如何設計初中數學教案
如何設計初中數學教案篇1
教學目標 1, 通過對數“零”的意義的探討,進一步理解正數和負數的概念;
2, 利用正負數正確表示相反意義的量(規定了指定方向變化的量)
3, 進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。
教學難點 深化對正負數概念的理解
知識重點 正確理解和表示向指定方向變化的量
教學過程(師生活動) 設計理念
知識回顧與深化 回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示.這就是說:數的范圍擴大了(數有正數和負數之分).那么,有沒有一種既不是正數又不是負數的數呢?
問題1:有沒有一種既不是正數又不是負數的數呢?
學生思考并討論.
(數0既不是正數又不是負數,是正數和負數的分
界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的溫度是
零上7℃,最低溫度是零下5℃時,就應該表示為+7℃
和-5℃,這里+7℃和-5℃就分別稱為正數和負數 .
那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數?
問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類? “數0耽不是正數,也不是負數”也應看作是負數定義的一部分.在引入
負數后,0除了表示一個也沒有以外,還是正數和負數的分界.了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。
所舉的例子,要考慮學生的可接受性.“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明.這個問題只要初步認識即
可,不必深究.
分析問題
解決問題 問題3:教科書第6頁例題
說明:這是一個用正負數描述向指定方向變化情況的例子, 通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。
歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁).
類似的例子很多,如:
水位上升-3m,實際表示什么意思呢?
收人增加-10%,實際表示什么意思呢?
等等。
可視教學中的實際情況進行補充.
這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種
意義的量應該用正數表示是解題的關健.這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在
不必向學生提出.
鞏固練習 教科書第6頁練習
閱讀思考
教科書第8頁 閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流
小結與作業
課堂小結 以問題的形式,要求學生思考交流:
1,引人負數后,你是怎樣認識數0的,數0的意義有哪些變化?
2,怎樣用正負數表示具有相反意義的量?
(用正數表示其中一種意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數.)
本課作業 1, 必做題:教科書第7頁習題1.1第3,6,7,8題
2, 選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指
定方向變化的量。
2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分.在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助.由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.
3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.
4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發學生學習數學的興趣.
如何設計初中數學教案篇2
教學目標
理解平行四邊形的定義,能根據定義探究平行四邊形的性質.
教學思考
1.通過觀察、實驗、猜想、驗證、推理、交流等數學活動,發展學生合情推理能力和動手操作能力及應用數學的意識與能力.
2.能夠根據平行四邊形的性質進行簡單的推理和計算.
解決問題
通過平行四邊形性質的探索過程,豐富學生從事數學活動的經驗與體驗,能運用平行四邊形的性質進行有關的推理和計算,發展應用意識.
情感態度
在應用平行四邊形的性質的過程養成獨立思考的習慣,在數學學習活動中獲得成功的體驗.
重點
平行四邊形的性質的探究和平行四邊形的性質的應用.
難點
平行四邊形的性質的應用.
教學流程安排
活動流程圖
活動內容和目的
活動1欣賞圖片,了解生活中的特殊四邊形
活動2剪三角形紙片,拼凸四邊形
活動3理解平行四邊形的概念
活動4探究平行四邊形邊、角的性質
活動5平行四邊形性質的應用
活動6評價反思、布置作業
熟悉生活中特殊的四邊形,導出課題.
通過用三角形拼四邊形的過程,滲透轉化思想,激發探索精神.
掌握平行四邊形的定義及表示方法.
探究平行四邊形的性質.
運用平行四邊形的性質.
學生交流,內化知識,課后鞏固知識.
教學過程設計
問題與情景
師生行為
設計意圖
[活動1]
下面的圖片中,有你熟悉的哪些圖形?
(出示圖片)
演示圖片,學生欣賞.
教師介紹四邊形與我們生活密切聯系,學生可再補充列舉.
從實例圖片中,抽象出的特殊四邊形,培養學生的抽象思維.通過舉例,讓學生感受到數學與我們的生活緊密聯系.
問題與情景
師生行為
設計意圖
[活動2]
拼一拼
將一張紙對折,剪下兩張疊放的三角形紙片.將這兩個三角形相等的一組邊重合,你會得到怎樣的圖形.
(1)你拼出了怎樣的凸四邊形?與同伴交流.
(2)一位同學拼出了如下圖所示的一個四邊形,這個四邊形的對邊有怎樣的位置關系?說說你的理由.
學生經過實驗操作,開展獨立思考與合作學習.
教師深入學生之中,觀察學生頻出的方法與過程,接受學生質疑并指導個別學生探究.
教師待學生充分探究后,請學生展示拼圖的方法和不同的圖形.并引導學生分析(2)中的四邊形的邊的位置特征,從而引出本節課研究的內容
如何設計初中數學教案篇3
教學目標:
1、了解公式的意義,使學生能用公式解決簡單的實際問題;
2、初步培養學生觀察、分析及概括的能力;
3、通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
教學建議:
一、教學重點、難點
重點:通過具體例子了解公式、應用公式。
難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結構
本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1、對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2、在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
教學設計示例:
一、教學目標
(一)知識教學點
1、使學生能利用公式解決簡單的實際問題。
2、使學生理解公式與代數式的關系。
(二)能力訓練點
1、利用數學公式解決實際問題的能力。
2、利用已知的公式推導新公式的能力。
(三)德育滲透點
數學來源于生產實踐,又反過來服務于生產實踐。
(四)美育滲透點
數學公式是用簡潔的數學形式來闡明自然規定,解決實際問題,形成了色彩斑斕的多種數學方法,從而使學生感受到數學公式的簡潔美。
二、學法引導
1、數學方法:引導發現法,以復習提問小學里學過的公式為基礎、突破難點。
2、學生學法:觀察→分析→推導→計算。
三、重點、難點、疑點及解決辦法
1、重點:利用舊公式推導出新的圖形的計算公式。
2、難點:同重點。
3、疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差。
四、課時安排
1課時
五、教具學具準備
投影儀,自制膠片。
六、師生互動活動設計
教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發學生求圖形的面積,師生總結求圖形面積的公式。
七、教學步驟
(一)創設情景,復習引入
師:同學們已經知道,代數的一個重要特點就是用字母表示數,用字母表示數有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏。
在學生說出幾個公式后,師提出本節課我們應在小學學習的基礎上,研究如何運用公式解決實際問題。
板書:公式
師:小學里學過哪些面積公式?
板書:S=ah
(出示投影1)。解釋三角形,梯形面積公式
【教法說明】讓學生感知用割補法求圖形的面積。
如何設計初中數學教案篇4
一、 教材結構與內容簡析
在分析新數學課程標準的基礎上確定了本節課在教材中的地位和作用以及確定本節課的教學目標、重點和難點。首先來看一下本節課在教材中的地位和作用。
有理數的加減法在整個知識系統中的地位和作用是很重要的。它是整個初中代數的一個基礎,它直接關系到有理數運算、實數運算、代數式運算、解方程、、研究函數等內容的學習。初中階段要培養學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現實模型,把它轉化成數學問題,從而培養學生的數學意識,增強學生對數學的理解和解決實際問題的能力。 就第一章而言,有理數的加減法是本章的一個重點。在有理數范圍內進行的各種運算:加、減法可以統一成為加法,乘法、除法和乘方可以統一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數運算,學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符號和絕對值),關鍵是這一節的學習。
數學思想方法分析:作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節課在教學中力圖向學生滲透的德育目標是:(1)滲透由特殊到一般的辯證唯物主義思想 (2)培養學生嚴謹的思維品質。
二、 教學目標
根據新課程標準和上述對教材結構與內容分析,考慮到學生已有的認知結構及心理特征 ,制定如下教學目標:
1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;
2. 通過學習理解加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;
3.通過加法運算練習,培養學生的運算能力。
三、教學建議
(一)重點、難點分析
本小節的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略符號與括號的代數和的計算.
由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,就可靈活運用加法運算律,簡化計算.
(二)教法建議
1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.
2.關于“去括號法則”,只要學生了解,并不要求追究所以然.
3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如:-3-4表示-3、-4兩數的代數和,-4+3表示-4、+3兩數的代數和,3+4表示3和+4的代數和等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。
4.先把正數與負數分別相加,可以使運算簡便。
5.在交換加數的位置時,要連同前面的符號一起交換。如:12-5+7 應變成 12+7-5,而不能變成12-7+5。
備注:教學過程我主要說第一小節---去括號
(三)教學過程:根據教材的結構特點,緊緊抓住新舊知識的內在聯系,運用類比、聯想、轉化的思想,突破難點.
如何設計初中數學教案篇5
一、教學目標:
1、知道一次函數與正比例函數的定義。
2、理解掌握一次函數的圖象的特征和相關的性質。
3、弄清一次函數與正比例函數的區別與聯系。
4、掌握直線的平移法則簡單應用。
5、能應用本章的基礎知識熟練地解決數學問題。
二、教學重、難點:
重點:初步構建比較系統的函數知識體系。
難點:對直線的平移法則的理解,體會數形結合思想。
三、教學過程:
1、一次函數與正比例函數的定義:
一次函數:一般地,若y=kx+b(其中k,b為常數且k≠0),那么y是一次函數。
正比例函數:對于y=kx+b,當b=0,k≠0時,有y=kx,此時稱y是x的正比例函數,k為正比例系數。
2、一次函數與正比例函數的區別與聯系:
(1)從解析式看:y=kx+b(k≠0,b是常數)是一次函數;而y=kx(k≠0,b=0)是正比例函數,顯然正比例函數是一次函數的特例,一次函數是正比例函數的推廣。
(2)從圖象看:正比例函數y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx
平行的一條直線。
基礎訓練:
1、寫出一個圖象經過點(1,—3)的函數解析式為:
2、直線y=—2X—2不經過第象限,y隨x的增大而。
3、如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:
4、已知正比例函數y=(3k—1)x,,若y隨x的增大而增大,則k是:
5、過點(0,2)且與直線y=3x平行的直線是:
6、若正比例函數y=(1—2m)x的圖像過點A(x1,y1)和點B(x2,y2)當x1<x2時,y1>y2,則m的取值范圍是:
7、若y—2與x—2成正比例,當x=—2時,y=4,則x=時,y=—4。
8、直線y=—5x+b與直線y=x—3都交y軸上同一點,則b的值為。
9、已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。
(1)求線段AB的長。
(2)求直線AC的解析式。
如何設計初中數學教案篇6
教材分析:
一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。
學情分析:
1.學生已學習用求根公式法解一元二次方程。
2.本課的教學對象是九年級學生,學生對事物的認識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。
3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現代化的教學模式和傳統的教學模式相結合的基礎上掌握一元二次方程根與系數的關系。
教學目標:
1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。
2、能力目標:通過韋達定理的教學過程,使學生經歷觀察、實驗、猜想、證明等數學活動過程,發展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養學生的創新意識和創新精神。
3、情感目標:通過情境教學過程,激發學生的求知欲望,培養學生積極學習數學的態度。體驗數學活動中充滿著探索與創造,體驗數學活動中的成功感,建立自信心。
教學重難點:
1、重點:一元二次方程根與系數的關系。
2、難點:讓學生從具體方程的根發現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
板書設計:
一元二次方程根與系數的關系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2=,x1x2=。
問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎?①二次項系數a是否為零,決定著方程是否為二次方程;②當a≠0時,b=0,a、c異號,方程兩根互為相反數;③當a≠0時,△=b-4ac可判定根的情況;④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。
學生學習活動評價設計:
本節課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。
教學反思:
1.一元二次方程根與系數的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數之間的關系,是我們今后繼續研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。
2.以一元二次方程根與系數的關系的探索與推導,向學生展示認識事物的一般規律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力。
3.一元二次方程的根與系數的關系,在中考中多以填空,選擇,解答題的形式出現,考查的頻率較高,也常與幾何、二次函數等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。
4.使學生體會解題方法的多樣性,開闊解題思路,優化解題方法,增強擇優能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數學活動經驗,教師應注意引導。