅行帽的若干同學坐一只船,在公園內劃船,突然間,一個戴紅帽子的同學說:“我看到的我們船上的紅帽子和黃帽子一樣多?!边@時一個戴黃帽子的同學說:“不對,你錯了,我看到的紅帽子是黃帽子的2倍?!眴枺捍骷t帽子和黃帽子的同學各有多少人?

【試題答案】

一.填空題。

1.                   2.

3.1,1                    4.                 5.

二.解方程。

1.                    2.

3.                  4.

三.列方程解應用題。

1.買364個雞蛋

2.戴紅帽子4人,黃帽子3人

一元一次方程的復習

復習目標:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)會解一元一次方程。

(3)會根據具體問題中的數量關系列出一元一次方程并求解。

重點、難點:

1.重點:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

會用一元一次方程解決實際問題。

2.難點:

一元一次方程的解法的靈活應用。

尋找實際問題中的等量關系。

【典型例題】

例1.

分析:明確一元一次方程的概念。方程中含有一個未知數,未知數的次數是1,且含有未知數的式子為整式,未知數的系數不為0。

在這里特別注意:未知數的次數及系數。

這三個方程中含有兩個未知數x、y,要想成為一元一次方程就要使其中一個未知數的系數為0。

解:

例2.

分析:此題要明確兩點:(1)當方程中含有多個字母時,指出關于哪個字母的方程,這個字母就是方程的未知數,而其它的字母是代替已知數的字母系數,這類方程也叫字母系數方程。(2)方程的解,即使方程左右兩邊相等的未知數的值。

此題從問題出發,求解關于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是關于y的方程的解,即關于y的方程中字母y=1,因此可將y=1代入方程,從而求出m的值。

解:

將m=1代入關于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步驟為以上五步,但在解方程時,要注意靈活運用。

例4.

分析:此題的括號較多,如果按照一般的做法先去小括號,再去中括號,最后去大括號的方法比較麻煩,所以要觀察分析方程找一種比較簡單的方法。

解:

例5.

分析:此題中分母出現小數,如果用一般的方法先去分母,則比較麻煩,公分母就不好找,所以采取一個巧妙的方法,先利用“分數的基本性質”將方程中分母中的小數化為整數,再用去分母……解之。

解:

注:用分數的基本性質化簡用的是分子、分母擴大相同倍數分數值不變,與去分母不同。

解:

例6.已知某鐵路橋長1000米,現有列火車從橋上通過,測得火車從開始上橋到完全過橋共用1分鐘,整個火車完全在橋上的時間為40秒,求火車的速度。

分析:列方程解應用題的關鍵要找出題目中的等量關系,而由題意可知,此題有兩個不變的量,即車的速度和車身的長度。在題目中不變的量,即可為等量,從而列出方程。例如以車身長度為等量,可列方程,設車的速度為xm/s,60x-1000=1000-40x,以車的速度為等量,可列方程,設車身長為xm

解一:設車的速度為xm/s

經檢驗,符合題意。

答:車的速度為20m/s。

解二:設車身的長度為xm

經檢驗,符合題意。

答:車的速度為(1000+200)/60=20m/s

例7.某音樂廳五月初決定在暑假期間舉辦學生專場音樂會,入場券分為團體票和零售票

售票的一半。如果在六月份內,團體票按每張16元出售,并計劃在六月份售完全部余票,那么零售票應按每張多少元出售才能使兩個月的票款收入持平?

分析:此題的等量關系比較好找,即五六月份的票款相等,但團體票及零售票的張數不知道,可用字母表示出來,設而不求。

解:設團體票共2a張,零售票共a張,零售票價x元

經檢驗,符合題意。

答:零售票價為19.2元。

【模擬試題】

一.填空題。

1.已知方程的解比關于x的方程的解大2,則_________。

2.關于x的方程的解為整數,則__________。

3.若是關于x的一元一次方程,則k=_________,x=_________。

4.若代數式與的值互為相反數,則m=_________。

5.一元一次方程的解為x=0,那么a、b應滿足的條件是__________。

二.解方程。

1.

2.

3.

4.

三.列方程解應用題。

1.一商販以每個雞蛋0.24元購進一批雞蛋,但在途中不慎碰壞12個,剩下的雞蛋以每個0.28元售出,結果獲利11.2元,問該商販當初買進多少個雞蛋?

2.分別戴著紅色和黃色旅行帽的若干同學坐一只船,在公園內劃船,突然間,一個戴紅帽子的同學說:“我看到的我們船上的紅帽子和黃帽子一樣多。”這時一個戴黃帽子的同學說:“不對,你錯了,我看到的紅帽子是黃帽子的2倍?!眴枺捍骷t帽子和黃帽子的同學各有多少人?

【試題答案】

一.填空題。

1.                   2.

3.1,1                    4.                 5.

二.解方程。

1.                    2.

3.                  4.

三.列方程解應用題。

1.買364個雞蛋

2.戴紅帽子4人,黃帽子3人

一元一次方程——初中數學第一冊教案篇2

一元一次方程

一、教學目標 :

1、通過對多種實際問題的分析,感受方程作為刻畫現實世界有效模型的意義。

2、通過觀察,歸納一元一次方程的概念

3、積累活動經驗。

二、重點和難點

重點:歸納一元一次方程的概念

難點:感受方程作為刻畫現實世界有效模型的意義

三、教學過程 

1、課前訓練一

(1)如果=9,則 =           ;如果2=9,則 =            

(2)在數軸上距離原點4個單位長度的數為                    

(3)下列關于相反數的說法不正確的是(    )

A、兩個相反數只有符號不同,并且它們到原點的距離相等。

B、互為相反數的兩個數的絕對值相等

C、0的相反數是0 

D、互為相反數的兩個數的和為0(字母表示為、互為相反數則)

E、有理數的相反數一定比0小

(4)乘積為1的兩個數互為倒數 ,如:

(5)如果,則(     )

A、,互為倒數  B、,互為相反數   C、,都是0   D、,至少有一個為0

(6)小明種了一棵高度為40厘米的樹苗,栽種后每周樹苗長高約為12厘米,問大約經過幾周后樹苗長高到1米?設大約經過周后樹苗長高到1米,依題意得方程(    )

A、  B、  C、 D、00

2、由課本P149卡通圖畫引入新課

3、分組討論P149兩個練習

4、P150:某長方形的足球場的周長為310米,長與寬的差為25米,求這個足球場的長與寬各是多少米?設這個足球場的寬為米,那么長為(+25)米,依題意可列得方程為:(     )

A、+25=310  B、+(+25)=310  C、2[+(+25)]=310  D、[+(+25)]2=310

課本的寬為3厘米,長比寬多4厘米,則課本的面積為            平方厘米。

5、小芳買了2個筆記本和5個練習本,她遞給售貨員10元,售貨員找回0.8元。已知每個筆記本比練習本貴1.2元,求每個練習本多少元?

解:設每個練習本要元,則每個筆記本要        元,依題意可列得方程:

6、歸納方程、一元一次方程的概念

7、隨堂練習PO151

8、達標測試

(1)下列式子中,屬于方程的是(    )

A、  B、   C、 D、

(2)下列方程中,屬于一元一次方程的是(      )

A、   B、   C、  D、

(3)甲、乙兩隊開展足球對抗比賽,規定每隊勝一場得3分,平一場得1分,負一場得0分。甲隊與乙隊一共進行了10場比賽,且甲隊保持了不敗記錄,甲隊一共得22分。求甲隊勝了多少場?平了多少場?

解:設甲隊勝了場,則平了         場,依題意可列得方程:                   

解得=                

答:甲隊勝了       場,平了       場。

(4)根據條件“一個數比它的一半大2”可列得方程為                      

(5)根據條件“某數的與2的差等于最大的一位數”可列得方程為              

四、課外作業 P151習題5.1 

一元一次方程

一、教學目標 :

1、通過對多種實際問題的分析,感受方程作為刻畫現實世界有效模型的意義。

2、通過觀察,歸納一元一次方程的概念

3、積累活動經驗。

二、重點和難點

重點:歸納一元一次方程的概念

難點:感受方程作為刻畫現實世界有效模型的意義

三、教學過程 

1、課前訓練一

(1)如果=9,則 =           ;如果2=9,則 =            

(2)在數軸上距離原點4個單位長度的數為                    

(3)下列關于相反數的說法不正確的是(    )

A、兩個相反數只有符號不同,并且它們到原點的距離相等。

B、互為相反數的兩個數的絕對值相等

C、0的相反數是0 

D、互為相反數的兩個數的和為0(字母表示為、互為相反數則)

E、有理數的相反數一定比0小

(4)乘積為1的兩個數互為倒數 ,如:

(5)如果,則(     )

A、,互為倒數  B、,互為相反數   C、,都是0   D、,至少有一個為0

(6)小明種了一棵高度為40厘米的樹苗,栽種后每周樹苗長高約為12厘米,問大約經過幾周后樹苗長高到1米?設大約經過周后樹苗長高到1米,依題意得方程(    )

A、  B、  C、 D、00

2、由課本P149卡通圖畫引入新課

3、分組討論P149兩個練習

4、P150:某長方形的足球場的周長為310米,長與寬的差為25米,求這個足球場的長與寬各是多少米?設這個足球場的寬為米,那么長為(+25)米,依題意可列得方程為:(     )

A、+25=310  B、+(+25)=310  C、2[+(+25)]=310  D、[+(+25)]2=310

課本的寬為3厘米,長比寬多4厘米,則課本的面積為            平方厘米。

5、小芳買了2個筆記本和5個練習本,她遞給售貨員10元,售貨員找回0.8元。已知每個筆記本比練習本貴1.2元,求每個練習本多少元?

解:設每個練習本要元,則每個筆記本要        元,依題意可列得方程:

6、歸納方程、一元一次方程的概念

7、隨堂練習PO151

8、達標測試

(1)下列式子中,屬于方程的是(    )

A、  B、   C、 D、

(2)下列方程中,屬于一元一次方程的是(      )

A、   B、   C、  D、

(3)甲、乙兩隊開展足球對抗比賽,規定每隊勝一場得3分,平一場得1分,負一場得0分。甲隊與乙隊一共進行了10場比賽,且甲隊保持了不敗記錄,甲隊一共得22分。求甲隊勝了多少場?平了多少場?

解:設甲隊勝了場,則平了         場,依題意可列得方程:                   

解得=                

答:甲隊勝了       場,平了       場。

(4)根據條件“一個數比它的一半大2”可列得方程為                      

(5)根據條件“某數的與2的差等于最大的一位數”可列得方程為              

四、課外作業 P151習題5.1 

初中的數學教案怎么寫篇3

一、運用數形結合解答二次函數章節問題

“數形結合百般好,隔裂分家萬事非.”數形結合思想抓住了數學學科數學語言的抽象性和平面圖形的直觀性特征,通過“數”“形”互補,使復雜問題簡單化,抽象問題具體化.通過對二次函數章節內容的整體研析發現,二次函數章節知識點的抽象內容,通過圖象的直觀畫面進行展示,同時借助圖象反映出來的性質內容,進行二次函數問題的有效解答,達到變繁為簡,優化解題途徑的目的.

圖1問題1:有一座拋物線型拱橋,橋下面在正常水位AB時寬20m.水位上升3m,就達到警戒線CD,這時,水面寬度為10m.若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續多少小時才能到拱橋頂?

在該問題的教學活動中,如果單純對問題條件內容進行分析,學生在理解抽象性的數學語言符號時,解決問題就有一定的難度.此時,教師利用數形結合的解題思想,根據問題條件內容,采用“以形補數”的形式,做出如圖1所示的圖形,這樣,學生可以借助于圖形的直觀性和語言的精確性等特性,在對問題條件及解題策略的分析和找尋中變得更加“簡便”、“易行”.

二、運用分類討論解題思想解答二次函數章節問題

分類討論思想是解決問題的一種邏輯方法,本質就是“化整為零,積零為整”,增加題設條件的解題策略,它能夠有效提升學生思維活動的嚴密性、科學性和全面性.在二次函數問題案例教學中,分類討論的解題思想有著深刻的運用.如在確定二次函數一般式y=ax2+bx+c圖象與x軸的交點個數時,就運用到了分類討論的解題思想:Δ=b2-4ac,當Δ>0時,二次函數一般式圖象與x軸交于兩點;當Δ=0,圖象與x軸交于一點;當Δ

圖2問題2:如圖2所示,平面直角坐標系中,四邊形OABC為矩形,點A,B的坐標分別是(6,0),(6,8),動點M,N分別從O,B同時出發,以每秒一個單位的速度前進,其中,點M沿OA向終點A運動,點N沿BC向終點C運動,過點N作NP垂直于BC,交AC于點P,連結MP,設運動時間為t秒.(1)求點P的坐標;(用含t的字母代數式表示);(2)試求MPA的面積最大值,并且求此時t的值;(3)請你探究:當t為何值時,MPA是一個等腰三角形?你發現了幾種情況?寫出你的探究成果.

分析:上述問題案例的第三小問題的解答過程中,實際就是蘊含了分類討論的解題思想,需要對MPA的三邊情況分類討論,分別確定當MP=PA時、PA=AM時以及MP=AM時的三種情況下,t的取值范圍.

三、利用函數特性,運用函數方程解題思想解答二次函數章節問題

二次函數章節作為函數教學的重要組成部分,它不僅是一次函數、反比例函數的有效延伸,更是三角函數、指數函數等高中階段函數知識的有效基礎.同時,通過對二次函數章節內容的整體分析,可以發現,二次函數與一元二次方程、二元一次不等式之間有著密切的聯系.在解答該類型問題中,教師可以滲透函數方程解題思想策略進行解答問題活動.

問題3:設關于x的方程x2-mx+4=0在[-1,1]上有解,求實數m的取值范圍.

分析:令f(x)=x2-mx+4,則問題轉化為拋物線f(x)=x2-mx+4與x數軸在x∈[-1,1]上有交點的問題,將方程的問題轉化為函數圖象問題來解決的可將m看成x的函數.因為x≠0,所以有m=x+4/x,問題轉化為求函數的值域問題.

解:因為x≠0,所以m=x+4/x此函數顯然是奇函數,易證函數m在(0,1]上為減函數.所以當x∈(0,1]時,在x=1函數有最小值,m小=1+4=5,m∈[5,+∞)同理,當x∈[-1,0]時,在x=-1時,函數有最大值,m大=-5,m∈(-∞,-5].

故實數m的取值范圍為(-∞,-5]∪[5,+∞).

問題4:若x、y∈R且(2x+y)13+x13+3x+y

證明:將條件化為(2x+y)13+(2x+y)

令f(t)=t13+t,則有f(2x+y)

又f(t)為奇函數,f(-x)=-f(t)

所以f(2x+y)

所以2x+y

評析:將方程的問題轉化為函數圖象或函數值域問題,可使方程問題迎刃而解.其中利用函數值域問題求解則更為簡捷.

初中的數學教案怎么寫篇4

教學目標:

1、理解切線的判定定理,并學會運用。

2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。

教學重點:切線的判定定理和切線判定的方法。

教學難點:切線判定定理中所闡述的圓的切線的兩大要素:一是經過半徑外端;二是直線垂直于這條半徑;學生開始時掌握不好并極容易忽視一.

教學過程:

一、復習提問

【教師】問題1.怎樣過直線l上一點P作已知直線的垂線?

問題2.直線和圓有幾種位置關系?

問題3.如何判定直線l是⊙O的切線?

啟發:(1)直線l和⊙O的公共點有幾個?

(2)圓心O到直線L的距離與半徑的數量關系如何?

學生答完后,教師強調(2)是判定直線l是⊙O的切線的常用方法,即:定理:圓心O到直線l的距離OA等于圓的半(如圖1,投影顯示)

再啟發:若把距離OA理解為OA⊥l,OA=r;把點A理解為半徑在圓上的端點,請同學們試將上面定理用新的理解改寫成新的命題,此命題就是這節課要學的“切線的判定定理”(板書課題)

二、引入新課內容

【學生】命題:經過半徑的在圓上的端點且垂直于半徑的直線是圓的切線。

證明定理:啟發學生分清命題的題設和結論,寫出已知、求證,分析證明思路,閱讀課本P60。

定理:經過半徑外端并且垂直于這條半徑的直線是圓的切線.

定理的證明:已知:直線l經過半徑OA的外端點A,直線l⊥OA,

求證:直線l是⊙O的切線

證明:略

定理的符號語言:∵直線l⊥OA,直線l經過半徑OA的外端A

∴直線l為⊙O的切線。

是非題:

(1)垂直于圓的半徑的直線一定是這個圓的切線。()

(2)過圓的半徑的外端的直線一定是這個圓的切線。()

三、例題講解

例1、已知:直線AB經過⊙O上的點C,并且OA=OB,CA=CB。

求證:直線AB是⊙O的切線。

引導學生分析:由于AB過⊙O上的點C,所以連結OC,只要證明AB⊥OC即可。

證明:連結OC.

∵OA=OB,CA=CB,

∴AB⊥OC

又∵直線AB經過半徑OC的外端C

∴直線AB是⊙O的切線。

練習1、如圖,已知⊙O的半徑為R,直線AB經過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。

練習2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。

求證:CD是⊙O的切線。

例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。

求證:DE是⊙O的切線。

思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?

四、小結

1.切線的判定定理。

2.判定一條直線是圓的切線的方法:

①定義:直線和圓有唯一公共點。

②數量關系:直線到圓心的距離等于該圓半徑(即d=r)。[

③切線的判定定理:經過半徑外端且與這條半徑垂直的直線是圓的切線。

3.證明一條直線是圓的切線的輔助線和證法規律。

凡是已知公共點(如:直線經過圓上的點;直線和圓有一個公共點;)往往是"連結"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。

五、布置作業:略

《切線的判定》教后體會

本課例《切線的判定》作為市考試院調研課型兼區級研討課,我以“教師為引導,學生為主體”的二期課改的理念出發,通過學生自我活動得到數學結論作為教學重點,呈現學生真實的思維過程為教學宗旨,進行教學設計,目的在于讓學生對知識有一個本質的、有效的理解。本節課切實反映了平時的教學情況,為前來調研和研討的老師提供了真實的樣本。反思本節課,有以下幾個成功與不足之處:

成功之處:

一、教材的二度設計順應了學生的認知規律

這批學生習慣于單一知識點的學習,即得出一個知識點,必須由淺入深反復進行練習,鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結論,導致錯誤,久之便會失去學習數學的興趣和信心。本教時課本上將切線判定定理和性質定理的導出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學生往往會因第一時間得不到及時的鞏固,對定理本質的東西不能很好地理解,在運用時抓不住關鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學生更是因知識點多不知所措,在云里霧里。二度設計將切線的判定方法作為第一課時,切線的性質定理以及兩個定理的綜合運用作為第二課時,這樣的設計即是對前面所學的“直線與圓相切的判定方法”的復習,又是對后面學習綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學呈現了一個循序漸進、溫過知新的過程。從學生的反饋情況判斷,教學效果較為理想。

二、重視學生數感的培養呼應了課改的理念

數感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學習就會輕松。擁有數感,不僅會對數學知識反應靈敏,更會在生活中不知不覺運用數學思維方式解決實際問題。本節課中,兩個例題由教師誘導,學生發現完成的,而三個習題則完全放手讓學生去思考完成,不乏有不會做和做得復雜的學生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學生嘗試總結規律,也是對學生能力的培養,在本節課中,輔助線的規律是由學生得出,事實證明,學生有這樣的理解、概括和表達能力。通過思考得出正確的結論,這個結論往往是刻骨銘心的,長此以往,對數和形的感覺會越來越好。

不足之處:

一、這節課沒有“高潮”,沒有讓學生特別興奮激起求知欲的情境,整個教學過程是在一個平靜、和諧的氛圍中完成的。

二、課的引入太直截了當,脫離不了應試教學的味道。

三、教學風格的定勢使所授知識不能很合理地與生活實際相聯系,一定程度上阻礙了學生解決實際問題能力的發展。

通過本節課的教學,我深刻感悟到在教學實踐中,教師要不斷地充實自己,拓寬知識面,努力突破已有的教學形狀,適應現代教育,適應現代學生。課堂教學中,敢于實驗,舍得放手,盡量培養學生主體意識,問題讓學生自己去揭示,方法讓學生自己去探索,規律讓學生自己去發現,知識讓學生自己去獲得,教師只提供給學生現實情境、充足的思考時間和活動空間,給學生表現自我的機會和成功的體驗,培養學生的自我意識,發揮學生的主體作用,來真正實現《數學課程標準》中提出的“學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者”這一教學理念。

初中的數學教案怎么寫篇5

問題描述:

初中數學教學案例

初中的,隨便那個年級.2000字.案例和反思

1個回答分類:數學20__-11-30

問題解答:

我來補答

2.3平行線的性質

一、教材分析:

本節課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章第3節平行線的性質,它是平行線及直線平行的繼續,是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.

二、教學目標:

知識與技能:掌握平行線的性質,能應用性質解決相關問題.

數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程.

解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創新意識和創新精神.

情感態度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神.

三、教學重、難點:

重點:平行線的性質

難點:“性質1”的探究過程

四、教學方法:

“引導發現法”與“動像探索法”

五、教具、學具:

教具:多媒體課件

學具:三角板、量角器.

六、教學媒體:

大屏幕、實物投影

七、教學過程:

(一)創設情境,設疑激思:

1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.

2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?

學生活動:

思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;

教師:首先肯定學生的回答,然后提出問題.

問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?

引出課題——平行線的性質.

(二)數形結合,探究性質

1.畫圖探究,歸納猜想

任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).

問題一:指出圖中的同位角,并度量這些角,把結果填入下表:

第一組

第二組

第三組

第四組

同位角

∠1

∠5

角的度數

數量關系

學生活動:畫圖——度量——填表——猜想

結論:兩直線平行,同位角相等.

問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?

學生:探究、討論,最后得出結論:仍然成立.

2.教師用《幾何畫板》課件驗證猜想

3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)

(三)引申思考,培養創新

問題三:請判斷內錯角、同旁內角各有什么關系?

學生活動:獨立探究——小組討論——成果展示.

教師活動:引導學生說理.

因為a‖b因為a‖b

所以∠1=∠2所以∠1=∠2

又∠1=∠3又∠1+∠4=180°

所以∠2=∠3所以∠2+∠4=180°

語言敘述:

性質2兩條直線被第三條直線所截,內錯角相等.

(兩直線平行,內錯角相等)

性質3兩條直線被第三條直線所截,同旁內角互補.

(兩直線平行,同旁內角互補)

(四)實際應用,優勢互補

1.(搶答)

(1)如圖,平行線AB、CD被直線AE所截

①若∠1=110°,則∠2=°.理由:.

②若∠1=110°,則∠3=°.理由:.

③若∠1=110°,則∠4=°.理由:.

(2)如圖,由AB‖CD,可得()

(A)∠1=∠2(B)∠2=∠3

(C)∠1=∠4(D)∠3=∠4

(3)如圖,AB‖CD‖EF,

那么∠BAC+∠ACE+∠CEF=()

(A)180°(B)270°(C)360°(D)540°

(4)誰問誰答:如圖,直線a‖b,

如:∠1=54°時,∠2=.

學生提問,并找出回答問題的同學.

2.(討論解答)

如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,

∠B=115°,求梯形另外兩角分別是多少度?

(五)概括存儲(小結)

1.平行線的性質1、2、3;

2.用“運動”的觀點觀察數學問題;

3.用數形結合的方法來解決問題.

(六)作業第69頁2、4、7.

八、教學反思:

①教的轉變:本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發現結論后,利用幾何畫板直觀地、動態地展示同位角的關系,激發學生自覺地探究數學問題,體驗發現的樂趣.

②學的轉變:學生的角色從學會轉變為會學.本節課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.

③課堂氛圍的轉變:整節課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節課學生與學生、學生與教師之間以“對話”、“討論”為出發點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環境中自主選擇獲得成功的方向,判斷發現的價值.

初中的數學教案怎么寫篇6

數學教案:相反數

教學目標

1借助數軸理解相反數的概念,會求一個數的相反數;

2培養學生觀察、猜想、歸納的能力,初步形成數形結合的思想。

重點難點

重點:理解相反數的概念和求一個數的相反數

難點:相反數概念的理解

教學過程

一激情引趣,導入新課

思考:

⑴數軸上與原點距離是2的點有______個,這些點表示的數是_____;與原點的距離是5的點有______個,這些點表示的數是_______

(2)數軸上與原點的距離是0.5的點有_____個,這些點表示的數是______,數軸上與原點的距離是的點有____個,這些點表示的&39;數是_______

一般地,設a是一個正數,數軸上與原點的距離是a的點有___個,它們分別在原點的____,表示____和____,我們說這兩點關于原點對稱。

二合作交流,探究新知。

相反數的概念

觀察:+3.6和-3.6,6和-6,,和-每對數,有什么相同和不同?

歸納:像+3.6和-3.6、6和-6、,和-只有符號不同的兩個數,叫互為相反數。其中一個叫另一個的相反數.

考考你:

(1)-8的相反數是___,7是____的相反數。

(2)a的相反數是_____.-a的相反數是____

(3)怎樣表示一個數的相反數?

在這個數的前面添上“-”,就可表示這個數的相反數。如12的相反數是____,-9的相反數是_____,如果在這個數的前面添上“+”表示____.

(4)有人說一個數的前面帶有“-”號這個數必是負數,你認為對嗎?如果不對,請舉一個反例。

(5)互為相反數在軸上的位置有什么特點?

(6)零的相反數是____.

三應用遷移,拓展提高

1關于相反數的概念

例1判斷下列說明是否正確

(1)-(-3)表示-3的相反數,(2)-2.5的相反數是2.5()

(3)2.7與-3.7是互為相反數()(4)-π是相反數。

2求一個數的相反數

例2分別寫出下列各數的相反數:1.3、-6、-、-(-3)、π-1

3理解-(-a)的含義

例3填空:(1)-(-0.8)=___,(2)–(-)=____,(3)+(+4)=____,(4)–(-11)=_____

四沖刺奧賽,培養智力

例4已經:a+b=0,b+c=0,c+d=0,d+f=0,則a,b,c,d四個數中,哪些數是互為相反數?哪些數相等?

例5若數與互為相反數,求a的相反數。

變式:如果x與互為相反數,且y≠0,則x的倒數是()

A2yBC-2yD

例6有理數a等于它的倒數,有理數b等于它的相反數,則等于()

A0B1C-1D2(第9屆“希望杯”初一第2試)

四課堂練習,鞏固提高

1.-1.6是____的相反數,___的相反數是0.3.

2.下列幾對數中互為相反數的一對為().

A.-(-8)和-(+8)B.-(-8)與-(+8)C.+(-8)與+(+8)D-(-8)與+(-8)

3.5的相反數是____;x+1的相反數是___;的相a-b的反數是____.

4.若a=-13,則-a=_____若-a=7,則a=_____

5.若a是負數,則-a是___數;若-a是負數,則a是______數.

6有如下三個結論:

甲:a、b、c中至少有兩個互為相反數,則a+b+c=0

乙:a、b、c中至少有兩個互為相反數,則

丙:a、b、c中至少有兩個互為相反數,則

其中正確結論的個數是()

A0B1C2D3

五反思小結,鞏固升華

1什么叫互為相反數?

2一對互為相反數有什么特點?

3怎樣表示一個數的相反數?

作業:作業評價,相反數

初中的數學教案怎么寫篇7

三維目標

一、知識與技能

1.能靈活列反比例函數表達式解決一些實際問題.

2.能綜合利用物理杠桿知識、反比例函數的知識解決一些實際問題.

二、過程與方法

1.經歷分析實際問題中變量之間的關系,建立反比例函數模型,進而解決問題.

2.體會數學與現實生活的緊密聯系,增強應用意識,提高運用代數方法解決問題的能力.

三、情感態度與價值觀

1.積極參與交流,并積極發表意見.

2.體驗反比例函數是有效地描述物理世界的重要手段,認識到數學是解決實際問題和進行交流的重要工具.

教學重點

掌握從物理問題中建構反比例函數模型.

教學難點

從實際問題中尋找變量之間的關系,關鍵是充分運用所學知識分析物理問題,建立函數模型,教學時注意分析過程,滲透數形結合的思想.

教具準備

多媒體課件.

教學過程

一、創設問題情境,引入新課

活動1

問屬:在物理學中,有很多量之間的變化是反比例函數的關系,因此,我們可以借助于反比例函數的圖象和性質解決一些物理學中的問題,這也稱為跨學科應用.下面的例子就是其中之一.

在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當電阻R=5歐姆時,電流I=2安培.

(1)求I與R之間的函數關系式;

(2)當電流I=0.5時,求電阻R的值.

設計意圖:

運用反比例函數解決物理學中的一些相關問題,提高各學科相互之間的綜合應用能力.

師生行為:

可由學生獨立思考,領會反比例函數在物理學中的綜合應用.

教師應給“學困生”一點物理學知識的引導.

師:從題目中提供的信息看變量I與R之間的反比例函數關系,可設出其表達式,再由已知條件(I與R的一對對應值)得到字母系數k的值.

生:(1)解:設I=kR∵R=5,I=2,于是

2=k5,所以k=10,∴I=10R.

(2)當I=0.5時,R=10I=100.5=20(歐姆).

師:很好!“給我一個支點,我可以把地球撬動.”這是哪一位科學家的名言?這里蘊涵著什么樣的原理呢?

生:這是古希臘科學家阿基米德的名言.

師:是的.公元前3世紀,古希臘科學家阿基米德發現了著名的“杠桿定律”:若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;

阻力×阻力臂=動力×動力臂(如下圖)

下面我們就來看一例子.

二、講授新課

活動2

小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.

(1)動力F與動力臂l有怎樣的函數關系?當動力臂為1.5米時,撬動石頭至少需要多大的力?

(2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?

設計意圖:

物理學中的很多量之間的變化是反比例函數關系.因此,在這兒又一次借助反比例函數的圖象和性質解決一些物理學中的問題,即跨學科綜合應用.

師生行為:

先由學生根據“杠桿定律”解決上述問題.

教師可引導學生揭示“杠桿乎衡”與“反比例函數”之間的關系.

教師在此活動中應重點關注:

①學生能否主動用“杠桿定律”中杠桿平衡的條件去理解實際問題,從而建立與反比例函數的關系;

②學生能否面對困難,認真思考,尋找解題的途徑;

③學生能否積極主動地參與數學活動,對數學和物理有著濃厚的興趣.

師:“撬動石頭”就意味著達到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.

生:解:(1)根據“杠桿定律”有

Fl=1200×0.5.得F=600l

當l=1.5時,F=6001.5=400.

因此,撬動石頭至少需要400牛頓的力.

(2)若想使動力F不超過題(1)中所用力的一半,即不超過200牛,根據“杠桿定律”有

Fl=600,

l=600F.

當F=400×12=200時,

l=600200=3.

3-1.5=1.5(米)

因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米.

生:也可用不等式來解,如下:

Fl=600,F=600l.

而F≤400×12=200時.

600l≤200

l≥3.

所以l-1.5≥3-1.5=1.5.

即若想用力不超過400牛頓的一半,則動力臂至少要加長1.5米.

生:還可由函數圖象,利用反比例函數的性質求出.

師:很棒!請同學們下去親自畫出圖象完成,現在請同學們思考下列問題:

用反比例函數的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?

生:因為阻力和阻力臂不變,設動力臂為l,動力為F,阻力×阻力臂=k(常數且k>0),所以根據“杠桿定理”得Fl=k,即F=kl(k為常數且k>0)

根據反比例函數的性質,當k>O時,在第一象限F隨l的增大而減小,即動力臂越長越省力.

師:其實反比例函數在實際運用中非常廣泛.例如在解決經濟預算問題中的應用.

活動3

問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調至0.55~0.75元之間,經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當x=0.65元時,y=0.8.(1)求y與x之間的函數關系式;(2)若每度電的成本價0.3元,電價調至0.6元,請你預算一下本年度電力部門的純收人多少?

設計意圖:

在生活中各部門,經常遇到經濟預算等問題,有時關系到因素之間是反比例函數關系,對于此類問題我們往往由題目提供的信息得到變量之間的函數關系式,進而用函數關系式解決一個具體問題.

師生行為:

由學生先獨立思考,然后小組內討論完成.

教師應給予“學困生”以一定的幫助.

生:解:(1)∵y與x-0.4成反比例,

∴設y=kx-0.4(k≠0).

把x=0.65,y=0.8代入y=kx-0.4,得

k0.65-0.4=0.8.

解得k=0.2,

∴y=0.2x-0.4=15x-2

∴y與x之間的函數關系為y=15x-2

(2)根據題意,本年度電力部門的純收入為

(0.6-0.3)(1+y)=0.3(1+15x-2)=0.3(1+10.6×5-2)=0.3×2=0.6(億元)

答:本年度的純收人為0.6億元,

師生共析:

(1)由題目提供的信息知y與(x-0.4)之間是反比例函數關系,把x-0.4看成一個變量,于是可設出表達式,再由題目的條件x=0.65時,y=0.8得出字母系數的值;

(2)純收入=總收入-總成本.

三、鞏固提高

活動4

一定質量的二氧化碳氣體,其體積y(m3)是密度ρ(kg/m3)的反比例函數,請根據下圖中的已知條件求出當密度ρ=1.1kg/m3時二氧化碳氣體的體積V的值.

設計意圖:

進一步體現物理和反比例函數的關系.

師生行為

由學生獨立完成,教師講評.

師:若要求出ρ=1.1kg/m3時,V的值,首先V和ρ的函數關系.

生:V和ρ的反比例函數關系為:V=990ρ.

生:當ρ=1.1kg/m3根據V=990ρ,得

V=990ρ=9901.1=900(m3).

所以當密度ρ=1.1kg/m3時二氧化碳氣體的氣體為900m3.

四、課時小結

活動5

你對本節內容有哪些認識?重點掌握利用函數關系解實際問題,首先列出函數關系式,利用待定系數法求出解析式,再根據解析式解得.

設計意圖:

這種形式的小結,激發了學生的主動參與意識,調動了學生的學習興趣,為每一位學生都創造了在數學學習活動中獲得成功的體驗機會,并為程度不同的學生提供了充分展示自己的機會,尊重學生的個體差異,滿足多樣化的學習需要,從而使小結不流于形式而具有實效性.

師生行為:

學生可分小組活動,在小組內交流收獲,然后由小組代表在全班交流.

教師組織學生小結.

反比例函數與現實生活聯系非常緊密,特別是為討論物理中的一些量之間的關系打下了良好的基礎.用數學模型的解釋物理量之間的關系淺顯易懂,同時不僅要注意跨學科間的綜合,而本學科知識間的整合也尤為重要,例如方程、不等式、函數之間的不可分割的關系.

板書設計

17.2實際問題與反比例函數(三)

1.

2.用反比例函數的知識解釋:在我們使用撬棍時,為什么動力臂越長越省力?

設阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數且k>0).動力和動力臂分別為F,l.則根據杠桿定理,

Fl=k即F=kl(k>0且k為常數).

由此可知F是l的反比例函數,并且當k>0時,F隨l的增大而減?。?/p>

活動與探究

學校準備在校園內修建一個矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數關系式如下圖所示.

(1)綠化帶面積是多少?你能寫出這一函數表達式嗎?

(2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應控制在什么范圍內?

x(m)10203040

y(m)

過程:點A(40,10)在反比例函數圖象上說明點A的橫縱坐標滿足反比例函數表達式,代入可求得反比例函數k的值.

結果:(1)綠化帶面積為10×40=400(m2)

設該反比例函數的表達式為y=kx,

∵圖象經過點A(40,10)把x=40,y=10代入,得10=k40,解得,k=400.

∴函數表達式為y=400x.

(2)把x=10,20,30,40代入表達式中,求得y分別為40,20,403,10.從圖中可以看出。若長不超過40m,則它的寬應大于等于10m。

初中的數學教案怎么寫篇8

因式分解

教材分析

因式分解是進行代數式恒等變形的重要手段之一,因式分解是在學習整式四則運算的基礎上進行的,它不僅僅在多項式的除法、簡便運算中等有直接的應用,也為以后學習分式的約分與通分、解方程(組)及三解函數式的恒等變形帶給了必要的基礎,因此學好因式分解對于代數知識的后續學習,具有相當重要的好處。由于本節課后學習提取公因式法,運用公式法,分組分解法來進行因式分解,務必以理解因式分解的概念為前提,所以本節資料的重點是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對初一學生還比較生疏,理解起來有必須難度,再者本節還沒涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法是教學中的難點。

教學目標

認知目標:(1)理解因式分解的概念和好處

(2)認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。

潛力目標:由學生自行探求解題途徑,培養學生觀察、分析、決定潛力和創新潛力,發展學生智能,深化學生逆向思維潛力和綜合運用潛力。

情感目標:培養學生理解矛盾的對立統一觀點,獨立思考,勇于探索的精神和實事求是的科學態度。

目標制定的思想

1.目標具體化、明確化,從學生實際出發,具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。

2.課堂教學體現潛力立意。

3.寓德育教育于教學之中。

教學方法

1.采用以設疑探究的引課方式,激發學生的求知欲望,提高學生的學習興趣和學習用心性。

2.把因式分解概念及其與整式乘法的關系作為主線,訓練學生思維,以設疑——感知——概括——運用為教學程序,充分遵循學生的認知規律,使學生能順利地掌握重點,突破難點,提高潛力。

3.在課堂教學中,引導學生體會知識的發生發展過程,堅持啟發式,鼓勵學生充分地動腦、動口、動手,用心參與到教學中來,充分體現了學生的主動性原則。

4.在充分尊重教材的前提下,融教材練習、想一想于教學過程中,增設了由淺入深、各不相同卻又緊密相關的訓練題目,為學生順利掌握因式分解概念及其與整式乘法關系創造了有利條件。

5.改變傳統言傳身教的方式,利用計算機輔助教學手段進行教學,增大教學的容量和直觀性,提高教學效率和教學質量。

教學過程安排

一、提出問題,創設情境

問題:看誰算得快?(計算機出示問題)

(1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

(2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000

(3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

二、觀察分析,探究新知

(1)請每題想得最快的同學談思路,得出最佳解題方法(同時計算機出示答案)

(2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個什么式子?右邊又是什么形式?

a2—2ab+b2=(a—b)2②

20x2+60x=20x(x+3)③

(3)類比小學學過的因數分解概念,(例42=2×3×7④)得出因式分解概念。

板書課題:§7。1因式分解

1.因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

三、獨立練習,鞏固新知

練習

1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計算機演示)

①(x+2)(x—2)=x2—4

②x2—4=(x+2)(x—2)

③a2—2ab+b2=(a—b)2

④3a(a+2)=3a2+6a

⑤3a2+6a=3a(a+2)

⑥x2—4+3x=(x—2)(x+2)+3x

⑦k2++2=(k+)2

⑧x—2—1=(x—1+1)(x—1—1)

⑨18a3bc=3a2b·6ac

2.因式分解與整式乘法的關系:

因式分解

結合:a2—b2=========(a+b)(a—b)

整式乘法

說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。

結論:因式分解與整式乘法正好相反。

問題:你能利用因式分解與整式乘法正好相反這一關系,舉出幾個因式分解的例子嗎?

(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

四、例題教學,運用新知:

例:把下列各式分解因式:(計算機演示)

(1)am+bm(2)a2—9(3)a2+2ab+b2

(4)2ab—a2—b2(5)8a3+b6

練習2:填空:(計算機演示)

(1)∵2xy=2x2y—6xy2

∴2x2y—6xy2=2xy

(2)∵xy=2x2y—6xy2

∴2x2y—6xy2=xy

(3)∵2x=2x2y—6xy2

∴2x2y—6xy2=2x

五、強化訓練,掌握新知:

練習3:把下列各式分解因式:(計算機演示)

(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

(4)x2+—x(5)x2—0。01(6)a3—1

(讓學生上來板演)

六、變式訓練,擴展新知(計算機演示)

1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=

2.機動題:(填空)x2—8x+m=(x—4),且m=

七、整理知識,構成結構(即課堂小結)

1.因式分解的概念因式分解是整式中的一種恒等變形

2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的&39;兩種思維方式,因此,因式分解的思維過程實際也是整式乘法的逆向思維的過程。

3.利用2中關系,能夠從整式乘法探求因式分解的結果。

4.教學中滲透對立統一,以不變應萬變的辯證唯物主義的思想方法。

八、布置作業

1.作業本(一)中§7。1節

2.選做題:①x2+x—m=(x+3),且m=。

②x2—3x+k=(x—5),且k=。

評價與反饋

1.透過由學生自己得出因式分解概念及其與整式乘法的關系的結論,了解學生觀察、分析問題的潛力和逆向思維潛力及創新潛力。發現問題,及時反饋。

2.透過例題及練習,了解學生對概念的理解程度和實際運用潛力,最大限度地讓學生暴露問題和認知誤差,及時發現和彌補教與學中的遺漏和不足,從而及時調控教與學。

3.透過機動題,了解學生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創造潛力,及時評價,及時矯正。

4.透過課后作業,了解學生對知識的掌握狀況與綜合運用知識及靈活運用知識的潛力,教師及時批閱,及時反饋講評,同時對個別學生面批作業,能夠更及時、更準確地了解學生思維發展的狀況,矯正的針對性更強。

5.透過課堂小結,了解學生對概念的熟悉程度和歸納概括潛力、語言表達潛力、知識運用潛力,教師恰當地給予引導和啟迪。

6.課堂上反饋信息除了語言和練習外,學生神情也是信息來源,而且這些信息更真實。學生神態、表情、坐姿都反映出學生對教師教學資料的理解和理解程度。教師應用心捕捉學生在知識掌握、思維發展、潛力培養等各方面全方位的反饋信息,隨時評價,及時矯正,隨時調節教學。

初中的數學教案怎么寫篇9

【說教學目標】

1、使學生理解邊邊邊公理的內容,能運用邊邊邊公理證明三角形全等,為證明線段相等或角相等創造條件;

2、繼續培養學生畫圖、實驗,發現新知識的能力。

【說重點難點】

1、難點:讓學生掌握邊邊邊公理的內容和運用公理的自覺性;

2、重點:靈活運用SSS判定兩個三角形是否全等。

【說教學過程】

一、創設問題情境,引入新課

請問同學,老師在黑板上畫得兩個三角形,△ABC與△全等嗎?你是如何判定的。

(同學們各抒己見,如:動手用紙剪下一個三角形,剪下疊到另一個三角形上,是否完全重合;測量兩個三角形的所有邊與角,觀察是否有三條邊對應相等,三個角對應相等。)

上一節課我們已經探討了兩個三角形只滿足一個或兩個邊、角對應相等條件時,兩個三角形不一定全

等。滿足三個條件時,兩個三角形是否全等呢?現在,我們就一起來探討研究。

二、實踐探索,總結規律

1、問題1:如果兩個三角形的三條邊分別相等,那么這兩個三角形會全等嗎?做一做:給你三條線段,分別為,你能畫出這個三角形嗎?

先請幾位同學說說畫圖思路后,教師指導,同學們動手畫,教師演示并敘述書寫出步驟。

步驟:

(1)畫一線段AB使它的`長度等于c(4.8cm)。

(2)以點A為圓心,以線段b(3cm)的長為半徑畫圓??;以點B為圓心,以線段a(4cm)的長為半徑畫圓??;兩弧交于點C.

(3)連結AC、BC.

△ABC即為所求

把你畫的三角形與其他同學的圖形疊合在一起,你們會發現什么?

換三條線段,再試試看,是否有同樣的結論

請你結合畫圖、對比,說說你發現了什么?

同學們各抒己見,教師總結:給定三條線段,如果它們能組成三角形,那么所畫的三角形都是全等的。這樣我們就得到判定三角形全等的一種簡便的方法:如果兩個三角形的三條邊分別對應相等,那么這兩個三角形全等。簡寫為邊邊邊,或簡記為(S.S.S.)。

2、問題2:你能用相似三角形的判定法解釋這個(SSS)三角形全等的判定法嗎?

(我們已經知道,三條邊對應成比例的兩個三角形相似,而相似比為1時,三條邊就分別對應相等了,這兩個三角形不但形狀相同,而且大小都一樣,即為全等三角形。)

3、問題3、你用這個SSS三角形全等的判定法解釋三角形具有穩定性嗎?

(只要三角形三邊的長度確定了,這個三角形的形狀和大小就完全確定了)

4、范例:

例1如圖19.2.2,四邊形ABCD中,AD=BC,AB=DC,試說明△ABC≌△CDA.解:已知AD=BC,AB=DC,又因為AC是公共邊,由(S.S.S.)全等判定法,可知△ABC≌△CDA

5、練習:

6、試一試:已知一個三角形的三個內角分別為、、,你能畫出這個三角形嗎?把你畫的三角形與同伴畫的進行比較,你發現了什么?

(所畫出的三角形都是相似的,但大小不一定相同)。

三個對應角相等的兩個三角形不一定全等。

三、加強練習,鞏固知識

1、如圖,,,△ABC≌△DCB全等嗎?為什么?

2、如圖,AD是△ABC的中線,。與相等嗎?請說明理由。

四、小結

本節課探討出可用(SSS)來判定兩個三角形全等,并能靈活運用(SSS)來判定三角形全等。三個角對應相等的兩個三角不一定會全等。

初中的數學教案怎么寫篇10

學習方式:

從具體問題情景中探索體會合并同類項的含義。

逆用乘法分配律探求合并同類項法則。

通過多角度的練習辨別同類項,加深對概念的理解,培養思維的嚴密性。

教學目標:

1、在具體情境中理解、掌握同類項的定義;

2、在具體情境中,讓學生了解合并同類項的法則,能進行同類項的合并。

3、能運用合并同類項化簡多項式,并根據所給字母的值,求多項式的值。

4、通過“合并同類項”的學習,繼續培養學生的運算能力。

教學的重點、難點和疑點

1、重點:同類項的概念,合并同類項的法則。

2、難點:理解同類項的概念中所含字母相同,且相同字母的次數也相同的含義。

3、疑點:同類項與同次項的區別。

教具準備

投影儀(電腦)、自制膠片

教學過程:

提出問題

創設情景(出示投影)

如圖的長方形由兩個小長方形組成,求這個長方形的面積。

①當學生列出代數式8n+5n時,可引導學生是否還有其他表示方法,啟發學生得出:

(8+5)n

②接著引導學生寫出等式:

8n+5n=(8+5)n=13n

啟發學生觀察上式是怎樣的一種變化;

它類似于我們前面學過的什么運算律

為什么8n與5n可以合并成一項(組織學生充分

討論,從而引出同類項的概念)

③同類項的概念

舉出一些具有代表性的同類項的實際例子。

如:-7a2b,2a2b;

8n,5n;

3x2,-x2

引導學生觀察上面給出的幾組代數式具有什么共同特點:

①所含的字母相同

②相同字母的指數也相同

教師順勢提出同類項的概念

強調同類項必須滿足以上兩條

④結合長方形面積問題,引出合并同類項的概念:把同類項合并成一項就叫做合并同類項。學生觀察,思考

討論交流

(反例鞏固)出示問題;

x與y,

a2b與ab2,

-3pa與3pa

abc與ac,

a2和a3是不是同類項

(給學生留下足夠的思考時間,引導學生緊緊結合同類項的兩個條件進行判斷)

其中:a2b與ab2可讓學生充分討論交流。

(教師強調“必須是相同字母的指數相同”這句話的含義,從而分清同類項與同次項的區別)

(引導學生題后反思,同類項與它們的系數無關,只與所含的字母及字母的指數有關)。

緊扣定義

加以判別

例1根據乘法分配律合并同類項

(1)-xy2+3xy2(2)7a+3a2+2a-a2+3

(教師強調乘法分配律的逆運用)

(學生板書完畢后,教師引導學生觀察合并的前后發生了什么變化?其中系數怎樣變化的?字母及字母的指數又怎樣變化了)

由此引導學生總結出合并同類項的法則:

在合并同類項時,只把同類項的系數相加減,字母和字母的指數不變。

學生思考

解答(找二生板演其他學生獨立寫出過程)

總結法則

可根據情況適當復習關于乘法分配律的有關知識

通過上面的實例,學生對怎樣合并同類項的問題已有較深刻的印象,但還不能用完整的數學語言將其敘述出來,教師要積極引導,讓學生動腦思考。

應用法則

例2,合并同類項

①3a+2b-5a-b

②-4ab+8-2b2-9ab-8

給學生留有足夠的獨立的思考時間

找二生到黑板上板演。

學生板演后,教師組織學生交流評價,根據出現的問題,作點拔,強調。

強調:合并同類項的過程實質上就是同類項的系數相加減的過程,在系數相加時,不要遺漏符號,字母和字母的指數都不變。

教師不給任何提示

學生在練習本上完成,然后同桌同學互相交換評判。

(二生到黑板上板演)

變式

應用補充例題

例3,求代數式的值

①2x2-5x+x2+4x-3x2-2其中x=

②-3x2+5x-0.5x2+x-1其中x=2

出示例題后,教師不要給任何提示,先讓學生獨立思考。

部分學生會直接把x=代入式中去計算,出現這一情況后,教師可積極引導。

問:還有沒有其他方法?學生仔細觀察后不難發現先合并化簡后,再代入求值,此時教師可提出讓學生對比分析哪種方法簡便。從而強調,先化簡再求值會使運算變得簡便。

獨立完成

分析比較

尋求簡便方法

隨堂

練習1、合并同類項

①3y+y=__________

②3b-3a2+1+a3-2b=___________

③2y+6y+2xy-5=_____________

2、求代數式的值

8p2-7q+6q-7p2-7

其中p=3q=3

練習交流合作

教師可根據情況適當補充

小結 今天你學會了哪些知識?獲得了哪些方法,

有什么體會?自己總結

作業 教材課后習題

初中的數學教案怎么寫篇11

教學目標

1.理解二元一次方程及二元一次方程的解的概念;

2.學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;

3.學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;

4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。

教學重點、難點

重點:二元一次方程的意義及二元一次方程的解的概念.

難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程.

教學過程

1.情景導入:

新聞鏈接:桐鄉70歲以上老人可領取生活補助,得到方程:80a+150b=902880.2.

2.新課教學:

引導學生觀察方程80a+150b=902880與一元一次方程有異同?

得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程.

3.合作學習:

給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?

4.課堂練習:

1)已知:5xm-2yn=4是二元一次方程,則m+n=;

2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_

5.課堂總結:

(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);

(2)二元一次方程解的不定性和相關性;

(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式.

作業布置

本章的課后的方程式鞏固提高練習。

初中的數學教案怎么寫篇12

一、例題的意圖分析

例1(P83例2)讓學生養成利用勾股定理的逆定理解決實際問題的意識。

例2(補充)培養學生利用方程思想解決問題,進一步養成利用勾股定理的逆定理解決實際問題的意識。

二、課堂引入

創設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法。

三、例習題分析

例1(P83例2)

分析:⑴了解方位角,及方位名詞;

⑵依題意畫出圖形;

⑶依題意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;

⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR-∠QPS=45°。

小結:讓學生養成“已知三邊求角,利用勾股定理的逆定理”的意識。

例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀。

分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

⑵設未知數列方程,求出三角形的三邊長5、12、13;

⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形。

解略。

四、課堂練習

1。小強在操場上向東走80m后,又走了60m,再走100m回到原地。小強在操場上向東走了80m后,又走60m的方向是。

2。如圖,在操場上豎直立著一根長為2米的測影竿,早晨測得它的影長為4米,中午測得它的影長為1米,則A、B、C三點能否構成直角三角形?為什么?

3。如圖,在我國沿海有一艘不明國籍的輪船進入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個基地前去攔截,六分鐘后同時到達C地將其攔截。已知甲巡邏艇每小時航行120海里,乙巡邏艇每小時航行50海里,航向為北偏西40°,問:甲巡邏艇的航向

初中的數學教案怎么寫篇13

教學目標

1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;

2.通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;

3.通過加法運算練習,培養學生的運算能力。

教學建議

(一)重點、難點分析

本節課的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略加號與括號的代數和的計算.

由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,這是因為有理數加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.

(二)知識結構

(三)教法建議

1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.

2.關于“去括號法則”,只要學生了解,并不要求追究所以然.

3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如

-3-4表示-3、-4兩數的代數和,

-4+3表示-4、+3兩數的代數和,

3+4表示3和+4的代數和

等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。

4.先把正數與負數分別相加,可以使運算簡便。

5.在交換加數的位置時,要連同前面的符號一起交換。如

12-5+7應變成12+7-5,而不能變成12-7+5。

教學設計示例

有理數的加減混合運算(一)

一、素質教育目標

(一)知識教學點

1.了解:代數和的概念.

2.理解:有理數加減法可以互相轉化.

3.應用:會進行加減混合運算.

(二)能力訓練點

培養學生的口頭表達能力及計算的準確能力.

(三)德育滲透點

通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想.

(四)美育滲透點

學習了本節課就知道一切加減法運算都可以統一成加法運算.體現了數學的統一美.

二、學法引導

1.教學方法:采用嘗試指導法,體現學生主體地位,每一環節,設置一定題目進行鞏固練

習,步步為營,分散難點,解決關鍵問題.

2.學生寫法:練習→尋找簡單的一般性的方法→練習鞏固.

三、重點、難點、疑點及解決辦法

1.重點:把加減混合運算算式理解為加法算式.

2.難點:把省略括號和的形式直接按有理數加法進行計算.

四、課時安排

1課時

五、教具學具準備

投影儀或電腦、自制膠片.

六、師生互動活動設計

教師提出問題學生練習討論,總結歸納加減混合運算的一般步驟,教師出示練習題,學生練習反饋.

七、教學步驟

(一)創設情境,復習引入

師:前面我們學習了有理數的加法和減法,同學們學得都很好!請同學們看以下題目:-9+(+6);(-11)-7.

師:(1)讀出這兩個算式.

(2)“+、-”讀作什么?是哪種符號?

“+、-”又讀作什么?是什么符號?

學生活動:口答教師提出的問題.

師繼續提問:(1)這兩個題目運算結果是多少?

(2)(-11)-7這題你根據什么運算法則計算的?

學生活動:口答以上兩題(教師訂正).

師小結:減法往往通過轉化成加法后來運算.

【教法說明】為了進行有理數的加減混合運算,必須先對有理數加法,特別是有理數減法的題目進行復習,為進一步學習加減混合運算奠定基礎.這里特別指出“+、-”有時表示性質符號,有時是運算符號,為在混合運算時省略加號、括號時做必要的準備工作.

師:把兩個算式-9+(+6)與(-11)-7之間加上減號就成了一個題目,這個題目中既有加法又有減法,就是我們今天學習的有理數的加減混合運算.(板書課題2.7有理數的加減混合運算(1))

教學說明:由復習的題目巧妙地填“-”號,就變成了今天將學的加減混合運算內容,使學生更形象、更深刻地明白了有理數加減混合運算題目組成.

(二)探索新知,講授新課

1.講評(-9)+(-6)-(-11)-7.

(1)省略括號和的形式

師:看到這個題你想怎樣做?

學生活動:自己在練習本上計算.

教師針對學生所做的方法區別優劣.

【教法說明】題目出示后,教師不急于自己講評,而是讓學生嘗試,給了學生一個展示自己的機會,這時,有的學生可能是按從左到右的順序運算,有的同學可能是先把減法都轉化成了加法,然后按加法的計算法則再計算??這樣在不同的方法中,學生自己就會尋找到簡單的、一般性的方法.

師:我們對此類題目經常采用先把減法轉化為加法,這時就成了-9,+6,+11,-7的和,加號通??梢允÷裕ㄌ栆部梢允÷?,即:

原式=(-9)+(+6)+(+11)+(-7)

=-9+6+11-7.

提出問題:雖然加號、括號省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以這個算式可以讀成??

學生活動:先自己練習嘗試用兩種讀法讀,口答(教師糾正).

【教法說明】教師根據學生所做的方法,及時指出最具代表性的方法來給學生指明方向,在把算式寫成省略括號代數和的形式后,通過讓學生練習兩種讀法,可以加深對此算式的理解,以此來訓練學生的觀察能力及口頭表達能力.

鞏固練習:(出示投影1)

1.把下列算式寫成省略括號和的形式,并把結果用兩種讀法讀出來.

(1)(+9)-(+10)+(-2)-(-8)+3;

(2)+()-()-().

2.判斷

式子-7+1-5-9的正確讀法是().

A.負7、正1、負5、負9;

B.減7、加1、減5、減9;

C.負7、加1、負5、減9;

D.負7、加1、減5、減9;

學生活動:1題兩個學生板演,兩個學生用兩種讀法讀出結果,其他同學自行演練,然后同桌讀出互相糾正,2題搶答.

【教法說明】這兩題旨意在鞏固怎樣把加減混合運算題目都轉化成加法運算寫成代數和的形式,這里特別注意了代數和形式的兩種讀法.

2.用加法運算律計算出結果

師:既然算式能看成幾個數的和,我們可以運用加法的運算律進行計算,通常同號兩數放在一起分別相加.

-9+6+11-7

=-9-7+6+11.

學生活動:按教師要求口答并讀出結果.

鞏固練習:(出示投影2)

填空:

1.-4+7-4=-______________-_______________+_______________

2.+6+9-15+3=_____________+_____________+_____________-_____________

3.-9-3+2-4=____________9____________3____________4____________2

4.____________________________________

學生活動:討論后回答.

【教法說明】學生運用加法交換律時,很可能產生“-9+7+11-6”這樣的錯誤,教師先讓學生自己去做,然后糾正,又做一組鞏固練習,使學生牢固掌握運用加法運算律把同號數放在一起時,一定要連同前面的符號一起交換這一知識點.

師:-9-7+6+11怎樣計算?

學生活動:口答

[板書]

-9-7+6+11

=-16+17

=1

鞏固練習:(出示投影3)

1.計算(1)-1+2-3-4+5;

(2).

2.做完前面兩個題目計算:(1)(+9)-(+10)+(-2)-(-8)+3;

(2).

學生活動:四個同學板演,其他同學在練習本上做.

【教法說明】針對一道例題分成三部分,每一部分都有一組相應的鞏固練習,這樣每一步學生都掌握得較牢固,這時教師一定要總結有理數加減混合運算的方法,使分散的知識有相對的集中.

師小結:有理數加減法混合運算的題目的步驟為:

1.減法轉化成加法;

2.省略加號括號;

3.運用加法交換律使同號兩數分別相加;

4.按有理數加法法則計算.

(三)反饋練習

(出示投影4)

計算:(1)12-(-18)+(-7)-15;

(2).

學生活動:可采用同桌互相測驗的方法,以達到糾正錯誤的目的.

【教法說明】這兩個題目是本節課的重點.采用測驗的方式來達到及時反饋.

(四)歸納小結

師:1.怎樣做加減混合運算題目?

2.省略括號和的形式的兩種讀法?

學生活動:口答.

【教法說明】小結不是教師單純的總結,而是讓學生參與回答,在學生思考回答的過程中將本節的重點知識納入知識系統.

八、隨堂練習

1.把下列各式寫成省略括號的和的形式

(1)(-5)+(+7)-(-3)-(+1);

(2)10+(-8)-(+18)-(-5)+(+6).

2.說出式子-3+5-6+1的兩種讀法.

3.計算

(1)0-10-(-8)+(-2);

(2)-4.5+1.8-6.5+3-4;

(3).

九、布置作業

(一)必做題:1.計算:(1)-8+12-16-23;

(2);

(3)-40-28-(-19)+(-24)-(-32);

(4)-2.7+(-3.2)-(1.8)-2.2;

(二)選做題:(1)當時,,,哪個最大,哪個最???

(2)當時,,,哪個最大,哪個最?。?/p>

十、板書設計

初中的數學教案怎么寫篇14

一、 教材結構與內容簡析

在分析新數學課程標準的基礎上確定了本節課在教材中的地位和作用以及確定本節課的教學目標、重點和難點。首先來看一下本節課在教材中的地位和作用。

有理數的加減法在整個知識系統中的地位和作用是很重要的。它是整個初中代數的一個基礎,它直接關系到有理數運算、實數運算、代數式運算、解方程、、研究函數等內容的學習。初中階段要培養學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現實模型,把它轉化成數學問題,從而培養學生的數學意識,增強學生對數學的理解和解決實際問題的能力。 就第一章而言,有理數的加減法是本章的一個重點。在有理數范圍內進行的各種運算:加、減法可以統一成為加法,乘法、除法和乘方可以統一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數運算,學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符號和絕對值),關鍵是這一節的學習。

數學思想方法分析:作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節課在教學中力圖向學生滲透的德育目標是:(1)滲透由特殊到一般的辯證唯物主義思想 (2)培養學生嚴謹的思維品質。

二、 教學目標

根據新課程標準和上述對教材結構與內容分析,考慮到學生已有的認知結構及心理特征 ,制定如下教學目標:

1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;

2. 通過學習理解加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;

3.通過加法運算練習,培養學生的運算能力。

三、教學建議

(一)重點、難點分析

本小節的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略符號與括號的代數和的計算.

由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,就可靈活運用加法運算律,簡化計算.

(二)教法建議

1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.

2.關于“去括號法則”,只要學生了解,并不要求追究所以然.

3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如:-3-4表示-3、-4兩數的代數和,-4+3表示-4、+3兩數的代數和,3+4表示3和+4的代數和等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。

4.先把正數與負數分別相加,可以使運算簡便。

5.在交換加數的位置時,要連同前面的符號一起交換。如:12-5+7 應變成 12+7-5,而不能變成12-7+5。

備注:教學過程我主要說第一小節---去括號

(三)教學過程:根據教材的結構特點,緊緊抓住新舊知識的內在聯系,運用類比、聯想、轉化的思想,突破難點.

初中的數學教案怎么寫篇15

一、課題

略。

二、教學目標

1.結合具體例子,體會數學與我們的成長密切相關。

2.通過對小學數學知識的歸納,感受到數學學習促進了我們的成長。

3.嘗試從不同角度,運用多種方式(觀察、獨立思考、自主探索、合作交流)有效解決問題。

4.通過對數學問題的自主探索,進一步體會數學學習促進了我們成長,發展了我們的思維。

三、教學重點和難點

重點

難點

1.結合具體例子,體會數學與我們的成長密切相關。

2.通過對小學數學知識的歸納,感受到數學學習促進了我們的成長。

結合具體例子,體會數學與我們的成長密切相關。

四、教學手段

現代課堂教學手段

教學準備

教師準備

錄音機、投影儀、剪刀、長方形紙片。

學生準備

預習、剪刀、長方形紙片

五、教學方法

啟發式教學

六、教學過程設計

一、導入

教師活動

學生活動

展示圖片并播放錄音。

宇宙之大(海王星、流星雨),粒子之微(鈹原子、氯化鈉晶體結構),火箭之速(火箭),化工之巧(陶瓷),地球之變(隕石坑),生物之謎(青蛙),日用之繁(杯子、表),大千世界,天上人間,無處不有數學的貢獻,讓我們共同走進數學世界,去領略一下數學的風采,體會數學的魅力。

觀察圖片,聽錄音。

二、板書課題。

三、導學

教師活動

學生活動

1.現在讓我們進入時空的隧道,回憶我們的成長歷程:

出生——學前——小學(板書),我們每一天都在接觸數學并不斷學習它,相信嗎?不妨大家從不同階段來舉出一些我們身邊或親身經歷的例子,試一試。(積極鼓勵)

(師、生共同討論交流,從具體事例中分析并找出數學信息。)

2.進入小學,我們正式開始學習數學,回憶一下,在小學階段我們學習的主要數學知識有哪些?

3.指定若干名學生口答,師生共同系統歸納:

數與式:認識、計算、方程、解應用題;

圖形:圖形的認識、圖形的畫法、圖形的計算;

統計知識。

4.數學知識的學習,不僅開闊了我們的視野,而且改變了我們的思維方式,使我們變得更加聰明了。發揮一下我們的聰明才智,嘗試解決下面的2個問題:

(1)投影或小黑板展示下列問題:

①計算并觀察下列三組算式:

②已知25×25=625,則24×26=(不要計算)

③你能舉出一個類似的例子嗎?

④更一般地,若a×a=m,則(a+1)(a-1)=。

(老師點評、表揚)

(2)投影或小黑板展示教材第13頁第4題。

通過剛才的解題,可以看出同學們都非常聰明,其實不僅我們每個人離不開數學,而且整個人類、整個社會也離不開數學,同學們課后可以閱讀一下第1節第2點《人類離不開數學》,體會數學對促進人類社會發展的&39;重大作用。

布置作業:

(1)談一談你對數學的興趣、學習數學的方法以及學習中存在的困難等;

(2)習題1.1第2、4題。

1.回憶、交流、積極大膽發言。

2.回憶、交流。

3.觀察、計算、思考、探索。

4.學生取出剪刀和長方形紙片,小組合作,動手嘗試解決。

學生1

學生2

學生拼圖(略)

七、練習設計

課堂基礎練習

1、下列圖形中,陰影部分的面積相等的是.

答案:A與B;C與D

2、三個連續奇數的和是21,它們的積為

答案:315

3、計算:7+27+377+4777

答案:5188

課后延伸練習

1、猜謎語(各打數學中常用字)

千人分在北上下;②1人立在口上邊

答案:①乘;②倍

2、在與伙伴玩“24點”游戲中,使數1,5,5,5通過運算得24?

答案:[5-(1÷5)]×5

3、只允許添兩個“一”、一個“十”和一個括號,不改變數字順序,把1,2,3,4,5,6,7,8,9這九個數字連成結果為100的算式:

123456789=100

答案:123-(45+67-89)=100

4、把長方形剪去一個角,它可能是幾邊形?

答案:三邊形,四邊形,五邊形.

5、有一個正方形池塘如圖1-1-2,在它的四個角上有四棵大樹,現在為了擴大池塘,要把池塘面積擴大一倍,但是,這四棵樹不便搬動,也不能使它淹在水里,而且擴大后的池塘還是正方形,這該怎么辦呢?

答案:

能力提高訓練

18

19

答案:7個,邊長從大到

小依次為11、8、

7、5、3

1、一個長方形,長19cm,寬18cm,如果把這個長方形分割成若干個邊長為整數的小正方形,那么這些小正方形最少有多少個?如何分割?

2、在操場上,小華遇到小馮,交談中順便問道:“你們班有多少學生?”小馮說:“如果我們班上的學生像孫悟空那樣一個能變兩個,然后再來這么多學生的,再加上班上學生的,最后連你也算過去,就該有100個了.”那么小馮班上有多少學生?

答案:36

八、板書設計

(一)知識回顧(四)例題解析(六)課堂小結

(二)觀察發現例1、例2

(三)解方程(五)課堂練習練習設計

九、教學后記

初中的數學教案怎么寫篇16

一、素質教育目標

(一)知識教學點

1.理解有理數乘方的意義.

2.掌握有理數乘方的運算.

(二)能力訓練點

1.培養學生觀察、分析、比較、歸納、概括的能力.

2.滲透轉化思想.

(三)德育滲透點:培養學生勤思、認真和勇于探索的精神.

(四)美育滲透點

把記成,顯示了乘方符號的簡潔美.

二、學法引導

1.教學方法:引導探索法,嘗試指導,充分體現學生主體地位.

2.學生學法:探索的性質→練習鞏固

三、重點、難點、疑點及解決辦法

1.重點:運算.

2.難點:運算的符號法則.

3.疑點:①乘方和冪的區別.

②與的區別.

四、課時安排

1課時

五、教具學具準備

投影儀、自制膠片.

六、師生互動活動設計

教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質,教師出示鞏固性練習,學生多種形式完成.

七、教學步驟

(一)創設情境,導入 新課

師:在小學我們已經學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?

生:可以記作,讀作的四次方.

師:呢?

生:可以記作,讀作的五次方.

師:(為正整數)呢?

生:可以記作,讀作的次方.

師:很好!把個相乘,記作,既簡單又明確.

【教法說明】教師給學生創設問題情境,鼓勵學生積極參與,大大調動了學生學習的積極性.同時,使學生認識到數學的發展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學生通過類推得到的.

師:在小學對底數,我們只能取正數.進入中學以后我們學習了有理數,那么還可取哪些數呢?請舉例說明.

生:還可取負數和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.

非常好!對于中的,不僅可以取正數,還可以取0和負數,也就是說可以取任意有理數,這就是我們今天研究的課題:(板書).

【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據初一學生的認知水平,分層逐步說明可以取正數,可以取零,可以取負數,最后總結出可以取任意有理數.

(二)探索新知,講授新課

1.求個相同因數的積的運算,叫做乘方.

乘方的結果叫做冪,相同的因數叫做底數,相同的因數的個數叫做指數.一般地,在中,取任意有理數,取正整數.

注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.

鞏固練習(出示投影1)

(1)在中,底數是__________,指數是___________,讀作__________或讀作___________;

(2)在中,-2是__________,4是__________,讀作__________或讀作__________;

(3)在中,底數是_________,指數是__________,讀作__________;

(4)5,底數是___________,指數是_____________.

【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區別表示底數是-2,指數是4的冪;而表示底數是2,指數是4的冪的相反數.為后面的計算做鋪墊.通過第(4)小題指出一個數可以看作這個數本身的一次方,如5就是,指數1通常省略不寫.

師:到目前為止,對有理數業說,我們已經學過幾種運算?分別是什么?其運算結果叫什么?

學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.

生:到目前為止,已經學習過五種運算,它們是:

運算:加、減、乘、除、乘方;

運算結果:和、差、積、商、冪;

教師對學生的回答給予評價并鼓勵.

【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養學生歸納、總結的能力.

師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.

學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.

【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數的乘法運算來進行有理數乘方的運算.向學生滲透轉化的思想.

2.練習:(出示投影2)

計算:1.(1)2, (2), (3), (4).

2.(1),,,.

(2)-2,,.

3.(1)0, (2), (3), (4).

學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.

師:請同學們觀察、分析、比較這三組題中,每組題中底數、指數和冪之間有什么聯系?

先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.

生:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數,零的任何次冪都是零.

師:請同學們繼續觀察與,與中,底數、指數和冪之間有何聯系?你能得出什么結論呢?

學生活動:學生積極思考,同桌之間、前后桌之間互相討論.

生:互為相反數的兩個數的奇次冪仍互為相反數,偶次冪相等.

師:請同學思考一個問題,任何一個數的偶次冪是什么數?

生:任何一個數的偶次冪是非負數.

師:你能把上述結論用數學符號表示嗎?

生:(1)當時,(為正整數);

(2)當

(3)當時,(為正整數);

(4)(為正整數);

(為正整數);

(為正整數,為有理數).

【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創造發揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.

72973 主站蜘蛛池模板: 湖州织里童装_女童男童中大童装_款式多尺码全_织里儿童网【官网】-嘉兴嘉乐网络科技有限公司 | 青岛侦探_青岛侦探事务所_青岛劝退小三_青岛婚外情取证-青岛王军侦探事务所 | 小程序开发公司_APP开发多少钱_软件开发定制_微信小程序制作_客户销售管理软件-济南小溪畅流网络科技有限公司 | 微型驱动系统解决方案-深圳市兆威机电股份有限公司 | VOC检测仪-甲醛检测仪-气体报警器-气体检测仪厂家-深恒安科技有限公司 | 帽子厂家_帽子工厂_帽子定做_义乌帽厂_帽厂_制帽厂 | 砂石生产线_石料生产线设备_制砂生产线设备价格_生产厂家-河南中誉鼎力智能装备有限公司 | 真空冷冻干燥机_国产冻干机_冷冻干燥机_北京四环冻干 | 合肥网络推广_合肥SEO网站优化-安徽沃龙First | 十二星座查询(性格特点分析、星座运势解读) - 玄米星座网 | 烟台条码打印机_烟台条码扫描器_烟台碳带_烟台数据采集终端_烟台斑马打印机-金鹏电子-金鹏电子 | 数控走心机-走心机价格-双主轴走心机-宝宇百科 | 船用烟火信号弹-CCS防汛救生圈-船用救生抛绳器(海威救生设备) | 韦伯电梯有限公司| 长沙发电机-湖南发电机-柴油发电机供应厂家-长沙明邦智能科技 | 恒温油槽-恒温水槽-低温恒温槽厂家-宁波科麦仪器有限公司 | 砂尘试验箱_淋雨试验房_冰水冲击试验箱_IPX9K淋雨试验箱_广州岳信试验设备有限公司 | 肉嫩度仪-凝胶测试仪-国产质构仪-气味分析仪-上海保圣实业发展有限公司|总部 | 派克防爆伺服电机品牌|国产防爆伺服电机|高低温伺服电机|杭州摩森机电科技有限公司 | 闭端端子|弹簧螺式接线头|防水接线头|插线式接线头|端子台|电源线扣+护线套|印刷电路板型端子台|金笔电子代理商-上海拓胜电气有限公司 | 电竞馆加盟,沈阳网吧加盟费用选择嘉棋电竞_售后服务一体化 | PU树脂_水性聚氨酯树脂_聚氨酯固化剂_聚氨酯树脂厂家_宝景化工 | 北京西风东韵品牌与包装设计公司,创造视觉销售力! | 骨灰存放架|骨灰盒寄存架|骨灰架厂家|智慧殡葬|公墓陵园管理系统|网上祭奠|告别厅智能化-厦门慈愿科技 | 美侍宠物-专注宠物狗及宠物猫训练|喂养|医疗|繁育|品种|价格 | 维泰克Veertek-锂电池微短路检测_锂电池腐蚀检测_锂电池漏液检测 | 铣床|万能铣床|立式铣床|数控铣床|山东滕州万友机床有限公司 | 户外健身路径_小区健身器材_室外健身器材厂家_价格-浩然体育 | 办公室装修_上海办公室设计装修_时尚办公新主张-后街印象 | 广州中央空调回收,二手中央空调回收,旧空调回收,制冷设备回收,冷气机组回收公司-广州益夫制冷设备回收公司 | 蒸汽热收缩机_蒸汽发生器_塑封机_包膜机_封切收缩机_热收缩包装机_真空机_全自动打包机_捆扎机_封箱机-东莞市中堡智能科技有限公司 | 脱硝喷枪-氨水喷枪-尿素喷枪-河北思凯淋环保科技有限公司 | DDoS安全防护官网-领先的DDoS安全防护服务商 | 半自动预灌装机,卡式瓶灌装机,注射器灌装机,给药器灌装机,大输液灌装机,西林瓶灌装机-长沙一星制药机械有限公司 | 大型果蔬切片机-水果冬瓜削皮机-洗菜机切菜机-肇庆市凤翔餐饮设备有限公司 | 世界箱包品牌十大排名,女包小众轻奢品牌推荐200元左右,男包十大奢侈品牌排行榜双肩,学生拉杆箱什么品牌好质量好 - Gouwu3.com | 沈飞防静电地板__机房地板-深圳市沈飞防静电设备有限公司 | 隧道窑炉,隧道窑炉厂家-山东艾瑶国际贸易| 茅茅虫AI论文写作助手-免费AIGC论文查重_写毕业论文降重 | 工业洗衣机_工业洗涤设备_上海力净工业洗衣机厂家-洗涤设备首页 bkzzy在职研究生网 - 在职研究生招生信息咨询平台 | 山东艾德实业有限公司 |