小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學(xué)設(shè)計(jì) >

三下人教數(shù)學(xué)教案設(shè)計(jì)理念

時(shí)間: 新華 教學(xué)設(shè)計(jì)

每個(gè)數(shù)學(xué)老師都應(yīng)該讓學(xué)生學(xué)到知識(shí),愛(ài)上學(xué)習(xí),掌握學(xué)習(xí)的方法,并終身受益。每個(gè)數(shù)學(xué)老師在教學(xué)之前都應(yīng)該寫(xiě)數(shù)學(xué)教案。你是否在找正準(zhǔn)備撰寫(xiě)“三下人教數(shù)學(xué)教案設(shè)計(jì)理念”,下面小編收集了相關(guān)的素材,供大家寫(xiě)文參考!

三下人教數(shù)學(xué)教案設(shè)計(jì)理念1

教學(xué)目標(biāo)

1.等腰三角形的概念. 2.等腰三角形的性質(zhì). 3.等腰三角形的概念及性質(zhì)的應(yīng)用.

教學(xué)重點(diǎn): 1.等腰三角形的概念及性質(zhì). 2.等腰三角形性質(zhì)的應(yīng)用.

教學(xué)難點(diǎn):等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.

教學(xué)過(guò)程

Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境

在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過(guò)軸對(duì)稱變換來(lái)設(shè)計(jì)一些美麗的圖案.這節(jié)課我們就是從軸對(duì)稱的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形.來(lái)研究:①三角形是軸對(duì)稱圖形嗎?②什么樣的三角形是軸對(duì)稱圖形?

有的三角形是軸對(duì)稱圖形,有的三角形不是.

問(wèn)題:那什么樣的三角形是軸對(duì)稱圖形?

滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形.

我們這節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形.

Ⅱ.導(dǎo)入新課: 要求學(xué)生通過(guò)自己的思考來(lái)做一個(gè)等腰三角形.

作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們?cè)谧约鹤鞒龅牡妊切沃校⒚魉难⒌走叀㈨斀呛偷捉?

思考:

1.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸.

2.等腰三角形的兩底角有什么關(guān)系?

3.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?

結(jié)論:等腰三角形是軸對(duì)稱圖形.它的對(duì)稱軸是頂角的平分線所在的直線.因?yàn)榈妊切蔚膬裳嗟龋园堰@兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線.

要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系.

沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質(zhì):

1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過(guò)程獲得啟發(fā),我們可以通過(guò)作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來(lái)證明這些性質(zhì).同學(xué)們現(xiàn)在就動(dòng)手來(lái)寫(xiě)出這些證明過(guò)程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,

求:△ABC各角的度數(shù).

分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角.

把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來(lái)表示,這樣過(guò)程就更簡(jiǎn)捷.

解:因?yàn)锳B=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對(duì)等角).

設(shè)∠A=x,則 ∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過(guò)練習(xí)來(lái)鞏固這節(jié)課所學(xué)的知識(shí).

Ⅲ.隨堂練習(xí):1.課本P51練習(xí) 1、2、3. 2.閱讀課本P49~P51,然后小結(jié).

Ⅳ.課時(shí)小結(jié)

這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用.等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過(guò)這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們.

Ⅴ.作業(yè): 課本P56習(xí)題12.3第1、2、3、4題.

板書(shū)設(shè)計(jì)

12.3.1.1 等腰三角形

一、設(shè)計(jì)方案作出一個(gè)等腰三角形

二、等腰三角形性質(zhì): 1.等邊對(duì)等角 2.三線合一

三下人教數(shù)學(xué)教案設(shè)計(jì)理念2

教學(xué)目標(biāo)

1.等腰三角形的概念.2.等腰三角形的性質(zhì).3.等腰三角形的概念及性質(zhì)的應(yīng)用.

教學(xué)重點(diǎn):1.等腰三角形的概念及性質(zhì).2.等腰三角形性質(zhì)的應(yīng)用.

教學(xué)難點(diǎn):等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.

教學(xué)過(guò)程

Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境

在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過(guò)軸對(duì)稱變換來(lái)設(shè)計(jì)一些美麗的圖案.這節(jié)課我們就是從軸對(duì)稱的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形.來(lái)研究:①三角形是軸對(duì)稱圖形嗎?②什么樣的三角形是軸對(duì)稱圖形?

有的三角形是軸對(duì)稱圖形,有的三角形不是.

問(wèn)題:那什么樣的三角形是軸對(duì)稱圖形?

滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形.

我們這節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形.

Ⅱ.導(dǎo)入新課:要求學(xué)生通過(guò)自己的思考來(lái)做一個(gè)等腰三角形.

作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們?cè)谧约鹤鞒龅牡妊切沃校⒚魉难⒌走叀㈨斀呛偷捉?

思考:

1.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸.

2.等腰三角形的兩底角有什么關(guān)系?

3.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?

結(jié)論:等腰三角形是軸對(duì)稱圖形.它的對(duì)稱軸是頂角的平分線所在的直線.因?yàn)榈妊切蔚膬裳嗟龋园堰@兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線.

要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系.

沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質(zhì):

1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過(guò)程獲得啟發(fā),我們可以通過(guò)作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來(lái)證明這些性質(zhì).同學(xué)們現(xiàn)在就動(dòng)手來(lái)寫(xiě)出這些證明過(guò)程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,

求:△ABC各角的度數(shù).

分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角.

把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來(lái)表示,這樣過(guò)程就更簡(jiǎn)捷.

解:因?yàn)锳B=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對(duì)等角).

設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過(guò)練習(xí)來(lái)鞏固這節(jié)課所學(xué)的知識(shí).

Ⅲ.隨堂練習(xí):1.課本P51練習(xí)1、2、3.2.閱讀課本P

49~P51,然后小結(jié).

Ⅳ.課時(shí)小結(jié)

這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用.等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過(guò)這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們.

Ⅴ.作業(yè):課本P56習(xí)題12.3第1、2、3、4題.

板書(shū)設(shè)計(jì)

12.3.1.1等腰三角形

一、設(shè)計(jì)方案作出一個(gè)等腰三角形

二、等腰三角形性質(zhì):1.等邊對(duì)等角2.三線合一

三下人教數(shù)學(xué)教案設(shè)計(jì)理念3

教學(xué)目標(biāo)

1、理解并掌握等腰三角形的判定定理及推論

2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系.

教學(xué)重點(diǎn):等腰三角形的判定定理及推論的運(yùn)用

教學(xué)難點(diǎn):正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.

教學(xué)過(guò)程:

一、復(fù)習(xí)等腰三角形的性質(zhì)

二、新授:

I提出問(wèn)題,創(chuàng)設(shè)情境

出示投影片.某地質(zhì)專家為估測(cè)一條東西流向河流的寬度,選擇河流北岸上一棵樹(shù)(B點(diǎn))為B標(biāo),然后在這棵樹(shù)的正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時(shí),測(cè)得∠ACB為30°,這時(shí),地質(zhì)專家測(cè)得AC的長(zhǎng)度就可知河流寬度.

學(xué)生們很想知道,這樣估測(cè)河流寬度的根據(jù)是什么?帶著這個(gè)問(wèn)題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”.

II引入新課

1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB=AC嗎?

作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對(duì)的邊有什么關(guān)系?

2.引導(dǎo)學(xué)生根據(jù)圖形,寫(xiě)出已知、求證.

2、小結(jié),通過(guò)論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書(shū)定理名稱).

強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類(lèi)似于性質(zhì)定理可簡(jiǎn)稱“等角對(duì)等邊”.

4.引導(dǎo)學(xué)生說(shuō)出引例中地質(zhì)專家的測(cè)量方法的根據(jù).

III例題與練習(xí)

1.如圖2

其中△ABC是等腰三角形的是[]

2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據(jù)什么?).

②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.

④若已知AD=4cm,則BC______cm.

3.以問(wèn)題形式引出推論l______.

4.以問(wèn)題形式引出推論2______.

例:如果三角形一個(gè)外角的平分線平行于三角形的一邊,求證這個(gè)三角形是等腰三角形.

分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫(xiě)出已知、求證,并分析證明.

練習(xí):5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點(diǎn)F,過(guò)F作DE//BC,交AB于點(diǎn)D,交AC于E.問(wèn)圖中哪些三角形是等腰三角形?

(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

練習(xí):P53練習(xí)1、2、3。

IV課堂小結(jié)

1.判定一個(gè)三角形是等腰三角形有幾種方法?

2.判定一個(gè)三角形是等邊三角形有幾種方法?

3.等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?

4.現(xiàn)在證明線段相等問(wèn)題,一般應(yīng)從幾方面考慮?

V布置作業(yè):P56頁(yè)習(xí)題12.3第5、6題

三下人教數(shù)學(xué)教案設(shè)計(jì)理念4

教學(xué)目標(biāo):

1、使學(xué)生理解并掌握不含括號(hào)的混合式題的運(yùn)算順序,自主、熟練的計(jì)算含有乘除混合的三步計(jì)算式題.

2、培養(yǎng)學(xué)生的學(xué)習(xí)興趣,養(yǎng)成認(rèn)真審題、仔細(xì)驗(yàn)算的良好習(xí)慣。

教學(xué)重點(diǎn):

使學(xué)生掌握混合運(yùn)算順序,能熟練地進(jìn)行計(jì)算。

教學(xué)難點(diǎn):

幫助學(xué)生利用知識(shí)的遷移,探索混合運(yùn)算的運(yùn)算順序。

教學(xué)過(guò)程:

一、口算引入

1、計(jì)算:140×3+280   400—400÷8

以上各式中都含有哪些運(yùn)算?它們的運(yùn)算順序是什么?

使學(xué)生明確:當(dāng)只有加減或乘除法時(shí),按從左到右的順序計(jì)算;當(dāng)既有乘除法又有加減法,要先算乘法或除法,再算加法或減法。

學(xué)生練習(xí),指名板演。

2、今天我們繼續(xù)學(xué)習(xí)混和運(yùn)算。

板書(shū):不帶括號(hào)的混和運(yùn)算。

二、教學(xué)新課

1、學(xué)習(xí)例題。

媒體出示例題:一副中國(guó)象棋12元。一副圍棋15元。購(gòu)買(mǎi)3副中國(guó)象棋和4副圍棋。一共要付多少元?

(1)請(qǐng)學(xué)生讀題,教師提問(wèn):你看出了哪些已知條件?你認(rèn)為要想求出一共要付的錢(qián)數(shù),應(yīng)該先求出什么?你能列出綜合算式嗎?

學(xué)生列式:12×3+15×4或15×4+12×3

那這樣列式應(yīng)該先算什么?應(yīng)該按怎樣的運(yùn)算順序計(jì)算,才能先求出買(mǎi)3副中國(guó)象棋和4副圍棋用去的錢(qián)?

(2)學(xué)生分小組討論上述問(wèn)題并匯報(bào)。

(3)師:在沒(méi)有括號(hào)的混合運(yùn)算中應(yīng)該先算乘除,后算加減。學(xué)生在書(shū)上完成。

2、試一試:150+120÷6×5。

學(xué)生在書(shū)上獨(dú)立完成,指明說(shuō)一說(shuō)是怎樣計(jì)算的?

在計(jì)算120÷6×5,為什么應(yīng)該先算120÷6,而不先算6×5呢?你們是按怎樣的運(yùn)算順序計(jì)算的?

通過(guò)剛才兩道混合運(yùn)算的解答,你能總結(jié)一下沒(méi)有括號(hào)的三步混合運(yùn)算順序是怎樣的嗎? 使學(xué)生明確:在一道既有乘除法又有加減法的混合式題里,應(yīng)先算乘除法,后算加減法;乘除連在一起,或加減連在一起,要從左往右依次計(jì)算。

三、鞏固練習(xí)

1、“想想做做”1。

學(xué)生獨(dú)立完成,展示個(gè)別學(xué)生作業(yè)。

注意強(qiáng)調(diào)運(yùn)算順序和書(shū)寫(xiě)格式.要明確:在沒(méi)有括號(hào)的三步混合運(yùn)算式題里,要先算乘除后算加減法。

2、說(shuō)出運(yùn)算順序,并口算出計(jì)算結(jié)果。

48÷4+2×4

48÷4+20÷4

48-4+2×4

48+4+2×4

3、“想想做做”5。

學(xué)生先列式解答,再交流、匯報(bào)思考過(guò)程和解題方法。

四、課堂小結(jié)

五、布置作業(yè)

“想想做做”6。

三下人教數(shù)學(xué)教案設(shè)計(jì)理念5

教學(xué)目標(biāo):

讓學(xué)生經(jīng)歷聯(lián)系生活中的問(wèn)題來(lái)進(jìn)行除法和加、減法的運(yùn)算過(guò)程,獲得解決問(wèn)題的經(jīng)驗(yàn),體會(huì)除法和加、減的混合運(yùn)算的計(jì)算順序,我根據(jù)本節(jié)課內(nèi)容在教材中的地位與作用及小學(xué)生的認(rèn)知水平,確定本節(jié)課的教學(xué)目標(biāo)。

1.知識(shí)與技能:列綜合算式解決兩步計(jì)算的問(wèn)題,掌握四則混合運(yùn)算的順序。

2.過(guò)程與方法:掌握混合運(yùn)算計(jì)算過(guò)程,能熟練計(jì)算,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

3.情感態(tài)度與價(jià)值觀:初步感受混合運(yùn)算與現(xiàn)實(shí)生活的密切聯(lián)系,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值。

教學(xué)重點(diǎn):

探索并掌握含有除法和加、減法的混合運(yùn)算的運(yùn)算順序。

教學(xué)難點(diǎn):

對(duì)、加、減、乘、除四則混合運(yùn)算能夠正確計(jì)算。

教法學(xué)法:

1.針對(duì)本節(jié)課的教學(xué)內(nèi)容以及小學(xué)生的特點(diǎn),我主要采用聯(lián)系生活實(shí)際進(jìn)行情景創(chuàng)設(shè),引導(dǎo)學(xué)生討論交流和小組合作法,并運(yùn)用計(jì)算機(jī)多媒體教學(xué)課件輔助教學(xué)。采用這些方法及手段,以激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。培養(yǎng)了學(xué)生獨(dú)立獲取知識(shí)的能力。

2.小組合作學(xué)習(xí)。學(xué)生通過(guò)小組內(nèi)交流從題目中獲得的數(shù)學(xué)信息,說(shuō)說(shuō)解題思路,來(lái)解決實(shí)際問(wèn)題。

3.學(xué)生通過(guò)獨(dú)立列式計(jì)算,交流計(jì)算順序和結(jié)果,提高學(xué)生的計(jì)算能力。

教學(xué)過(guò)程:

一、創(chuàng)設(shè)情境,誘發(fā)興趣

(1)出示7×6+24,指名學(xué)生板演計(jì)算,總結(jié)運(yùn)算順序。

(2)課件出示例2.

(3)找出例2中的數(shù)學(xué)信息,引導(dǎo)學(xué)生提出問(wèn)題。

(4)在同學(xué)們提的問(wèn)題中選擇“每個(gè)足球比籃球多多少元?”來(lái)研究。

二、學(xué)生交流、合作、探索、歸納方法。

(1)鼓勵(lì)學(xué)生探究

師:關(guān)于這一節(jié)的問(wèn)題,每個(gè)足球比籃球多多少元?老師想放手讓同學(xué)們自己解決,依托小組的力量,先獨(dú)立思考,再交流分享自己的觀點(diǎn)。

生:學(xué)生獨(dú)立思考,小組合作交流,教師參與其中收集信息。

(2)學(xué)生代表匯報(bào)本組內(nèi)的發(fā)現(xiàn),教師補(bǔ)充,教師引導(dǎo)學(xué)生說(shuō)出計(jì)算步驟,和書(shū)寫(xiě)格式。

(3)及時(shí)總結(jié):在一個(gè)算式里既有除法也有加減法,我們應(yīng)該按怎樣的順序計(jì)算。(先算除法,再算加減法。)

三、鞏固拓展 強(qiáng)化新知

(1)課件出示算式,147-72÷6   327-56+78   56÷8×15  32×3+37

學(xué)生說(shuō)說(shuō)計(jì)算順序。

(2)給計(jì)算順序分類(lèi),(含有同一級(jí)運(yùn)算的按從左到右的順序計(jì)算,含有兩級(jí)運(yùn)算的按先乘除,后加減的順序計(jì)算。)

(3)畫(huà)出第一步計(jì)算什么,再計(jì)算。

設(shè)計(jì)意圖:練習(xí)時(shí)按照,先說(shuō)計(jì)算順序,再畫(huà)出第一步計(jì)算什么,最后計(jì)算的模式進(jìn)行練習(xí),這樣學(xué)生有說(shuō)到做,明確了計(jì)算順序,提高了計(jì)算能力。

四、歸納總結(jié)

(1)今天你有什么收獲?

含有同一級(jí)運(yùn)算的按從左到右的順序計(jì)算,含有兩級(jí)運(yùn)算的按先乘除,后加減的順序計(jì)算。

(2)你還有什么不明白的?

板書(shū)設(shè)計(jì):

除法和加、減法的混合運(yùn)算

45-70÷2

=45-35

=10(元)

1.當(dāng)綜合算式里有乘、除法和加、減法時(shí),要先算乘除,再算加減。

2. 在一個(gè)算式里,只有加減法或只有乘除法時(shí),要按照從左到右的順序進(jìn)行計(jì)算。

通過(guò)板演除法和加、減法的混合運(yùn)算的計(jì)算過(guò)程,讓學(xué)生直觀的了解除法和加、減法的混合運(yùn)算的計(jì)算順序,并及時(shí)的進(jìn)行計(jì)算順序的文字總結(jié),給計(jì)算順序分類(lèi)明確。達(dá)到學(xué)生正確計(jì)算的目的。

數(shù)學(xué)教案相關(guān)文章:

2021五年級(jí)公開(kāi)課數(shù)學(xué)教案

《認(rèn)識(shí)圖形》一年級(jí)數(shù)學(xué)上冊(cè)教案

四年級(jí)數(shù)學(xué)課堂教案

小學(xué)教案模板

2022青島版四年級(jí)數(shù)學(xué)上冊(cè)教案

高中教案模板

小學(xué)教案模板

23486 主站蜘蛛池模板: 武汉EPS线条_EPS装饰线条_EPS构件_湖北博欧EPS线条厂家 | 小型手持气象站-空气负氧离子监测站-多要素微气象传感器-山东天合环境科技有限公司 | 电动打包机_气动打包机_钢带捆扎机_废纸打包机_手动捆扎机 | 高博医疗集团上海阿特蒙医院 | 齿轮减速机_齿轮减速电机-VEMT蜗轮蜗杆减速机马达生产厂家瓦玛特传动瑞环机电 | 标准件-非标紧固件-不锈钢螺栓-非标不锈钢螺丝-非标螺母厂家-三角牙锁紧自攻-南京宝宇标准件有限公司 | 低温等离子清洗机(双气路进口)-嘉润万丰 | 渗透仪-直剪仪-三轴仪|苏州昱创百科| 锂离子电池厂家-山东中信迪生电源| 成都亚克力制品,PVC板,双色板雕刻加工,亚克力门牌,亚克力标牌,水晶字雕刻制作-零贰捌广告 | 亚克力制品定制,上海嘉定有机玻璃加工制作生产厂家—官网 | 东莞爱加真空科技有限公司-进口真空镀膜机|真空镀膜设备|Polycold维修厂家 | 低噪声电流前置放大器-SR570电流前置放大器-深圳市嘉士达精密仪器有限公司 | 不锈钢螺丝 - 六角螺丝厂家 - 不锈钢紧固件 - 万千紧固件--紧固件一站式采购 | 杭州顺源过滤机械有限公司官网-压滤机_板框压滤机_厢式隔膜压滤机厂家 | 电动不锈钢套筒阀-球面偏置气动钟阀-三通换向阀止回阀-永嘉鸿宇阀门有限公司 | 手术室净化装修-手术室净化工程公司-华锐手术室净化厂家 | 智能案卷柜_卷宗柜_钥匙柜_文件流转柜_装备柜_浙江福源智能科技有限公司 | 企业微信营销_企业微信服务商_私域流量运营_艾客SCRM官网 | 定时排水阀/排气阀-仪表三通旋塞阀-直角式脉冲电磁阀-永嘉良科阀门有限公司 | 等离子空气净化器_医用空气消毒机_空气净化消毒机_中央家用新风系统厂家_利安达官网 | 消防泵-XBD单级卧式/立式消防泵-上海塑泉泵阀(集团)有限公司 | 硬质合金模具_硬质合金非标定制_硬面加工「生产厂家」-西迪技术股份有限公司 | 气体热式流量计-定量控制流量计(空气流量计厂家)-湖北南控仪表科技有限公司 | 深圳网站建设-高端企业网站开发-定制网页设计制作公司 | 广州食堂承包_广州团餐配送_广州堂食餐饮服务公司 - 旺记餐饮 | 房间温控器|LonWorks|海思| 上海律师咨询_上海法律在线咨询免费_找对口律师上策法网-策法网 广东高华家具-公寓床|学生宿舍双层铁床厂家【质保十年】 | 济南网站建设_济南网站制作_济南网站设计_济南网站建设公司_富库网络旗下模易宝_模板建站 | 广域铭岛Geega(际嘉)工业互联网平台-以数字科技引领行业跃迁 | 自动螺旋上料机厂家价格-斗式提升机定制-螺杆绞龙输送机-杰凯上料机 | 安全阀_弹簧式安全阀_美标安全阀_工业冷冻安全阀厂家-中国·阿司米阀门有限公司 | 湖南教师资格网-湖南教师资格证考试网 | 超声波焊接机_超音波熔接机_超声波塑焊机十大品牌_塑料超声波焊接设备厂家 | 电动球阀_不锈钢电动球阀_电动三通球阀_电动调节球阀_上海湖泉阀门有限公司 | 骨灰存放架|骨灰盒寄存架|骨灰架厂家|智慧殡葬|公墓陵园管理系统|网上祭奠|告别厅智能化-厦门慈愿科技 | 双段式高压鼓风机-雕刻机用真空泵-绍兴天晨机械有限公司 | 沈阳液压泵_沈阳液压阀_沈阳液压站-沈阳海德太科液压设备有限公司 | 钢托盘,钢制托盘,立库钢托盘,金属托盘制造商_南京飞天金属制品实业有限公司 | 闪蒸干燥机-喷雾干燥机-带式干燥机-桨叶干燥机-[常州佳一干燥设备] | 特种电缆厂家-硅橡胶耐高温电缆-耐低温补偿导线-安徽万邦特种电缆有限公司 |