小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

怎么寫高一數學教案

時間: 新華 教學設計

怎么寫高一數學教案篇1

一、指導思想與理論依據

數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。

二、教材分析

三、學情分析

本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容.

四、教學目標

(1).基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;

(2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;

(3).創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;

五、教學重點和難點

1.教學重點

理解并掌握誘導公式.

2.教學難點

正確運用誘導公式,求三角函數值,化簡三角函數式.

六、教法學法以及預期效果分析

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法,如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.

1.教法

數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.

在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅.

2.學法

在本節課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.

3.預期效果

本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.

怎么寫高一數學教案篇2

一、教學目標

1、知識與技能:

(1)通過實物操作,增強學生的直觀感知。

(2)能根據幾何結構特征對空間物體進行分類。

(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

(4)會表示有關于幾何體以及柱、錐、臺的分類。

2、過程與方法:

(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。

(2)讓學生觀察、討論、歸納、概括所學的知識。

3、情感態度與價值觀:

(1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

(2)培養學生的空間想象能力和抽象括能力。

二、教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

難點:柱、錐、臺、球的結構特征的概括。

三、教學用具

(1)學法:觀察、思考、交流、討論、概括。

(2)實物模型、投影儀。

四、教學過程

(一)創設情景,揭示課題

1、由六根火柴最多可搭成幾個三角形?(空間:4個)

2、在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?

3、展示具有柱、錐、臺、球結構特征的空間物體。

問題:請根據某種標準對以上空間物體進行分類。

(二)、研探新知

空間幾何體:多面體(面、棱、頂點):棱柱、棱錐、棱臺;

旋轉體(軸):圓柱、圓錐、圓臺、球。

1、棱柱的結構特征:

(1)觀察棱柱的幾何物體以及投影出棱柱的圖片,

思考:它們各自的特點是什么?共同特點是什么?

(學生討論)

(2)棱柱的主要結構特征(棱柱的概念):

①有兩個面互相平行;②其余各面都是平行四邊形;③每相鄰兩上四邊形的公共邊互相平行。

(3)棱柱的表示法及分類:

(4)相關概念:底面(底)、側面、側棱、頂點。

2、棱錐、棱臺的結構特征:

(1)實物模型演示,投影圖片;

(2)以類似的方法,根據出棱錐、棱臺的結構特征,并得出相關的概念、分類以及表示。

棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。

棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。

3、圓柱的結構特征:

(1)實物模型演示,投影圖片——如何得到圓柱?

(2)根據圓柱的概念、相關概念及圓柱的表示。

4、圓錐、圓臺、球的結構特征:

(1)實物模型演示,投影圖片

——如何得到圓錐、圓臺、球?

(2)以類似的方法,根據圓錐、圓臺、球的結構特征,以及相關概念和表示。

5、柱體、錐體、臺體的概念及關系:

探究:棱柱、棱錐、棱臺都是多面體,它們在結構上有哪些相同點和不同點?三者的關系如何?當底面發生變化時,它們能否互相轉化?

圓柱、圓錐、圓臺呢?

6、簡單組合體的結構特征:

(1)簡單組合體的構成:由簡單幾何體拼接或截去或挖去一部分而成。

(2)實物模型演示,投影圖片——說出組成這些物體的幾何結構特征。

(3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。

(三)排難解惑,發展思維

1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)

2、棱柱的何兩個平面都可以作為棱柱的底面嗎?

3、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

(四)鞏固深化

練習:課本P7練習1、2;課本P8習題1.1第1、2、3、4、5題

(五)歸納整理:由學生整理學習了哪些內容

怎么寫高一數學教案篇3

課題:

人教版全日制普通高級中學教科書數學第一冊(上)《2.7對數》

教材分析:

本節內容主要學習對數的概念及其對數式與指數式的互化。它屬于函數領域的知識。而對數的概念是對數函數部分教學中的核心概念之一,而函數的思想方法貫穿在高中數學教學的始終。通過對數的學習,可以解決數學中知道底數和冪值求指數的問題,以及對數函數的相關問題。

學情分析:

在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學生認知的角度自然就產生了這樣的需要。因此,在前面學習指數的基礎上學習對數的概念是水到渠成的事。

教學目標:

(一)教學知識點:

1.對數的概念。

2.對數式與指數式的互化。

(二)能力目標:

1.理解對數的概念。

2.能夠進行對數式與指數式的互化。

(三)德育滲透目標:

1.認識事物之間的相互聯系與相互轉化,

2.用聯系的觀點看問題。

教學重點與難點:

重點是對數定義,難點是對數概念的理解。

怎么寫高一數學教案篇4

教學目標

1.掌握平面向量的數量積及其幾何意義;

2.掌握平面向量數量積的重要性質及運算律;

3.了解用平面向量的數量積可以處理垂直的問題;

4.掌握向量垂直的條件.

教學重難點

教學重點:平面向量的數量積定義

教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

教學過程

1.平面向量數量積(內積)的定義:已知兩個非零向量a與b,它們的夾角是θ,

則數量|a||b|cosq叫a與b的數量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).

并規定0向量與任何向量的數量積為0.

×探究:1、向量數量積是一個向量還是一個數量?它的符號什么時候為正?什么時候為負?

2、兩個向量的數量積與實數乘向量的積有什么區別?

(1)兩個向量的數量積是一個實數,不是向量,符號由cosq的符號所決定.

(2)兩個向量的數量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數量的積,書寫時要嚴格區分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替.

(3)在實數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0.

怎么寫高一數學教案篇5

一、教學目標:

掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

二、教學重點:

向量的性質及相關知識的綜合應用。

三、教學過程:

(一)主要知識:

掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略

四、小結:

1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,

2、滲透數學建模的思想,切實培養分析和解決問題的能力。

怎么寫高一數學教案篇6

一、教學目標

1、知識與技能

(1)通過實物操作,增強學生的直觀感知。

(2)能根據幾何結構特征對空間物體進行分類。

(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

(4)會表示有關于幾何體以及柱、錐、臺的分類。

2、過程與方法

(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。

(2)讓學生觀察、討論、歸納、概括所學的知識。

3、情感態度與價值觀

(1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

(2)培養學生的空間想象能力和抽象括能力。

二、教學重點、難點

重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。難點:柱、錐、臺、球的結構特征的概括。

三、教學用具

(1)學法:觀察、思考、交流、討論、概括。

(2)實物模型、投影儀四、教學思路

(一)創設情景,揭示課題

1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。

2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。

(二)、研探新知

1、引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。

2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?

3、組織學生分組討論,每小組選出一名同學發表本組討論結果。在此基礎上得出棱柱的主要結構特征。

(1)有兩個面互相平行;

(2)其余各面都是平行四邊形;

(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

4、教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。

5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類?

請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

6、以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

7、讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。

8、引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

9、教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。

10、現實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

(三)質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。

1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)

2、棱柱的何兩個平面都可以作為棱柱的底面嗎?

3、課本P8,習題1.1A組第1題。

4、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

5、棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

怎么寫高一數學教案篇7

教學類型:探究研究型

設計思路:通過一系列的猜想得出德.摩根律,但是這個結論僅僅是猜想,數學是一門科學,所以需要論證它的正確性,因此本節通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應用,因此我們制作了本微課.

教學過程:

一、片頭

內容:現在讓我們一起來學習《集合的運算——自己探索也能發現的&39;數學規律(第二講)》。

二、正文講解

1.引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發現。”

上節課老師和大家學習了集合的運算,得出了一個有趣的規律。課后,你舉例驗證了這個規律嗎?

那么,這個規律是偶然的,還是一個恒等式呢?

2.規律的驗證:

試用集合A,B的交集、并集、補集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗證猜想的正確性使用

3.抽象概括:通過我們的觀察和驗證,我們發現這個規律是一個恒等式。

而這個規律就是180年前的英國數學家德摩根發現的。

為了紀念他,我們將它稱為德摩根律。

原來我們通過自己的探索也能發現這么偉大的數學規律。

4.例題應用:使用例題形式,將的德摩根定律的結論加以應用,讓學生更加熟悉集合的運算

三、結尾

通過這在道題的解答,我們發現德摩根律為解答集合運算問題提供了更為簡便的方法。

希望你在今后的學習中,勇于探索,發現更多有趣的規律。

52608 主站蜘蛛池模板: 济南网站策划设计_自适应网站制作_H5企业网站搭建_济南外贸网站制作公司_锐尚 | 知网论文检测系统入口_论文查重免费查重_中国知网论文查询_学术不端检测系统 | 苏州工作服定做-工作服定制-工作服厂家网站-尺品服饰科技(苏州)有限公司 | 齿辊分级破碎机,高低压压球机,立式双动力磨粉机-郑州长城冶金设备有限公司 | 合肥角钢_合肥槽钢_安徽镀锌管厂家-昆瑟商贸有限公司 | 铝板冲孔网,不锈钢冲孔网,圆孔冲孔网板,鳄鱼嘴-鱼眼防滑板,盾构走道板-江拓数控冲孔网厂-河北江拓丝网有限公司 | 除尘器布袋骨架,除尘器滤袋,除尘器骨架,电磁脉冲阀膜片,卸灰阀,螺旋输送机-泊头市天润环保机械设备有限公司 | 大通天成企业资质代办_承装修试电力设施许可证_增值电信业务经营许可证_无人机运营合格证_广播电视节目制作许可证 | 沈阳真空机_沈阳真空包装机_沈阳大米真空包装机-沈阳海鹞真空包装机械有限公司 | 全自动包装秤_全自动上袋机_全自动套袋机_高位码垛机_全自动包装码垛系统生产线-三维汉界机器(山东)股份有限公司 | 烘干设备-热泵烘干机_广东雄贵能源设备有限公司 | 定制防伪标签_防伪标签印刷_防伪标签厂家-510品保防伪网 | 找培训机构_找学习课程_励普教育 | MES系统工业智能终端_生产管理看板/安灯/ESOP/静电监控_讯鹏科技 | 步进电机_agv电机_伺服马达-伺服轮毂电机-和利时电机 | RS系列电阻器,RK_RJ启动调整电阻器,RQ_RZ电阻器-上海永上电器有限公司 | 广西绿桂涂料--承接隔热涂料、隔音涂料、真石漆、多彩仿石漆等涂料工程双包施工 | 隧道烘箱_隧道烘箱生产厂家-上海冠顶专业生产烘道设备 | 玻璃钢格栅盖板|玻璃钢盖板|玻璃钢格栅板|树篦子-长沙川皖玻璃钢制品有限公司 | 耳模扫描仪-定制耳机设计软件-DLP打印机-asiga打印机-fitshape「飞特西普」 | 环氧乙烷灭菌器_压力蒸汽灭菌器_低温等离子过氧化氢灭菌器 _低温蒸汽甲醛灭菌器_清洗工作站_医用干燥柜_灭菌耗材-环氧乙烷灭菌器_脉动真空压力蒸汽灭菌器_低温等离子灭菌设备_河南省三强医疗器械有限责任公司 | 民用音响-拉杆音响-家用音响-ktv专用音响-万昌科技 | 重庆LED显示屏_显示屏安装公司_重庆LED显示屏批发-彩光科技公司 重庆钣金加工厂家首页-专业定做监控电视墙_操作台 | 污水/卧式/潜水/钻井/矿用/大型/小型/泥浆泵,价格,参数,型号,厂家 - 安平县鼎千泵业制造厂 | 污水提升器,污水提升泵,污水提升装置-德国泽德(zehnder)水泵系统有限公司 | 双杰天平-国产双杰电子天平-美国双杰-常熟双杰仪器 | 南京雕塑制作厂家-不锈钢雕塑制作-玻璃钢雕塑制作-先登雕塑厂 | 齿轮减速机电机一体机_齿轮减速箱加电机一体化-德国BOSERL蜗轮蜗杆减速机电机生产厂家 | 武汉高低温试验箱_恒温恒湿试验箱厂家-武汉蓝锐环境科技有限公司 | 智能风向风速仪,风速告警仪,数字温湿仪,综合气象仪(气象五要素)-上海风云气象仪器有限公司 | 喷漆房_废气处理设备-湖北天地鑫环保设备有限公司 | 动库网动库商城-体育用品专卖店:羽毛球,乒乓球拍,网球,户外装备,运动鞋,运动包,运动服饰专卖店-正品运动品网上商城动库商城网 - 动库商城 | 黑龙江「京科脑康」医院-哈尔滨失眠医院_哈尔滨治疗抑郁症医院_哈尔滨精神心理医院 | 钢衬四氟管道_钢衬四氟直管_聚四氟乙烯衬里管件_聚四氟乙烯衬里管道-沧州汇霖管道科技有限公司 | 护栏打桩机-打桩机厂家-恒新重工| 水冷散热器_水冷电子散热器_大功率散热器_水冷板散热器厂家-河源市恒光辉散热器有限公司 | 石英粉,滑石粉厂家,山东滑石粉-莱州市向阳滑石粉有限公司 | 活性炭-蜂窝-椰壳-柱状-粉状活性炭-河南唐达净水材料有限公司 | 酸度计_PH计_特斯拉计-西安云仪 纯水电导率测定仪-万用气体检测仪-低钠测定仪-米沃奇科技(北京)有限公司www.milwaukeeinst.cn | 宽带办理,电信宽带,移动宽带,联通宽带,电信宽带办理,移动宽带办理,联通宽带办理 | LED投光灯-工矿灯-led路灯头-工业灯具 - 山东普瑞斯照明科技有限公司 |