初一數(shù)學教案設計怎么寫
初一數(shù)學教案設計怎么寫篇1
本節(jié)課是人教版七年級上冊第三章第一節(jié)的內(nèi)容,主要的教學目標是使學生了解什么是方程,什么是一元一次方程;體會字母表示數(shù)的好處,體會從算式到方程是數(shù)學的一大進步;會將實際問題抽象為數(shù)學問題,通過找相等關系列方程解決問題。方程的概念在小學階段已經(jīng)出現(xiàn)過,如何讓學生在已有的知識基礎上更高一個層次認識方程、運用方程呢?我的教學策略是:第一步,創(chuàng)造一個問題情境引發(fā)學生的認知失衡。第二步,通過一個生活實例讓學生進行思考、分析、總結(jié)歸納出新知識。第三步,介紹新知識的文化背景,對學生進行數(shù)學文化的滲透,同時為學習有關概念進行鋪墊。第四步,通過講練結(jié)合的方式突破本節(jié)課的難點——找相等關系列方程。現(xiàn)對本節(jié)課的教學過程進行反思:
一、成功之處
1、對學生進行了數(shù)學文化的滲透。方程的概念在小學已經(jīng)出現(xiàn)過,初一再次學習方程應該讓學生們更高一個層次認識方程,因此通過介紹字母表示未知數(shù)的文化背景,在文化層面上讓學生進一步理解數(shù)學、喜愛數(shù)學,展示數(shù)學的文化魅力。
2、分層次設置練習題,逐步突破難點。初一學生在解應用題時,主要存在三個方面的困難:(1)抓不住相等關系;(2)找出相等關系后不會列方程;(3)習慣用算術解法,對用代數(shù)方法分析應用題不適應。其中,第一個方面是主要的,解決了它,另兩個方面就都好解決了。為此我在“練一練”的環(huán)節(jié)里設置了A與B兩組練習,A組練習的題目已經(jīng)幫學生設定了未知數(shù),重點訓練學生找相等關系、列方程;B組練習的題目要求學生獨立設未知數(shù)列方程,要求學生能突破用算術解法解應用題的思維定勢,學會通過閱讀題目、理解題意、進而找出等量關系、列出方程解決問題的方法。
3、恰當使用了多媒體教學設備。在課件制作上考慮到初一學生的年齡特點,使用了許多卡通動畫效果,有效地吸引學生的注意力。多媒體設備的使用不僅大大地提高了課堂容量,而且還可以展示學生的作品(課堂練習的解答),及時糾正學生書面表達的錯誤,規(guī)范解題格式,改掉小學生重結(jié)果輕過程,解題格式不規(guī)范,解題步驟混亂等不良現(xiàn)象。
4、營造了寬松、和諧的課堂氛圍。本節(jié)課的教學從始至終,教師都是面帶笑容地與學生進行互動,讓學生充分發(fā)表自己的看法,及時給學生鼓勵與肯定,消除學生由小學升入初中因環(huán)境變化而引起的心里障礙,激活學生的思維,保持學生參與課堂學習的積極性。
二、不足之處
1、教學容量偏大,以致沒有充分的時間引導學生對如何找相等關系進行總結(jié)歸納。本節(jié)課在引出一元一次方程的概念以后,設計了一組判斷題對一元一次方程的概念進行辨析。課后我想到這節(jié)課的難點是如何找相等關系列方程,應該淡化概念,如果刪去這道練習題就可以讓學生有更充分的時間去總結(jié)歸納找相等關系的方法,從而突破本節(jié)課的難點。
2、對學生情況不夠熟悉。因為本節(jié)課是初一學生入學后一個月進行的,所以我對許多學生還叫不出名字,雖然課堂上可以用手指著某某同學回答問題,但是課后仔細想來,做好中小學數(shù)學教學的銜接工作不僅僅是教學內(nèi)容設計上的銜接,而應該是多方位的銜接,其中就包括教師應盡快了解、熟悉學生,這樣可以幫助消除學生剛升入初中的許多不適應。
三、對中小學數(shù)學教學銜接的思考
(1)加強新舊知識的聯(lián)系
初中的許多數(shù)學知識都是小學知識的延續(xù)與提高,因此要搞好中小學數(shù)學教學真正意義上的銜接,每一位教師都應該熟悉并掌握《數(shù)學課程標準》的教材體系,而且我們還要認識到處理好中小學數(shù)學教學的銜接問題并非只是小學與初一老師的事情,其實整個中學階段有很多的知識點都是在小學的知識基礎上進行拓展和延伸的,如初二學習的“軸對稱”及“等腰三角形”的知識在小學都出現(xiàn)過。
(2)滲透數(shù)學文化的教育,保持學生學習數(shù)學的興趣
從小學到初中,教學內(nèi)容更抽象,更加符號化,有一些學生在努力學習數(shù)學的同時,逐漸地厭煩、冷漠數(shù)學,這主要是應試教育環(huán)境下的數(shù)學教學,對數(shù)學知識的積累、數(shù)學技巧的訓練等工具性價值的過分關注,使數(shù)學學習越來越枯燥無味,所以我們教師應該讓學生一進入中學的課堂,就展現(xiàn)給學生一個多姿多彩的數(shù)學世界,在課堂教學中時時體現(xiàn)數(shù)學作為一種人類文化的魅力,保持住學生對數(shù)學的學習興趣。
初一數(shù)學教案設計怎么寫篇2
教學目標:
1、 知道有理數(shù)加法的意義和法則
2、 會用有理數(shù)加法法則正確地進行有理數(shù)的加法運算
3、 經(jīng)歷有理數(shù)加法法則的探究過程,體會分類和歸納的數(shù)學思想方法
教學重點: 有理數(shù)加法則的探索及運用
教學難點: 異號兩數(shù)相加的法則的理解及運用
教學過程:
一、 創(chuàng)設情境
展示足球賽圖片,你知道足球賽中“凈勝球”是怎么回事嗎?
(學生口答,教師介紹凈勝球的算法:只要把各場比賽的結(jié)果相加就可以得到,由此揭示課題。)
二、 探求新知
1、甲、乙兩隊進行足球比賽,
(1)、如果上半場贏了3球,下半場又贏了2球,那么全場累計凈勝幾球?
(2)、如果上半場贏了3球,下半場輸了2球,那么全場累計凈勝幾球?
足球比賽中贏球個數(shù)與輸球個數(shù)是一對相反意義的量.若規(guī)定贏球為正,輸球為負,例如贏3球記為“+3”,輸2球記為“-2”,你能把上述結(jié)果用加法算式表示出來嗎?
(學生根據(jù)生活經(jīng)驗得到兩種情況下的凈勝球數(shù),從而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教師板書。)
(3)、除了上面所說的“贏了再贏”,“先贏后輸”,你還能說出其它可能的幾種情況并用加算式表示嗎?
(引導學生聯(lián)系生活實際思考輸贏球其它可能的情況,盡可能完整地說出所有的可能,由此感受兩個有理數(shù)相加的各種情況,讓學生自由發(fā)言,相互補充,教師板書算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教師還可根據(jù)學生回答情況補充:上半場贏了3球,下半場輸了3球;上半場打平,下半場也打平,最后的凈勝球情況,由學生說出結(jié)果并列出算式:(+3)+(-3)= 0,0+0=0 )
2、你能舉出一些運用有理數(shù)加法的實際例子嗎?
(學生列舉實例并根據(jù)具體意義寫出算式)
3、學生活動:
(1)、把筆尖放在數(shù)軸原點處,先向正方向移動3個單位長度,再向正方向移動2個單位長度,這時筆尖的位置表示什么數(shù)?你能用數(shù)軸和加法算式表示以上過程及結(jié)果嗎?
(2)、把筆尖放在數(shù)軸原點個單位長度,再向負方向移動2個單位長度,這時筆尖的位置表示什么數(shù)?你能用數(shù)軸和加法算式表示以上過程及結(jié)果嗎?
(3)、你還能再做一些類似的活動,并寫出相應的算式嗎?
(教師示范活動(1)的操作過程,學生列出算式并完成(2)(3),得到一組算式,教師板書。這一活動目的是讓學生從“形”的角度,直觀感受有理數(shù)的加法法則。)
4、 歸納法則:
觀察上述算式,和小學學過的加法運算有什么區(qū)別?你能歸納出有理數(shù)的加法法則嗎?
(由前面所學的內(nèi)容學生已經(jīng)知道:有理數(shù)由符號和絕對值兩部分組成,所以兩個有理數(shù)的相加時,確定和時也需要分別確定和的符號和絕對值,教師可引導學生對照情境中輸贏球的情況分別探索和的符號和絕對值如何確定,學生相互交流,自由發(fā)言,不斷完善。通過探索有理數(shù)加法法則的過程,學生體會分類和歸納的數(shù)學思想方法。)
5、 例題精講:
例1 、計算
(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)
(4)、 5+(-5); (5)、 0+(-2); (學生口答計算結(jié)果,并對照法則說說是如何確定和的符號和絕對值的,教師板書解題過程,讓學生體會“運算有據(jù)”。)
解:(1)、(-5)+(-3)
= -(5+3) (同號兩數(shù)相加,取相同的符號,并把絕對值相減)
= -8
(2)、(-8)+(+2)
= -(8-2) (異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。)
= -6
(4)、5+(-5);
=0 (互為相反的兩數(shù)之和為0)
6、 訓練鞏固:
1、 p33練一練2
(學生利用撲克完成本題,通過游戲進一步鞏固有理數(shù)加法法則,體現(xiàn)“做中學”的新課程理念。)
7、 延伸拓展:
(1)、一個數(shù)是2的相反數(shù),另一個數(shù)的絕對值是5,求這兩個數(shù)的和
(2)、在小學里,計算兩個數(shù)相加時,它們的和總是小于任何一個加數(shù),學了有理數(shù)的加法法則后,你認為這個結(jié)論還成立嗎?請你舉例說明
(這兩題都具有一定的挑戰(zhàn)性,第(1)題可讓學生進一步體會分類的數(shù)學思想方法。第(2)題具有開放性,可讓學生在探索的過程中進一步理解法則。)
三、課堂小結(jié):
學生回顧本節(jié)課所學內(nèi)容,談談自己對有理數(shù)加法法則的理解及如何進行有理數(shù)加法運算。
四、布置作業(yè):
1、 課本p41 第1題
2、 列舉一些生活中運用有理數(shù)加法的實際例子,并相互交流。
初一數(shù)學教案設計怎么寫篇3
我上的“三角形”這節(jié)課,研究三角形按邊的特征認識三角形并進行分類。整堂課的設計體現(xiàn)以教師為主導,學生為主體,使學生在教師的引導下動手操作,積極思考,與同學之間交流,展示自我的過程,是讓學生用內(nèi)心創(chuàng)造與體驗學習數(shù)學。
教學三角形這節(jié)課,探究新知階段我認為處理得比較好。我主要采用“實驗操作法”。為使學生學會有目的、有規(guī)律地探究,采用“引——扶——放”教學手段,讓學生在師生互動,生生互動,合作探究中體驗感悟三角形圍成的過程,并感受到學會用科學的數(shù)學思維進行有規(guī)律地探究,能圍出盡可能多的不同種類的三角形,大大激發(fā)了學生的學習興趣,培養(yǎng)了學生思維的有序性和探究能力。再通過小組討論、交流、歸納出三角形按邊分類及三角形按邊特征命名,真正讓學生動眼、動手、動口、動腦參與獲取知識的過程,學生從中感受、體驗到一個探索者的成功樂趣,從而增強學習動力與信心。
最后讓學生在猜想中探究、生成。本節(jié)課中學生用三根小棒圍出了盡可能多的不同種類的三角形,為防止知識的負遷移,我提出了猜想的話題:任意三根小棒都能圍成三角形嗎?然后讓學生帶著對問題結(jié)論的不同猜想和對正確結(jié)果的渴望,再次實驗操作,得出不是任意三條邊都能圍成三角形的,催發(fā)學生生成了對三角形三邊長度之間關系正確而又具有個性的認識,使學生意識到三角形中還藏著好多知識,正等待我們?nèi)ヌ骄俊?/p>
存在的問題:交流的時間不充分,忽略未成功的學生及弱勢群體學生按邊分時,交流的時間少,特別是三種三角形之間的關系沒有上學生先說一說,教師再作補充完善。
通過這節(jié)課的公開教學,加深了我對“教學有法,教無定法,貴在得法”這句話的理解:作為教師,應傾心于每一節(jié)課,每一篇教案,每一個教學環(huán)節(jié)…...
初一數(shù)學教案設計怎么寫篇4
●教學內(nèi)容
七年級上冊課本11----12頁1.2.4絕對值
●教學目標
1.知識與能力目標:借助于數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,初步學會求絕對值等于某一個正數(shù)的有理數(shù)。
2.過程與方法目標:通過從數(shù)形兩個側(cè)面理解絕對值的意義,初步了解數(shù)形結(jié)合的思想方法。通過應用絕對值解決實際問題,體會絕對值的意義。
3.情感態(tài)度與價值觀:通過應用絕對值解決實際問題,培養(yǎng)學生濃厚的學習興趣,使學生能積極參與數(shù)學學習活動,對數(shù)學有好奇心與求知欲。
●教學重點與難點
教學重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。
教學難點:絕對值定義的得出、意義的理解,以及求絕對值等于某一個正數(shù)的有理數(shù)。
●教學準備
多媒體課件
●教學過程
一、創(chuàng)設問題情境
1、兩只小狗從同一點O出發(fā),在一條筆直的街上跑,一只向右跑10米到達A點,另一只向左跑10米到達B點。若規(guī)定向右為正,則A處記作-__________,B處記作__________。
以O為原點,取適當?shù)膯挝婚L度畫數(shù)軸,并標出A、B的位置。
(用生動有趣的引例吸引學生,即復習了數(shù)軸和相反數(shù),又為下文作準備)。
2、這兩只小狗在跑的過程中,有沒有共同的地方?在數(shù)軸上的A、B兩點又有什么特征?(從形和數(shù)兩個角度去感受絕對值)。
3、在數(shù)軸上找到-5和5的點,它們到原點的距離分別是多少?表示-和的點呢?
小結(jié):在實際生活中,有時存在這樣的情況,無需考慮數(shù)的正負性質(zhì),比如:在計算小狗所跑的路程中,與小狗跑的方向無關,這時所走的路程只需用正數(shù),這樣就必須引進一個新的概念-———絕對值。
二、建立數(shù)學模型
1、絕對值的概念
(借助于數(shù)軸這一工具,師生共同討論,引出絕對值的概念)
絕對值的幾何定義:一個數(shù)在數(shù)軸上對應的點到原點的距離叫做這個數(shù)的絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。
注意:①與原點的關系 ②是個距離的概念
2..練習1:請學生舉一個生活中的實際例子,說明解決有的問題只需考慮的數(shù)絕對值。[溫度上升了5度,用 +5表示的話,那么下降了5度,就用-5 表示,如果我們不去考慮它的意義(即:上升還是下降),只考慮數(shù)量(即:溫度)的變化,我們可以說:溫度的變化都是5度。銀行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我們不去考慮它的意義(即:存入還是取出),只考慮數(shù)量的多少,我們可以說:金額都是100元。]
(通過應用絕對值解決實際問題,體會絕對值的意義與作用,感受數(shù)學在生活中的價值。)
三、應用深化知識
1、例題求解
例1、求下列各數(shù)的絕對值
-1.6 , , 0, -10, +10
2、根據(jù)上述題目,讓學生歸納總結(jié)絕對值的特點。(教師進行補充小結(jié))
特點:1、一個正數(shù)的絕對值是它本身
2、一個負數(shù)的絕對值是它的相反數(shù)
3、零的絕對值是零
4、互為相反數(shù)的兩個數(shù)的絕對值相等
3.出示題目
(1) -3的符號是_______,絕對值是______;
(2) +3的符號是_______,絕對值是______;
(3) -6.5的符號是_______,絕對值是______;
(4) +6.5的符號是_______,絕對值是______;
學生口答。
師:上面我們看到任何一個有理數(shù)都是由符號,和絕對值兩個部分構(gòu)成。現(xiàn)在老師有一個問題想問問大家,在上一節(jié)課中我們規(guī)定只有符號不同的兩個數(shù)稱互為相反數(shù)。那么大家在今天學習了絕對值以后,你能給相反數(shù)一個新的解釋嗎?
5、練習3:回答下列問題
①一個數(shù)的絕對值是它本身,這個數(shù)是什么數(shù)?
②一個數(shù)的絕對值是它的相反數(shù),這個數(shù)是什么數(shù)?
③一個數(shù)的絕對值一定是正數(shù)嗎?
④一個數(shù)的絕對值不可能是負數(shù),對嗎?
⑤絕對值是同一個正數(shù)的數(shù)有兩個,它們互為相反數(shù),這句話對嗎?
(由學生口答完成,進一步鞏固絕對值的概念)
6、例2.求絕對值等于4的數(shù)
(讓學生考慮這樣的數(shù)有幾個,是怎樣得出這個結(jié)果的呢?對后一個問題由學生去討論,啟發(fā)學生從數(shù)與形兩個方面考慮,培養(yǎng)學生的發(fā)散思維能力。)
分析:
①從數(shù)字上分析
∵|+4|=4, |-4|=4 ∴絕對值等于4的數(shù)是+4和-4畫一個數(shù)軸(如下圖)
②從幾何意義上分析,畫一個數(shù)軸(如下圖)
因為數(shù)軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M
所以絕對值等于4的數(shù)是+4和-4.
6、練習:做書上12頁課內(nèi)練習1、2兩題。
四、歸納小結(jié)
1、本節(jié)課我們學習了什么知識?
2、你覺得本節(jié)課有什么收獲?
3、由學生自行總結(jié)在自主探究,合作學習中的體會。
五、課后作業(yè)
1、讓學生去尋找一些生活中只考慮絕對值的實際例子。
2、課本15頁的作業(yè)題。
初一數(shù)學教案設計怎么寫篇5
學習目標
1. 理解有序數(shù)對的應用意義,了解平面上確定點的常用方法
2. 培養(yǎng)用數(shù)學的意識,激發(fā)學習興趣.
學習重點: 理解有序數(shù)對的意義和作用
學習難點: 用有序數(shù)對表示點的位置
學習過程
一.問題導入
1.一位居民打電話給供電部門:"衛(wèi)星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案.
2.地質(zhì)部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經(jīng)125.7°"。
3.某人買了一張8排6號的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數(shù)據(jù)找到位置的。
你能舉出生活中利用數(shù)據(jù)表示位置的例子嗎?
二.概念確定
有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
利用有序數(shù)對,可以很準確地表示出一個位置。
1.在教室里,根據(jù)座位圖,確定數(shù)學課代表的位置
2.教材40頁練習
三.方法歸類
常見的確定平面上的點位置常用的方法
(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數(shù)來確定目標所在的位置。
1.如圖,A點為原點(0,0),則B點記為(3,1)
2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。
例2 如圖是某次海戰(zhàn)中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
(1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么數(shù)據(jù)?
(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個數(shù)據(jù)?
[鞏固練習]
1. 如圖是某城市市區(qū)的一部分示意圖,對市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數(shù)據(jù)?火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?
結(jié)合實際問題歸納方法
學生嘗試描述位置
2. 如圖,馬所處的位置為(2,3).
(1) 你能表示出象的位置嗎?
(2) 寫出馬的下一步可以到達的位置。
[小結(jié)]
1. 為什么要用有序數(shù)對表示點的位置,沒有順序可以嗎?
2. 幾種常用的表示點位置的方法.
[作業(yè)]
必做題:教科書44頁:1題
初一數(shù)學教案設計怎么寫篇6
教學目標
1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運算法則;
2.能根據(jù)有理數(shù)加法法則熟練地進行有理數(shù)加法運算,弄清有理數(shù)加法與非負數(shù)加法的區(qū)別;
3.三個或三個以上有理數(shù)相加時,能正確應用加法交換律和結(jié)合律簡化運算過程;
4.通過有理數(shù)加法法則及運算律在加法運算中的運用,培養(yǎng)學生的運算能力;
5.本節(jié)課通過行程問題說明法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數(shù)學知識來源于生活,并應用于生活。
教學建議
(一)重點、難點分析
本節(jié)教學的重點是依據(jù)法則熟練進行運算。難點是法則的理解。
(1)加法法則本身是一種規(guī)定,教材通過行程問題讓學生了解法則的合理性。
(2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數(shù)相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數(shù)的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數(shù)與0相加,仍得這個數(shù)。
(二)知識結(jié)構(gòu)
(三)教法建議
1.對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數(shù)、相反數(shù)、絕對值等知識。
2.法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
3.應強調(diào)加法交換律“a+b=b+a”中字母a、b的任意性。
4.計算三個或三個以上的加法算式,應建議學生養(yǎng)成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數(shù)間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結(jié)合律可以使加法運算更為簡化。
5.可以給出一些類似“兩數(shù)之和必大于任何一個加數(shù)”的判斷題,以明確由于負數(shù)參與加法運算,一些算術加法中的正確結(jié)論在有理數(shù)加法運算中未必也成立。
6.在探討導出法則的行程問題時,可以嘗試發(fā)揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數(shù)運算法則。
教學設計示例
(第一課時)
教學目的
1.使學生理解有理數(shù)加法的意義,初步掌握有理數(shù)加法法則,并能準確地進行運算.
2.通過運算,培養(yǎng)學生的運算能力.
教學重點與難點
重點:熟練應用法則進行加法運算.
難點:法則的理解.
教學過程
(一)復習提問
1.有理數(shù)是怎么分類的?
2.有理數(shù)的絕對值是怎么定義的?一個有理數(shù)的絕對值的幾何意義是什么?
3.有理數(shù)大小比較是怎么規(guī)定的?下列各組數(shù)中,哪一個較大?利用數(shù)軸說明?
-3與-2;|3|與|-3|;|-3|與0;
-2與|+1|;-|+4|與|-3|.
(二)引入新課
在小學算術中學過了加、減、乘、除四則運算,這些運算是在正有理數(shù)和零的范圍內(nèi)的運算.引入負數(shù)之后,這些運算法則將是怎樣的呢?我們先來學運算.
(三)進行新課 (板書課題)
例1 如圖所示,某人從原點0出發(fā),如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?
兩次行走后距原點0為8米,應該用加法.
為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負.這兩數(shù)相加有以下三種情況:
1.同號兩數(shù)相加
(1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和.
5+3=8
用數(shù)軸表示如圖
從數(shù)軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
可見,正數(shù)加正數(shù),其和仍是正數(shù),和的絕對值等于這兩個加數(shù)的絕對值的和.
(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米
(-5)+(-3)=-8
用數(shù)軸表示如圖
從數(shù)軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
可見,負數(shù)加負數(shù),其和仍是負數(shù),和的絕對值也是等于兩個加數(shù)的絕對值的和.
總之,同號兩數(shù)相加,取相同的符號,并把絕對值相加.
例如,(-4)+(-5),……同號兩數(shù)相加
(-4)+(-5)=-( ),…取相同的符號
4+5=9……把絕對值相加
∴ (-4)+(-5)=-9.
口答練習:
(1)舉例說明算式7+9的實際意義?
(2)(-20)+(-13)=?
(3)
2.異號兩數(shù)相加
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
5+(-5)=0
可知,互為相反數(shù)的兩個數(shù)相加,和為零.
(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
就是 5+(-3)=2.
(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
就是 3+(-5)=-2.
請同學們想一想,異號兩數(shù)相加的法則是怎么規(guī)定的?強調(diào)和的符號是如何確定的?和的絕對值如何確定?
最后歸納
絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0.
例如(-8)+5……絕對值不相等的異號兩數(shù)相加
8>5
(-8)+5=-( )……取絕對值較大的加數(shù)符號
8-5=3 ……用較大的絕對值減去較小的絕對值
∴(-8)+5=-3.
口答練習
用算式表示:溫度由-4℃上升7℃,達到什么溫度.
(-4)+7=3(℃)
3.一個數(shù)和零相加
(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+0=5.結(jié)果向東走了5米.
(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(-5)+0=-5.結(jié)果向東走了-5米,即向西走了5米.
請同學們把(1)、(2)畫出圖來
由(1),(2)得出:一個數(shù)同0相加,仍得這個數(shù).
總結(jié)有理數(shù)加法的三個法則.學生看書,引導他們看有理數(shù)加法運算的三種情況.
有理數(shù)加法運算的三種情況:
特例:兩個互為相反數(shù)相加;
(3)一個數(shù)和零相加.
每種運算的法則強調(diào):(1)確定和的符號;(2)確定和的絕對值的方法.
(四)例題分析
例1 計算(-3)+(-9).
分析:這是兩個負數(shù)相加,屬于同號兩數(shù)相加,和的符號與加數(shù)相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調(diào)相同、相加的特征).
解:(-3)+(-9)=-12.
例2
分析:這是異號兩數(shù)相加,和的符號與絕對值較大的加數(shù)的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值..(強調(diào)“兩個較大”“一個較小”)
解:
解題時,先確定和的符號,后計算和的絕對值.
(五)鞏固練習
1.計算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.計算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
探究活動
題目 (1)在1,2,3,4四個數(shù)的前面添加正號或負號,使它們的和為0;
(2)在1,2,3,…,11,12十二個數(shù)的前面添加正號或負號,使它們的和為零;
(3)在1,2,3,4,…,99,100一百個數(shù)的前面添加正號或負號,使它們的和為0;
(4) 在解決這個問題的過程中,你能總結(jié)出一些什么數(shù)學規(guī)律?
參考答案 我們不妨不妨以第二問為例探討,比如,在12,11,10,5這四個數(shù)的前面添加負號,則這12個數(shù)的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.
現(xiàn)在我們將各數(shù)的符號加以調(diào)整,考慮到將一個正數(shù)變號,其和就要減少這個正數(shù)的兩倍,因此可得到兩個(明顯的)解答:
(1)得+1變?yōu)?1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①
(2)將(+6-5)變?yōu)?(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②
又如,在11,10,8,7,5這五個數(shù)的前面添加負號,得
12-11-10-9-8-7+6-5+4+3+2+1=-4,
我們就有多種調(diào)整的方法,如將-8與+6變號,有
12-11-10+9+8-7-6-5+4+3+2+1=0. ③
經(jīng)過幾次試驗,我們發(fā)現(xiàn)了規(guī)律:欲使十二個數(shù)的和為零,其中正數(shù)的和的絕對值與負數(shù)的和的絕對值必須相等.但
1+2+3+4+5+6+7+8+9+10+11+12=78
因此我們應該使各正數(shù)的和的絕對值與各負數(shù)的和的絕對值均為
為了簡便起見,我們把①式所表示的一個解答記為(12,11,10,5,1),那么②,③兩式所表示的解答就分別記為(12,11,10,6)與(11,10,7,6,5).
同時我們還發(fā)現(xiàn):如果(12,11,10,5,1)是一個解答,那么(9,8,7,6,4,3,2)也必定是一個解答.同樣,對應于②,③兩式,還分別有另兩個解答:(9,8,7,5,4,3,2,1)與(12,9,8,4,3,2,1).這個規(guī)律我們不妨叫做對偶律.
此外我們還可發(fā)現(xiàn),由于的三個數(shù)12,11,10其和33<39,因此必須再增加一個數(shù)6,才有解答(12,11,10,6),也就是說:添加負號的數(shù)至少要有四個;反過來,根據(jù)對偶律得:添加負號的數(shù)最多不超過八個.
掌握了上述幾條規(guī)律,我們就能夠在很短的時間內(nèi)得到許多解答.最后讓我們告訴你,第(2)問的解答個數(shù)并非無數(shù)多,其總數(shù)是124個.