小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 > 優秀教案 >

初一數學教案

時間: 新華 優秀教案

初一數學教案篇1

本節課是人教版七年級上冊第三章第一節的內容,主要的教學目標是使學生了解什么是方程,什么是一元一次方程;體會字母表示數的好處,體會從算式到方程是數學的一大進步;會將實際問題抽象為數學問題,通過找相等關系列方程解決問題。方程的概念在小學階段已經出現過,如何讓學生在已有的知識基礎上更高一個層次認識方程、運用方程呢?我的教學策略是:第一步,創造一個問題情境引發學生的認知失衡。第二步,通過一個生活實例讓學生進行思考、分析、總結歸納出新知識。第三步,介紹新知識的文化背景,對學生進行數學文化的滲透,同時為學習有關概念進行鋪墊。第四步,通過講練結合的方式突破本節課的難點——找相等關系列方程。現對本節課的教學過程進行反思:

一、成功之處

1、對學生進行了數學文化的滲透。方程的概念在小學已經出現過,初一再次學習方程應該讓學生們更高一個層次認識方程,因此通過介紹字母表示未知數的文化背景,在文化層面上讓學生進一步理解數學、喜愛數學,展示數學的文化魅力。

2、分層次設置練習題,逐步突破難點。初一學生在解應用題時,主要存在三個方面的困難:(1)抓不住相等關系;(2)找出相等關系后不會列方程;(3)習慣用算術解法,對用代數方法分析應用題不適應。其中,第一個方面是主要的,解決了它,另兩個方面就都好解決了。為此我在“練一練”的環節里設置了A與B兩組練習,A組練習的題目已經幫學生設定了未知數,重點訓練學生找相等關系、列方程;B組練習的題目要求學生獨立設未知數列方程,要求學生能突破用算術解法解應用題的思維定勢,學會通過閱讀題目、理解題意、進而找出等量關系、列出方程解決問題的方法。

3、恰當使用了多媒體教學設備。在課件制作上考慮到初一學生的年齡特點,使用了許多卡通動畫效果,有效地吸引學生的注意力。多媒體設備的使用不僅大大地提高了課堂容量,而且還可以展示學生的作品(課堂練習的解答),及時糾正學生書面表達的錯誤,規范解題格式,改掉小學生重結果輕過程,解題格式不規范,解題步驟混亂等不良現象。

4、營造了寬松、和諧的課堂氛圍。本節課的教學從始至終,教師都是面帶笑容地與學生進行互動,讓學生充分發表自己的看法,及時給學生鼓勵與肯定,消除學生由小學升入初中因環境變化而引起的心里障礙,激活學生的思維,保持學生參與課堂學習的積極性。

二、不足之處

1、教學容量偏大,以致沒有充分的時間引導學生對如何找相等關系進行總結歸納。本節課在引出一元一次方程的概念以后,設計了一組判斷題對一元一次方程的概念進行辨析。課后我想到這節課的難點是如何找相等關系列方程,應該淡化概念,如果刪去這道練習題就可以讓學生有更充分的時間去總結歸納找相等關系的方法,從而突破本節課的難點。

2、對學生情況不夠熟悉。因為本節課是初一學生入學后一個月進行的,所以我對許多學生還叫不出名字,雖然課堂上可以用手指著某某同學回答問題,但是課后仔細想來,做好中小學數學教學的銜接工作不僅僅是教學內容設計上的銜接,而應該是多方位的銜接,其中就包括教師應盡快了解、熟悉學生,這樣可以幫助消除學生剛升入初中的許多不適應。

三、對中小學數學教學銜接的思考

(1)加強新舊知識的聯系

初中的許多數學知識都是小學知識的延續與提高,因此要搞好中小學數學教學真正意義上的銜接,每一位教師都應該熟悉并掌握《數學課程標準》的教材體系,而且我們還要認識到處理好中小學數學教學的銜接問題并非只是小學與初一老師的事情,其實整個中學階段有很多的知識點都是在小學的知識基礎上進行拓展和延伸的,如初二學習的“軸對稱”及“等腰三角形”的知識在小學都出現過。

(2)滲透數學文化的教育,保持學生學習數學的興趣

從小學到初中,教學內容更抽象,更加符號化,有一些學生在努力學習數學的同時,逐漸地厭煩、冷漠數學,這主要是應試教育環境下的數學教學,對數學知識的積累、數學技巧的訓練等工具性價值的過分關注,使數學學習越來越枯燥無味,所以我們教師應該讓學生一進入中學的課堂,就展現給學生一個多姿多彩的數學世界,在課堂教學中時時體現數學作為一種人類文化的魅力,保持住學生對數學的學習興趣。

初一數學教案篇2

教學目標:

1、了解證明的必要性,知道推理要有依據;熟悉綜合法證明的格式,能說出證明的步驟.

2、能用符號語言寫出一個命題的題設和結論.

3、通過對真命題的分析,加強推理能力的訓練,培養學生邏輯思維能力.

教學重點:證明的步驟與格式.

教學難點:將文字語言轉化為幾何符號語言.

教學過程:

一、復習提問

1、命題“兩直線平行,內錯角相等”的題設和結論各是什么?

2、根據題設,應畫出什么樣的圖形?(答:兩條平行線a、b被第三條直線c所截)

3、結論的內容在圖中如何表示?(答:在圖中標出一對內錯角,并用符號表示)

二、例題分析

例1、 證明:兩直線平行,內錯角相等.

已知:a∥b,c是截線.

求證:∠1=∠2.

分析:要證∠1=∠2,

只要證∠3=∠2即可,因為

∠3與∠1是對頂角,根據平行線的性質,

易得出∠3=∠2.

證明:∵a∥b(已知),

∴∠3=∠2(兩直線平行,同位角相等).

∵∠1=∠3(對頂角相等),

∴∠1=∠2(等量代換).

例2、 證明:鄰補角的平分線互相垂直.

已知:如圖,∠AOB+∠BOC=180°,

OE平分∠AOB,OF平分∠BOC.

求證:OE⊥OF.

分析:要證明OE⊥OF,只要證明∠EOF=90°,即∠1+∠2=90°即可.

三、課堂練習:

1、平行于同一條直線的兩條直線平行.

2、兩條平行線被第三條直線所截,同位角的平分線互相平行.

四、歸納小結

主要通過學生回憶本節課所學內容,從知識、技能、數學思想方法等方面加以歸納,有利于學生掌握、運用知識.然后見投影儀.

五、布置作業

課本P143 5、(2),7.

六、課后思考:

1、垂直于同一條直線的兩條直線的位置關系怎樣?

2、兩條平行線被第三條直線所截,內錯角的平分線位置關系怎樣?

3、兩條平行線被第三條直線所截,同旁內角的平分線位置關系怎樣?

初一數學教案篇3

教學目標

1.理解有理數加法的意義,掌握有理數加法法則中的符號法則和絕對值運算法則;

2.能根據有理數加法法則熟練地進行有理數加法運算,弄清有理數加法與非負數加法的區別;

3.三個或三個以上有理數相加時,能正確應用加法交換律和結合律簡化運算過程;

4.通過有理數加法法則及運算律在加法運算中的運用,培養學生的運算能力;

5.本節課通過行程問題說明法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數學知識來源于生活,并應用于生活。

教學建議

(一)重點、難點分析

本節教學的重點是依據法則熟練進行運算。難點是法則的理解。

(1)加法法則本身是一種規定,教材通過行程問題讓學生了解法則的合理性。

(2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。

(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數與0相加,仍得這個數。

(二)知識結構

(三)教法建議

1.對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數、相反數、絕對值等知識。

2.法則是規定的,而教材開始部分的行程問題是為了說明加法法則的合理性。

3.應強調加法交換律“a+b=b+a”中字母a、b的任意性。

4.計算三個或三個以上的加法算式,應建議學生養成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。

5.可以給出一些類似“兩數之和必大于任何一個加數”的判斷題,以明確由于負數參與加法運算,一些算術加法中的正確結論在有理數加法運算中未必也成立。

6.在探討導出法則的行程問題時,可以嘗試發揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數運算法則。

教學設計示例

(第一課時)

教學目的

1.使學生理解有理數加法的意義,初步掌握有理數加法法則,并能準確地進行運算.

2.通過運算,培養學生的運算能力.

教學重點與難點

重點:熟練應用法則進行加法運算.

難點:法則的理解.

教學過程

(一)復習提問

1.有理數是怎么分類的?

2.有理數的絕對值是怎么定義的?一個有理數的絕對值的幾何意義是什么?

3.有理數大小比較是怎么規定的?下列各組數中,哪一個較大?利用數軸說明?

-3與-2;|3|與|-3|;|-3|與0;

-2與|+1|;-|+4|與|-3|.

(二)引入新課

在小學算術中學過了加、減、乘、除四則運算,這些運算是在正有理數和零的范圍內的運算.引入負數之后,這些運算法則將是怎樣的呢?我們先來學運算.

(三)進行新課 (板書課題)

例1 如圖所示,某人從原點0出發,如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?

兩次行走后距原點0為8米,應該用加法.

為區別向東還是向西走,這里規定向東走為正,向西走為負.這兩數相加有以下三種情況:

1.同號兩數相加

(1)某人向東走5米,再向東走3米,兩次一共走了多少米?

這是求兩次行走的路程的和.

5+3=8

用數軸表示如圖

從數軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.

可見,正數加正數,其和仍是正數,和的絕對值等于這兩個加數的絕對值的和.

(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?

顯然,兩次一共向西走了8米

(-5)+(-3)=-8

用數軸表示如圖

從數軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.

可見,負數加負數,其和仍是負數,和的絕對值也是等于兩個加數的絕對值的和.

總之,同號兩數相加,取相同的符號,并把絕對值相加.

例如,(-4)+(-5),……同號兩數相加

(-4)+(-5)=-( ),…取相同的符號

4+5=9……把絕對值相加

∴ (-4)+(-5)=-9.

口答練習:

(1)舉例說明算式7+9的實際意義?

(2)(-20)+(-13)=?

(3)

2.異號兩數相加

(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?

由數軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.

5+(-5)=0

可知,互為相反數的兩個數相加,和為零.

(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?

由數軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.

就是 5+(-3)=2.

(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?

由數軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.

就是 3+(-5)=-2.

請同學們想一想,異號兩數相加的法則是怎么規定的?強調和的符號是如何確定的?和的絕對值如何確定?

最后歸納

絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0.

例如(-8)+5……絕對值不相等的異號兩數相加

8>5

(-8)+5=-( )……取絕對值較大的加數符號

8-5=3 ……用較大的絕對值減去較小的絕對值

∴(-8)+5=-3.

口答練習

用算式表示:溫度由-4℃上升7℃,達到什么溫度.

(-4)+7=3(℃)

3.一個數和零相加

(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?

顯然,5+0=5.結果向東走了5米.

(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?

容易得出:(-5)+0=-5.結果向東走了-5米,即向西走了5米.

請同學們把(1)、(2)畫出圖來

由(1),(2)得出:一個數同0相加,仍得這個數.

總結有理數加法的三個法則.學生看書,引導他們看有理數加法運算的三種情況.

有理數加法運算的三種情況:

特例:兩個互為相反數相加;

(3)一個數和零相加.

每種運算的法則強調:(1)確定和的符號;(2)確定和的絕對值的方法.

(四)例題分析

例1 計算(-3)+(-9).

分析:這是兩個負數相加,屬于同號兩數相加,和的符號與加數相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調相同、相加的特征).

解:(-3)+(-9)=-12.

例2

分析:這是異號兩數相加,和的符號與絕對值較大的加數的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值..(強調“兩個較大”“一個較小”)

解:

解題時,先確定和的符號,后計算和的絕對值.

(五)鞏固練習

1.計算(口答)

(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

2.計算

(1)5+(-22); (2)(-1.3)+(-8)

(3)(-0.9)+1.5; (4)2.7+(-3.5)

探究活動

題目 (1)在1,2,3,4四個數的前面添加正號或負號,使它們的和為0;

(2)在1,2,3,…,11,12十二個數的前面添加正號或負號,使它們的和為零;

(3)在1,2,3,4,…,99,100一百個數的前面添加正號或負號,使它們的和為0;

(4) 在解決這個問題的過程中,你能總結出一些什么數學規律?

參考答案 我們不妨不妨以第二問為例探討,比如,在12,11,10,5這四個數的前面添加負號,則這12個數的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.

現在我們將各數的符號加以調整,考慮到將一個正數變號,其和就要減少這個正數的兩倍,因此可得到兩個(明顯的)解答:

(1)得+1變為-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①

(2)將(+6-5)變為-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②

又如,在11,10,8,7,5這五個數的前面添加負號,得

12-11-10-9-8-7+6-5+4+3+2+1=-4,

我們就有多種調整的方法,如將-8與+6變號,有

12-11-10+9+8-7-6-5+4+3+2+1=0. ③

經過幾次試驗,我們發現了規律:欲使十二個數的和為零,其中正數的和的絕對值與負數的和的絕對值必須相等.但

1+2+3+4+5+6+7+8+9+10+11+12=78

因此我們應該使各正數的和的絕對值與各負數的和的絕對值均為

為了簡便起見,我們把①式所表示的一個解答記為(12,11,10,5,1),那么②,③兩式所表示的解答就分別記為(12,11,10,6)與(11,10,7,6,5).

同時我們還發現:如果(12,11,10,5,1)是一個解答,那么(9,8,7,6,4,3,2)也必定是一個解答.同樣,對應于②,③兩式,還分別有另兩個解答:(9,8,7,5,4,3,2,1)與(12,9,8,4,3,2,1).這個規律我們不妨叫做對偶律.

此外我們還可發現,由于的三個數12,11,10其和33<39,因此必須再增加一個數6,才有解答(12,11,10,6),也就是說:添加負號的數至少要有四個;反過來,根據對偶律得:添加負號的數最多不超過八個.

掌握了上述幾條規律,我們就能夠在很短的時間內得到許多解答.最后讓我們告訴你,第(2)問的解答個數并非無數多,其總數是124個.

初一數學教案篇4

學習目標

1.通過動手觀察、操作、推斷、交流等數學活動,進一步發展空間觀念毛

2.在具體情境中了解鄰補角、對頂角, 能找出圖形中的一個角的鄰補角和對頂角

重點、難點

重點:鄰補角、對頂角的概念,對頂角性質與應用.

難點:理解對頂角相等的性質的探索.

教學過程

一、復習導入

教師在輕松歡快的音樂中演示第五章章首圖片為主體的課件.

學生欣賞圖片,閱讀其中的文字.

師生共同總結:我們生活的世界中,蘊涵著大量的相交線和平行線. 本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質, 研究平行線的性質和平行的判定以及圖形的平移問題.

二、自學指導

觀察剪刀剪布的過程,引入兩條相交直線所成的角

握緊把手時,隨著兩個把手之間的角逐漸變小,剪刀刃之間的角邊相應變小. 如果改變用力方向,隨著兩個把手之間的角逐漸變大,剪刀刃之間的角也相應變大.

三、 問題導學

認識鄰補角和對頂角,探索對頂角性質

(1).學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配共能組成幾對角? 各對角的位置關系如何?根據不同的位置怎么將它們分類?

學生思考并在小組內交流,全班交流.

∠AOC和∠BOC有一條公共邊OC,它們的另一邊互為反向延長線.

∠AOC和∠BOD有公共的頂點O,而是∠AOC的兩邊分別是∠BOD兩邊的反向延長線.

( 2).學生用量角器分別量一量各個角的度數,以發現各類角的度數有什么關系,學生得出有"相鄰"關系的兩角互補,"對頂"關系的兩角相等.

(3).概括形成鄰補角、對頂角概念.

有一條公共邊,而且另一邊互為反向延長線的兩個角叫做鄰補角.

如果兩個角有一個公共頂點, 而且一個角的兩邊分別是另一角兩邊的反向延長線,那么這兩個角叫對頂角.

四、典題訓練

1.例:如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數.

2.:判斷下列圖中是否存在對頂角.

小結

自我檢測

一、判斷題:

1.如果兩個角有公共頂點和一條公共邊,而且這兩角互為補角, 那么它們互為鄰補角. ( )

2.兩條直線相交,如果它們所成的鄰補角相等,那么一對對頂角就互補. ( )

二、填空題:

1.如圖1,直線AB、CD、EF相交于點O,∠BOE的對頂角是_______,∠COF 的鄰補角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,則∠BOC=_________.

(1) (2)

2.如圖2,直線AB、CD相交于點O,∠COE=90°,∠AOC=30°,∠FOB=90°, 則∠EOF=________.

三、解答題:

1.如圖,直線AB、CD相交于點O.

(1)若∠AOC+∠BOD=100°,求各角的度數.

(2)若∠BOC比∠AOC的2倍多33°,求各角的度數.毛

2.兩條直線相交,如果它們所成的一對對頂角互補, 那么它的所成的各角的度數是多少?

初一數學教案篇5

教學目的

1.理解用一元一次方程解工程問題的本質規律;通過對“工程問題”的分析進一步培養學生用代數方法解決實際問題的能力。

2.理解和掌握基本的數學知識、技能、數學思想方法,獲得廣泛的數學活動經驗,提高解決問題的能力。

重點、難點

重點:工程中的工作量、工作的效率和工作時間的關系。

難點:把全部工作量看作“1”。

教學過程

一、復習提問

1.一件工作,如果甲單獨做2小時完成,那么甲獨做I小時完成全部工作量的多少?

2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成全部工作量的多少?

3.工作量、工作效率、工作時間之間有怎樣的關系?

二、新授

閱讀教科書第18頁中的問題6。

分析:1.這是一個關于工程問題的實際問題,在這個問題中,已經知道了什么? 已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。

2.怎樣用列方程解決這個問題?本題中的等量關系是什么?

[等量關系是:師傅做的工作量+徒弟做的工作量=1)

[先要求出師傅與徒弟各完成的工作量是多少?]

兩人的工效已知,因此要先求他們各自所做的天數,因此,設師傅做了x天,則徒弟做(x+1)天,根據等量關系列方程。 解方程得 x=2

師傅完成的工作量為= ,徒弟完成的工作量為=

所以他們兩人完成的工作量相同,因此每人各得225元。

三、鞏固練習

一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現由甲獨做10小時;請你提出問題,并加以解答。

例如 (1)剩下的乙獨做要幾小時完成?

(2)剩下的由甲、乙合作,還需多少小時完成?

(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?

四、小結

1.本節課主要分析了工作問題中工作量、工作效率和工作時間之間的關系,即 工作量=工作效率×工作時間

工作效率= 工作時間=

2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。

五、作業

教科書習題6.3.3第1、2題。

初一數學教案篇6

我上的“三角形”這節課,研究三角形按邊的特征認識三角形并進行分類。整堂課的設計體現以教師為主導,學生為主體,使學生在教師的引導下動手操作,積極思考,與同學之間交流,展示自我的過程,是讓學生用內心創造與體驗學習數學。

教學三角形這節課,探究新知階段我認為處理得比較好。我主要采用“實驗操作法”。為使學生學會有目的、有規律地探究,采用“引——扶——放”教學手段,讓學生在師生互動,生生互動,合作探究中體驗感悟三角形圍成的過程,并感受到學會用科學的數學思維進行有規律地探究,能圍出盡可能多的不同種類的三角形,大大激發了學生的學習興趣,培養了學生思維的有序性和探究能力。再通過小組討論、交流、歸納出三角形按邊分類及三角形按邊特征命名,真正讓學生動眼、動手、動口、動腦參與獲取知識的過程,學生從中感受、體驗到一個探索者的成功樂趣,從而增強學習動力與信心。

最后讓學生在猜想中探究、生成。本節課中學生用三根小棒圍出了盡可能多的不同種類的三角形,為防止知識的負遷移,我提出了猜想的話題:任意三根小棒都能圍成三角形嗎?然后讓學生帶著對問題結論的不同猜想和對正確結果的渴望,再次實驗操作,得出不是任意三條邊都能圍成三角形的,催發學生生成了對三角形三邊長度之間關系正確而又具有個性的認識,使學生意識到三角形中還藏著好多知識,正等待我們去探究。

存在的問題:交流的時間不充分,忽略未成功的學生及弱勢群體學生按邊分時,交流的時間少,特別是三種三角形之間的關系沒有上學生先說一說,教師再作補充完善。

通過這節課的公開教學,加深了我對“教學有法,教無定法,貴在得法”這句話的理解:作為教師,應傾心于每一節課,每一篇教案,每一個教學環節…...

初一數學教案篇7

●教學內容

七年級上冊課本11----12頁1.2.4絕對值

●教學目標

1.知識與能力目標:借助于數軸,初步理解絕對值的概念,能求一個數的絕對值,初步學會求絕對值等于某一個正數的有理數。

2.過程與方法目標:通過從數形兩個側面理解絕對值的意義,初步了解數形結合的思想方法。通過應用絕對值解決實際問題,體會絕對值的意義。

3.情感態度與價值觀:通過應用絕對值解決實際問題,培養學生濃厚的學習興趣,使學生能積極參與數學學習活動,對數學有好奇心與求知欲。

●教學重點與難點

教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。

教學難點:絕對值定義的得出、意義的理解,以及求絕對值等于某一個正數的有理數。

●教學準備

多媒體課件

●教學過程

一、創設問題情境

1、兩只小狗從同一點O出發,在一條筆直的街上跑,一只向右跑10米到達A點,另一只向左跑10米到達B點。若規定向右為正,則A處記作-__________,B處記作__________。

以O為原點,取適當的單位長度畫數軸,并標出A、B的位置。

(用生動有趣的引例吸引學生,即復習了數軸和相反數,又為下文作準備)。

2、這兩只小狗在跑的過程中,有沒有共同的地方?在數軸上的A、B兩點又有什么特征?(從形和數兩個角度去感受絕對值)。

3、在數軸上找到-5和5的點,它們到原點的距離分別是多少?表示-和的點呢?

小結:在實際生活中,有時存在這樣的情況,無需考慮數的正負性質,比如:在計算小狗所跑的路程中,與小狗跑的方向無關,這時所走的路程只需用正數,這樣就必須引進一個新的概念-———絕對值。

二、建立數學模型

1、絕對值的概念

(借助于數軸這一工具,師生共同討論,引出絕對值的概念)

絕對值的幾何定義:一個數在數軸上對應的點到原點的距離叫做這個數的絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。

注意:①與原點的關系 ②是個距離的概念

2..練習1:請學生舉一個生活中的實際例子,說明解決有的問題只需考慮的數絕對值。[溫度上升了5度,用 +5表示的話,那么下降了5度,就用-5 表示,如果我們不去考慮它的意義(即:上升還是下降),只考慮數量(即:溫度)的變化,我們可以說:溫度的變化都是5度。銀行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我們不去考慮它的意義(即:存入還是取出),只考慮數量的多少,我們可以說:金額都是100元。]

(通過應用絕對值解決實際問題,體會絕對值的意義與作用,感受數學在生活中的價值。)

三、應用深化知識

1、例題求解

例1、求下列各數的絕對值

-1.6 , , 0, -10, +10

2、根據上述題目,讓學生歸納總結絕對值的特點。(教師進行補充小結)

特點:1、一個正數的絕對值是它本身

2、一個負數的絕對值是它的相反數

3、零的絕對值是零

4、互為相反數的兩個數的絕對值相等

3.出示題目

(1) -3的符號是_______,絕對值是______;

(2) +3的符號是_______,絕對值是______;

(3) -6.5的符號是_______,絕對值是______;

(4) +6.5的符號是_______,絕對值是______;

學生口答。

師:上面我們看到任何一個有理數都是由符號,和絕對值兩個部分構成。現在老師有一個問題想問問大家,在上一節課中我們規定只有符號不同的兩個數稱互為相反數。那么大家在今天學習了絕對值以后,你能給相反數一個新的解釋嗎?

5、練習3:回答下列問題

①一個數的絕對值是它本身,這個數是什么數?

②一個數的絕對值是它的相反數,這個數是什么數?

③一個數的絕對值一定是正數嗎?

④一個數的絕對值不可能是負數,對嗎?

⑤絕對值是同一個正數的數有兩個,它們互為相反數,這句話對嗎?

(由學生口答完成,進一步鞏固絕對值的概念)

6、例2.求絕對值等于4的數

(讓學生考慮這樣的數有幾個,是怎樣得出這個結果的呢?對后一個問題由學生去討論,啟發學生從數與形兩個方面考慮,培養學生的發散思維能力。)

分析:

①從數字上分析

∵|+4|=4, |-4|=4 ∴絕對值等于4的數是+4和-4畫一個數軸(如下圖)

②從幾何意義上分析,畫一個數軸(如下圖)

因為數軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M

所以絕對值等于4的數是+4和-4.

6、練習:做書上12頁課內練習1、2兩題。

四、歸納小結

1、本節課我們學習了什么知識?

2、你覺得本節課有什么收獲?

3、由學生自行總結在自主探究,合作學習中的體會。

五、課后作業

1、讓學生去尋找一些生活中只考慮絕對值的實際例子。

2、課本15頁的作業題。

初一數學教案篇8

教學目標:

1、 知道有理數加法的意義和法則

2、 會用有理數加法法則正確地進行有理數的加法運算

3、 經歷有理數加法法則的探究過程,體會分類和歸納的數學思想方法

教學重點: 有理數加法則的探索及運用

教學難點: 異號兩數相加的法則的理解及運用

教學過程:

一、 創設情境

展示足球賽圖片,你知道足球賽中“凈勝球”是怎么回事嗎?

(學生口答,教師介紹凈勝球的算法:只要把各場比賽的結果相加就可以得到,由此揭示課題。)

二、 探求新知

1、甲、乙兩隊進行足球比賽,

(1)、如果上半場贏了3球,下半場又贏了2球,那么全場累計凈勝幾球?

(2)、如果上半場贏了3球,下半場輸了2球,那么全場累計凈勝幾球?

足球比賽中贏球個數與輸球個數是一對相反意義的量.若規定贏球為正,輸球為負,例如贏3球記為“+3”,輸2球記為“-2”,你能把上述結果用加法算式表示出來嗎?

(學生根據生活經驗得到兩種情況下的凈勝球數,從而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教師板書。)

(3)、除了上面所說的“贏了再贏”,“先贏后輸”,你還能說出其它可能的幾種情況并用加算式表示嗎?

(引導學生聯系生活實際思考輸贏球其它可能的情況,盡可能完整地說出所有的可能,由此感受兩個有理數相加的各種情況,讓學生自由發言,相互補充,教師板書算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教師還可根據學生回答情況補充:上半場贏了3球,下半場輸了3球;上半場打平,下半場也打平,最后的凈勝球情況,由學生說出結果并列出算式:(+3)+(-3)= 0,0+0=0 )

2、你能舉出一些運用有理數加法的實際例子嗎?

(學生列舉實例并根據具體意義寫出算式)

3、學生活動:

(1)、把筆尖放在數軸原點處,先向正方向移動3個單位長度,再向正方向移動2個單位長度,這時筆尖的位置表示什么數?你能用數軸和加法算式表示以上過程及結果嗎?

(2)、把筆尖放在數軸原點個單位長度,再向負方向移動2個單位長度,這時筆尖的位置表示什么數?你能用數軸和加法算式表示以上過程及結果嗎?

(3)、你還能再做一些類似的活動,并寫出相應的算式嗎?

(教師示范活動(1)的操作過程,學生列出算式并完成(2)(3),得到一組算式,教師板書。這一活動目的是讓學生從“形”的角度,直觀感受有理數的加法法則。)

4、 歸納法則:

觀察上述算式,和小學學過的加法運算有什么區別?你能歸納出有理數的加法法則嗎?

(由前面所學的內容學生已經知道:有理數由符號和絕對值兩部分組成,所以兩個有理數的相加時,確定和時也需要分別確定和的符號和絕對值,教師可引導學生對照情境中輸贏球的情況分別探索和的符號和絕對值如何確定,學生相互交流,自由發言,不斷完善。通過探索有理數加法法則的過程,學生體會分類和歸納的數學思想方法。)

5、 例題精講:

例1 、計算

(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)

(4)、 5+(-5); (5)、 0+(-2); (學生口答計算結果,并對照法則說說是如何確定和的符號和絕對值的,教師板書解題過程,讓學生體會“運算有據”。)

解:(1)、(-5)+(-3)

= -(5+3) (同號兩數相加,取相同的符號,并把絕對值相減)

= -8

(2)、(-8)+(+2)

= -(8-2) (異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。)

= -6

(4)、5+(-5);

=0 (互為相反的兩數之和為0)

6、 訓練鞏固:

1、 p33練一練2

(學生利用撲克完成本題,通過游戲進一步鞏固有理數加法法則,體現“做中學”的新課程理念。)

7、 延伸拓展:

(1)、一個數是2的相反數,另一個數的絕對值是5,求這兩個數的和

(2)、在小學里,計算兩個數相加時,它們的和總是小于任何一個加數,學了有理數的加法法則后,你認為這個結論還成立嗎?請你舉例說明

(這兩題都具有一定的挑戰性,第(1)題可讓學生進一步體會分類的數學思想方法。第(2)題具有開放性,可讓學生在探索的過程中進一步理解法則。)

三、課堂小結:

學生回顧本節課所學內容,談談自己對有理數加法法則的理解及如何進行有理數加法運算。

四、布置作業:

1、 課本p41 第1題

2、 列舉一些生活中運用有理數加法的實際例子,并相互交流。

初一數學教案篇9

教學目的

1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數學模型的作用。

2.使學生會列一元一次方程解決一些簡單的應用題。

3.會判斷一個數是不是某個方程的解。

重點、難點

1.重點:會列一元一次方程解決一些簡單的應用題。

2.難點:弄清題意,找出“相等關系”。

教學過程

一、復習提問

一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?

解:設小紅能買到工本筆記本,那么根據題意,得

1.2x=6

因為1.2×5=6,所以小紅能買到5本筆記本。

二、新授:

問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛? (讓學生思考后,回答,教師再作講評)

算術法:(328-64)÷44=264÷44=6(輛)

列方程:設需要租用x輛客車,可得。

44x+64=328 (1)

解這個方程,就能得到所求的結果。

問:你會解這個方程嗎?試試看?

問題2:在課外活動中,張老師發現同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”

通過分析,列出方程:13+x=(45+x)

問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發?

把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,

因為左邊=右邊,所以x=3就是這個方程的解。

這種通過試驗的方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。

問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發現了什么問題?

同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?

三、鞏固練習

教科書第3頁練習1、2。

四、小結。本節課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

五、作業 。教科書第3頁,習題6.1第1、3題。

初一數學教案篇10

教學目的

讓學生通過獨立思考,積極探索,從而發現;初步體會數形結合思想的作用。

重點、難點

1.重點:通過分析圖形問題中的數量關系,建立方程解決問題。

2.難點:找出“等量關系”列出方程。

教學過程

一、復習提問

1.列一元一次方程解應用題的步驟是什么?

2.長方形的周長公式、面積公式。

二、新授

問題3.用一根長60厘米的鐵絲圍成一個長方形。

(1)使長方形的寬是長的專,求這個長方形的長和寬。

(2)使長方形的寬比長少4厘米,求這個長方形的面積。

(3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?

不是每道應用題都是直接設元,要認真分析題意,找出能表示整個題意的等量關系,再根據這個等量關系,確定如何設未知數。

(3)當長方形的長為18厘米,寬為12厘米時

長方形的面積=18×12=216(平方厘米)

當長方形的長為17厘米,寬為13厘米時

長方形的面積=221(平方厘米)

∴(1)中的長方形面積比(2)中的長方形面積小。

問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發現了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積呢?并加以驗證。

實際上,如果兩個正數的和不變,當這兩個數相等時,它們的積,通過以后的學習,我們就會知道其中的道理。

三、鞏固練習

教科書第14頁練習1、2。

第l題等量關系是:圓柱的體積=長方體的體積。

第2題等量關系是:玻璃杯中的水的體積十瓶內剩下的水的體積=原來整瓶水的體積。

四、小結

運用方程解決問題的關鍵是抓住等量關系,有些等量關系是隱藏的,不明顯,要聯系實際,積極探索,找出等量關系。

五、作業

教科書第16頁,習題6.3.1第1、2、3。

初一數學教案篇11

教學目標:

1.通過對“零”的意義的探討,進一步理解正數和負數的概念,能利用正負數正確表示具有相反意義的量(規定了向指定方向變化的量);

2.進一步體驗正負數在生產生活中的廣泛應用,提高解決實際問題的能力.

教學重點:深化對正負數概念的理解.

教學難點:正確理解和表示向指定方向變化的量.

教與學互動設計:

(一)知識回顧和理解

通過對上節課的學習,我們知道在實際生產和生活中存在著具有兩種不同意義的量,為了區分它們,我們用正數和負數來分別表示它們.

[問題1]:“零”為什么既不是正數也不是負數呢?

學生思考討論,借助舉例說明.

參考例子:用正數、負數和零表示零上溫度、零下溫度和零度.

思考 “0”在實際問題中有什么意義?

歸納 “0”在實際問題中不僅表示“沒有”的意思,它還具有一定的實際意義.

如:水位不升不降時的水位變化,記作:0 m.

[問題2]:引入負數后,數按照“具有兩種相反意義的量”來分,可以分成幾類?分別是什么?

(二)深化理解,解決問題

[問題3]:(課本P3例題)

【例1】(1)一個月內,小明體重增加2 kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;

【例2】(2)某年,下列國家的商品進出口總額比上年的變化情況是:

美國減少6.4%,德國增長1.3%,

法國減少2.4%,英國減少3.5%,

意大利增長0.2%,中國增長7.5%.

寫出這些國家這一年商品進出口總額的增長率.

解后語:在同一個問題中,分別用正數和負數表示的量具有相反的意義.寫出體重的增長值和進出口的增長率就暗示著用正數來表示增長的量.類似的還有水位上升、收入上漲等等.我們要在解決問題時注意體會這些指明方向的量,正確地用正負數表示它們.

鞏固練習

1.通過例題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.

2.讓學生再舉出一些常見的具有相反意義的量.

3.1990~1995年下列國家年平均森林面積(單位:千米2)的變化情況是:

中國減少866,印度增長72,

韓國減少130,新西蘭增長434,

泰國減少3247, 孟加拉減少88.

(1)用正數和負數表示這六國1990~1995年平均森林面積的增長量;

(2)如何表示森林面積減少量,所得結果與增長量有什么關系?

(3)哪個國家森林面積減少最多?

(4)通過對這些數據的分析,你想到了什么?

閱讀與思考

(課本P6)用正數和負數表示加工允許誤差.

問題:1.直徑為30.032 mm和直徑為29.97 mm的零件是否合格?

2.你知道還有哪些事件可以用正負數表示允許誤差嗎?請舉例.

(三)應用遷移,鞏固提高

1.甲冷庫的溫度是-12℃,乙冷庫的溫度比甲冷庫低5 ℃,則乙冷庫的溫度是    .

2.一種零件的內徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9 mm,加工要求不超過標準尺寸多少?最小不小于標準尺寸多少?

3.摩托車廠本周計劃每天生產250輛摩托車,由于工人實行輪休,每天上班的人數不一定相等,實際每天生產量(與計劃量相比)的增減值如下表:

星期 一 二 三 四

增減 -5 +7 -3 +4

根據上面的記錄,問:哪幾天生產的摩托車比計劃量多?星期幾生產的摩托車最多,是多少輛?星期幾生產的摩托車最少,是多少輛?

類比例題,要求學生注意書寫格式,體會正負數的應用.

(四)課時小結(師生共同完成)

62298 主站蜘蛛池模板: 天然气分析仪-液化气二甲醚分析仪|传昊仪器 | 大巴租车平台承接包车,通勤班车,巴士租赁业务 - 鸿鸣巴士 | 翰香原枣子坊加盟费多少钱-正宗枣核糕配方培训利润高飘香 | 代写标书-专业代做标书-商业计划书代写「深圳卓越创兴公司」 | 珠海冷却塔降噪维修_冷却塔改造报价_凉水塔风机维修厂家- 广东康明节能空调有限公司 | 整车VOC采样环境舱-甲醛VOC预处理舱-多舱法VOC检测环境仓-上海科绿特科技仪器有限公司 | 鑫铭东办公家具一站式定制采购-深圳办公家具厂家直销 | 呼末二氧化碳|ETCO2模块采样管_气体干燥管_气体过滤器-湖南纳雄医疗器械有限公司 | B2B网站_B2B免费发布信息网站_B2B企业贸易平台 - 企资网 | 刹车盘机床-刹车盘生产线-龙口亨嘉智能装备 | 天津试验仪器-电液伺服万能材料试验机,恒温恒湿标准养护箱,水泥恒应力压力试验机-天津鑫高伟业科技有限公司 | 卡诺亚轻高定官网_卧室系统_整家定制_定制家居_高端定制_全屋定制加盟_定制家具加盟_定制衣柜加盟 | 防水套管_柔性防水套管_刚性防水套管-巩义市润达管道设备制造有限公司 | 迪威娱乐|迪威娱乐客服|18183620002 | 润滑油加盟_润滑油厂家_润滑油品牌-深圳市沃丹润滑科技有限公司 琉璃瓦-琉璃瓦厂家-安徽盛阳新型建材科技有限公司 | 纯水电导率测定仪-万用气体检测仪-低钠测定仪-米沃奇科技(北京)有限公司www.milwaukeeinst.cn 锂辉石检测仪器,水泥成分快速分析仪-湘潭宇科分析仪器有限公司 手术室净化装修-手术室净化工程公司-华锐手术室净化厂家 | 东莞办公家具厂家直销-美鑫【免费3D效果图】全国办公桌/会议桌定制 | 济宁工业提升门|济宁电动防火门|济宁快速堆积门-济宁市统一电动门有限公司 | T恤衫定做,企业文化衫制作订做,广告T恤POLO衫定制厂家[源头工厂]-【汉诚T恤定制网】 | 新疆系统集成_新疆系统集成公司_系统集成项目-新疆利成科技 | 旋片真空泵_真空泵_水环真空泵_真空机组-深圳恒才机电设备有限公司 | 重庆私家花园设计-别墅花园-庭院-景观设计-重庆彩木园林建设有限公司 | LED灯杆屏_LED广告机_户外LED广告机_智慧灯杆_智慧路灯-太龙智显科技(深圳)有限公司 | 北京律师事务所_房屋拆迁律师_24小时免费法律咨询_云合专业律师网 | 间苯二酚,间苯二酚厂家-淄博双和化工 | ALC墙板_ALC轻质隔墙板_隔音防火墙板_轻质隔墙材料-湖北博悦佳 | 旋振筛|圆形摇摆筛|直线振动筛|滚筒筛|压榨机|河南天众机械设备有限公司 | 商用绞肉机-熟肉切片机-冻肉切丁机-猪肉开条机 - 广州市正盈机械设备有限公司 | 水厂自动化-水厂控制系统-泵站自动化|控制系统-闸门自动化控制-济南华通中控科技有限公司 | 绿萝净除甲醛|深圳除甲醛公司|测甲醛怎么收费|培训机构|电影院|办公室|车内|室内除甲醛案例|原理|方法|价格立马咨询 | 非甲烷总烃分析仪|环控百科 | DWS物流设备_扫码称重量方一体机_快递包裹分拣机_广东高臻智能装备有限公司 | elisa试剂盒价格-酶联免疫试剂盒-猪elisa试剂盒-上海恒远生物科技有限公司 | 标准件-非标紧固件-不锈钢螺栓-非标不锈钢螺丝-非标螺母厂家-三角牙锁紧自攻-南京宝宇标准件有限公司 | 硫酸钡厂家_高光沉淀硫酸钡价格-河南钡丰化工有限公司 | 焊管生产线_焊管机组_轧辊模具_焊管设备_焊管设备厂家_石家庄翔昱机械 | 广州展览制作工厂—[优简]直营展台制作工厂_展会搭建资质齐全 | 垃圾压缩设备_垃圾处理设备_智能移动式垃圾压缩设备--山东明莱环保设备有限公司 | 根系分析仪,大米外观品质检测仪,考种仪,藻类鉴定计数仪,叶面积仪,菌落计数仪,抑菌圈测量仪,抗生素效价测定仪,植物表型仪,冠层分析仪-杭州万深检测仪器网 | 聚合氯化铝_喷雾聚氯化铝_聚合氯化铝铁厂家_郑州亿升化工有限公司 | 铝单板_铝窗花_铝单板厂家_氟碳包柱铝单板批发价格-佛山科阳金属 |