小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

免費下載高中數學教案

時間: 新華 數學教案

教案可以幫助教師根據學生的實際情況,面向大多數學生,并調動學生學習的積極性。優秀的免費下載高中數學教案是怎么寫的?小編給大家整理了免費下載高中數學教案,希望對大家有所幫助。

免費下載高中數學教案篇1

教學目標:明確等差數列的定義,掌握等差數列的通項公式,會解決知道an,a1,d,n中的三個,求另外一個的問題;培養學生觀察能力,進一步提高學生推理、歸納能力,培養學生的&39;應用意識.

教學重點:1.等差數列的概念的理解與掌握.2.等差數列的通項公式的推導及應用.教學難點:等差數列“等差”特點的理解、把握和應用.教學過程:

Ⅰ.復習回顧上兩節課我們共同學習了數列的定義及給出數列的兩種方法——通項公式和遞推公式.這兩個公式從不同的角度反映數列的特點,下面我們看這樣一些例子

Ⅱ.講授新課10,8,6,4,2,…;21,21,22,22,23,23,24,24,252,2,2,2,2,…首先,請同學們仔細觀察這些數列有什么共同的&39;特點?是否可以寫出這些數列的通項公式?(引導學生積極思考,努力尋求各數列通項公式,并找出其共同特點)它們的共同特點是:從第2項起,每一項與它的前一項的“差”都等于同一個常數.也就是說,這些數列均具有相鄰兩項之差“相等”的特點.具有這種特點的數列,我們把它叫做等差數列.

1.定義等差數列:一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示.

2.等差數列的通項公式等差數列定義是由一數列相鄰兩項之間關系而得.若一等差數列{an}的首項是a1,公差是d,則據其定義可得:(n-1)個等式若將這n-1個等式左右兩邊分別相加,則可得:an-a1=(n-1)d即:an=a1+(n-1)d當n=1時,等式兩邊均為a1,即上述等式均成立,則對于一切n∈N-時上述公式都成立,所以它可作為數列{an}的通項公式.看來,若已知一數列為等差數列,則只要知其首項a1和公差d,便可求得其通項.由通項公式可類推得:am=a1+(m-1)d,即:a1=am-(m-1)d,則:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d

請同學們來思考這樣一個問題.如果在a與b中間插入一個數A,使a、A、b成等差數列,那么A應滿足什么條件?由等差數列定義及a、A、b成等差數列可得:A-a=b-A,即:a=.反之,若A=,則2A=a+b,A-a=b-A,即a、A、b成等差數列.總之,A=a,A,b成等差數列.如果a、A、b成等差數列,那么a叫做a與b的等差中項.例題講解[

例1]在等差數列{an}中,已知a5=10,a15=25,求a25.

思路一:根據等差數列的已知兩項,可求出a1和d,然后可得出該數列的通項公式,便可求出a25.

思路二:若注意到已知項為a5與a15,所求項為a25,則可直接利用關系式an=am+(n-m)d.這樣可簡化運算.思路三:若注意到在等差數列{an}中,a5,a15,a25也成等差數列,則利用等差中項關系式,便可直接求出a25的值.

[例2](1)求等差數列8,5,2…的第20項.分析:由給出的三項先找到首項a1,求出公差d,寫出通項公式,然后求出所要項

答案:這個數列的第20項為-49.(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?分析:要想判斷-401是否為這數列的一項,關鍵要求出通項公式,看是否存在正整數n,可使得an=-401.∴-401是這個數列的第100項.

Ⅲ.課堂練習

1.(1)求等差數列3,7,11,……的&39;第4項與第10項.

(2)求等差數列10,8,6,……的第20項.(3)100是不是等差數列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由.2.在等差數列{an}中,

(1)已知a4=10,a7=19,求a1與d;

(2)已知a3=9,a9=3,求a12.

Ⅳ.課時小結通過本節學習,首先要理解與掌握等差數列的定義及數學表達式:an-an-1=d(n≥2).其次,要會推導等差數列的通項公式:an=a1+(n-1)d(n≥1),并掌握其基本應用.最后,還要注意一重要關系式:an=am+(n-m)d的理解與應用以及等差中項。

Ⅴ.課后作業課本P39習題1,2,3,4

免費下載高中數學教案篇2

教學目標:

1、橢圓是圓錐曲線的一種,是高中數學教學中的重點和難點,所以這部分內容中的知識點學生必須達到理解、應用的水平;

2、利用投影、計算機模擬動點的運動,增強直觀性,激勵學生的學習動機,培養學生的數學想象和抽象思維能力。

教學重點:對橢圓定義的理解,其中a>c容易出錯。

教學難點:方程的推導過程。

教學過程(www.fwsir.com):

(1)復習

提問:動點軌跡的一般求法?

(通過回憶性質的提問,明示這節課所要學的內 容與原來所學知識之間的內在聯系。并為后面橢圓的標準方程的推導作好準備。)

(2)引入

舉例:橢圓是常見的圖形,如:汽車油罐的橫截面,立體幾何中圓的直觀圖,天體中,行星繞太陽運行的軌道等等;

計算機:動態演示行星運行的軌道。

(進一步使學生明確學習橢圓的重要性和必要性,借計算機形成生動的直觀,使學生印象加深,以便更好地掌握橢圓的形狀。)

(3)教學實施

投影:橢圓的定義:

平面內與兩個定點F1、F2的距離的和等于常數(大于F1F2)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做焦距(一般用2c表示)

常數一般用2表示。(講解定義時要注意條件:)

計算機:動態模擬動點軌跡的形成過程。

提問:如何求軌跡的方程?

(引導學生推導橢圓的標準方程)

板書:橢圓的標準方程的推導過程。(略)

(推導中注意:1)結合已畫出的圖形建立坐標系,容易為學生所接受;2)在推導過程中,要抓住“怎樣消去方程中的根式”這一關鍵問題,演算雖較繁,也能迎刃而解;3)其中焦點為F1(,0)、F2(c,0),;4)如果焦點在軸上,焦點為F1(0,)、F2(0,c),只要將方程中,互換就可得到它的`方程)

投影:橢圓的標準方程:

()

()    

投影:例1平面內兩個定點的距離是8,寫出到這兩個定點的距離的和是10的點的軌跡方程

(由橢圓的定義可知:所求軌跡為橢圓;則只要求出、、即可)

形成性練習:課本P74:2,3

(4)小結    本節課學習了橢圓的定義及標準方程,應注意以下幾點:

①橢圓的定義中,

②橢圓的標準方程中,焦點的位置看,的分母大小來確定

③、、的幾何意義

(5)作業

P80:2,4(1)(3)

免費下載高中數學教案篇3

一、教學內容分析

圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象,恰當地利用定義解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

二、學生學習情況分析

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

三、設計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率。

四、教學目標

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3、借助多媒體輔助教學,激發學習數學的興趣。

五、教學重點與難點:

教學重點

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學難點:

巧用圓錐曲線定義解題

六、教學過程設計

【設計思路】

(一)開門見山,提出問題

一上課,我就直截了當地給出例題1:

(1)已知A(-2,0),B(2,0)動點M滿足MA+MB=2,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)線段(D)不存在

(2)已知動點M(x,y)滿足(x1)2(y2)23x4y,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

【設計意圖】

定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

【學情預設】

估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25

這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子3x4y5入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。

(二)理解定義、解決問題

例2:

(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。

(2)在(1)的條件下,給定點P(-2,2),求PA

【設計意圖】

運用圓錐曲線定義中的數量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。

【學情預設】

根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯系起來,這樣就容易和第二定義聯系起來,從而找到解決本題的突破口。

(三)自主探究、深化認識

如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會。

練習:

設點Q是圓C:(x1)2225AB的最小值。3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。

引申:若將點A移到圓C外,點M的軌跡會是什么?

【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,

可借助“多媒體課件”,引導學生對自己的結論進行驗證。

【知識鏈接】

(一)圓錐曲線的定義

1、圓錐曲線的第一定義

2、圓錐曲線的統一定義

(二)圓錐曲線定義的應用舉例

1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。

2、PF1PF22P為等軸雙曲線x2y2a2上一點,F1、F2為兩焦點,O為雙曲線的中心,求的PO取值范圍。

3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。

4、例題:

(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求MA+MF的最小值。

(2)已知A(,3)為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當AMMF最小時,求M點的坐標。

(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使PM+FM最小。

5、已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求MA+MB的最小值與最大值。

七、教學反思

1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。

2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。

總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。

免費下載高中數學教案篇4

2。2。1等差數列學案

一、預習問題:

1、等差數列的定義:一般地,如果一個數列從起,每一項與它的前一項的差等于同一個,那么這個數列就叫等差數列,這個常數叫做等差數列的,通常用字母表示。

2、等差中項:若三個數組成等差數列,那么A叫做與的,

即或。

3、等差數列的.單調性:等差數列的公差時,數列為遞增數列;時,數列為遞減數列;時,數列為常數列;等差數列不可能是。

4、等差數列的通項公式:。

5、判斷正誤:

①1,2,3,4,5是等差數列;()

②1,1,2,3,4,5是等差數列;()

③數列6,4,2,0是公差為2的等差數列;()

④數列是公差為的等差數列;()

⑤數列是等差數列;()

⑥若,則成等差數列;()

⑦若,則數列成等差數列;()

⑧等差數列是相鄰兩項中后項與前項之差等于非零常數的數列;()

⑨等差數列的公差是該數列中任何相鄰兩項的差。()

6、思考:如何證明一個數列是等差數列。

二、實戰操作:

例1、(1)求等差數列8,5,2,的第20項。

(2)是不是等差數列中的項?如果是,是第幾項?

(3)已知數列的公差則

例2、已知數列的通項公式為,其中為常數,那么這個數列一定是等差數列嗎?

例3、已知5個數成等差數列,它們的和為5,平方和為求這5個數。

免費下載高中數學教案篇5

一、教材的地位和作用

本節課是 “空間幾何體的三視圖和直觀圖”的第一課時,主要內容是投影和三視圖,這部分知識是立體幾何的基礎之一,一方面它是對上一節空間幾何體結構特征的再一次強化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎和訓練學生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內容之一,常常結合給出的三視圖求給定幾何體的表面積或體積設置在選擇或填空中。同時,三視圖在工程建設、機械制造中有著廣泛應用,同時也為學生進入高一層學府學習有很大的幫助。所以在人們的日常生活中有著重要意義。

二、教學目標

(1) 知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進一步熟悉簡單幾何體的結構特征。

(2)過程與方法:通過直觀感知,操作確認,提高學生的空間想象能力、幾何直觀能力,培養學生的應用意識。

(3)情感、態度與價值觀:讓感受數學就在身邊,提高學生學習立體幾何的興趣,培養學生相互交流、相互合作的精神。

三、設計思路

本節課的主要任務是引導學生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復雜過程。直觀感知操作確認是新課程幾何課堂的一個突出特點,也是這節課的設計思路。通過大量的多媒體直觀,實物直觀使學生獲得了對三視圖的感性認識,通過學生的觀察思考,動手實踐,操作練習,實現認知從感性認識上升為理性認識。培養學生的空間想象能力,幾何直觀能力為學習立體幾何打下基礎。

教學的重點、難點

(一)重點:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應遵循的“長對正、高平齊、寬相等”的原則。

(二)難點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。

四、學生現實分析

本節首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學生具有這方面的直接經驗和基礎。投影和三視圖雖為高中新增內容,但學

生在初中有一定基礎,在七年級上冊 “從不同方向看”的基礎上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進入高中后特別是再次學習和認識了柱、錐、臺等幾何體的概念后,學生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側視圖、俯視圖的概念。這些概念的變化也說明了學生年齡特點和思維差異

五、教學方法

(1)教學方法及教學手段

針對本節課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學法、啟導發現法。

在教學中,通過創設問題情境,充分調動學生學習的積極性和主動性,并引導啟發學生動眼、動腦、動手.同時采用多媒體的教學手段,加強直觀性和啟發性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。

(2)學法指導

力爭在新課程要求的大背景下組織教學,為學生創設良好的問題情境,留給學生充分的思考空間,在學生的辯證和討論前提下,發揮教師的概括和引領的作用。

六、教學過程

(一)創設情境,引出課題

通過攝影作品及汽車設計圖紙引出問題

1.照相、繪畫之所以有空間視覺效果,主要處決于線條、明暗和色彩,其中對線條畫法的基本原理是一個幾何問題,我們需要學習這方面的知識。

2.在建筑、機械等工程中,需要用平面圖形反映空間幾何體的形狀和大小,在作圖技術上這也是一個幾何問題,你想知道這方面的基礎知識嗎?

設計意圖:通過攝影作品及汽車設計圖紙的展示引出問題1,2,從貼近生活的實例入手,給學生以視覺沖擊,引領學生進入本節課的內容。

引出課題:投影與三視圖

知識探究(一):中心投影與平行投影

光是直線傳播的,一個不透明物體在光的照射下,在物體后面的屏幕上會留下這個物體的影子,這種現象叫做投影。其中的光線叫做投影線,留下物體影子的屏幕叫做投影面。

思考1:不同的光源發出的光線是有差異的,其中燈泡發出的光線與手電筒發出的光線有什么

不同?

思考2:我們把光由一點向外散射形成的投影叫做中心投影,把在一束平行光線照射下形成的投影叫做平行投影,那么用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?

思考3:用燈泡照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關系?當物體與燈泡的距離發生變化時,影子的大小會有什么不同?

思考4:用手電筒照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關系?當物體與手電筒的距離發生變化時,影子的大小會有變化嗎?

思考5:在平行投影中,投影線正對著投影面時叫做正投影,否則叫做斜投影.一個與投影面平行的平面圖形,在正投影和斜投影下的形狀、大小是否發生變化?

思考6:一個與投影面不平行的平面圖形,在正投影和斜投影下的形狀、大小是否發生變化? 師生活動:學生思考,討論,教師歸納總結。

設計意圖:講解投影,投影線,投影面,讓學生了解投影式如何形成的。通過六個思考層層深入,學生在思考討論的過程中總結出投影的分類及每種投影的特點。

知識探究(二):柱、錐、臺、球的三視圖

把一個空間幾何體投影到一個平面上,可以獲得一個平面圖形。但只有一個平面圖形難以把握幾何體的全貌,因此我們需要從多個角度進行投影,這樣就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側面和上面。

從不同的角度看建筑

問題1:要很好地描繪這幢房子,需要從哪些方向去看?

問題2:如果要建造房子,你是工程師,需要給施工員提供哪幾種圖紙?

設計意圖:通過觀察大樓的圖片,提出問題1,2,這種設計更易于讓學生接受,說明數學與生活密不可分。

給出三視圖的含義:

(1)光線從幾何體的前面向后面正投影得到的投影圖,叫做幾何體的正視圖;

(2)光線從幾何體的左面向右面正投影得到的投影圖,叫做幾何體的側視圖;

(3)光線從幾何體的上面向下面正投影得到的投影圖,叫做幾何體的俯視圖;

(4)幾何體的正視圖、側視圖、俯視圖統稱為幾何體的三視圖。

思考1 :正視圖、側視圖、俯視圖分別是從幾何體的哪三個角度觀察得到的幾何體的正投影圖?它們都是平面圖形還是空間圖形?

思考2 :如圖,設長方體的長、寬、高分別為a、b、c ,那么其三視圖分別是什么?

一個幾何體的正視圖和側視圖的高度一樣,俯視圖和正視圖的的長度一樣,側視圖和俯視圖的寬度一樣。

思考3 :圓柱、圓錐、圓臺的三視圖分別是什么?

思考4 :一般地,一個幾何體的正視圖、側視圖和俯視圖的長度、寬度和高度有什么關系? 師生活動:分小組討論,動手操作來完成思考題。

設計意圖:通過多媒體的動態演示,對學生的結論進行驗證,大概花15分鐘的時間來完成這部分的教學。學生自主歸納總結將本節課的重點化解。

長對正,高平齊,寬相等

免費下載高中數學教案篇6

教學主題:

主要涉及到簡單排列組合問題,相同元素和不同元素排列組合問題。

捆綁法插空法特殊元素法特殊位置法定序法分組分配

教學內容及分析:

排列組合問題是高中數學知識的一個重要組成部分,在高考中也是必考內容,難度一般在中等偏上,只要掌握的排列組合的幾種典型方法,就能快速理解題型題意,快速找到突破口,對癥下藥,事半功倍,關鍵是要把握住什么題型用什么方法,通過題型對比分析相同點和不同點,區分易錯的,難點。另外,排列組合在適應新高考有著天然出題優勢,因為排列組合更貼近顯示生活,可以把我們課本上的抽象概念和數學公式和實際生活聯系起來,數學知識走進生活,知識來與是但高于生活,最后回歸于生活,才是我們學習知識,專研學問的立足點。本文就對數學中概率統計中的一小點內容——排列組合,做一個簡單的對比分析。

教學對象及特點:

排列組合在高中數學選修2—3。人教版教材,高二的學生在日常生活中,有很多需要用排列組合來解決的知識。作為二年級的學生,已有了一定的生活經驗及解決問題的能力。因此,在設計中,我通過創設一個完整的、有趣的生活情境來進行教學,力求使學生在經歷日常生活最簡單的事例中體驗到重要的數學思想方法,從而也感受到數學思想也是依托于生活,來源于生活,是有生命活力的。

教學目標:

基于對教材的理解,我把本節課的教學重點定為:在經歷簡單事物排列與組合規律的過程中體會排列與組合的數學思想。教學難點定為:培養學生全面有序的思考問題的意識。通過觀察、猜測、比較、實驗等活動,培養學生學習初步的觀察、分析能力和有序、全面地思考問題的意識。培養學生大膽猜想、積極思維的學習方法,使學生感受學習數學的快樂,進一步激發學生學習數學的興趣。

教學過程:

一、排列問題

例1:有4個男生,5個女生站隊,在下列條件下,有多少種情況?

(1)9個人全部站成一排;

(2)9個人站成兩排,前排站4人,后排站5人;

(3)9個人全部站一排,全部女生站在一起;(捆綁法)

(4)9個人全部站一排,全部男生都不相鄰;(插空法)

(5)9個人全部站一排,甲乙相鄰,丙丁不相鄰;

(6)9個人全部站一排,甲不在兩端;(特殊元素法,特殊位置法)

(7)9個人全部站一排,甲不在最左邊,乙不在最右邊;

(8)9個人全部站一排,甲在乙的左邊,可以不相鄰;(定序)

(9)9個人全部站一排,甲在乙的前面,乙在丙的前面,可以不相鄰;

(10)9個人全部站一排,甲在乙和丙的中間,可以不相鄰;

二、組合問題

例2:有25件產品,其中5件次品,從中任取3件,在下列條件下,有多少種情況?

(1)次品甲在內;

(2)次品甲不在內;

(3)恰有1件次品;

(4)至少1件次品;

(5)至少2件次品;

三、分組分配問題(不同元素)

例3:有6名學生分配到三個班級,在下列條件下,有多少種情況?

(1)隨機分配;

(2)每個班表達對一名學生的爭取意愿,6名學生實力相當;

(3)分配到三個班的人數分別為1、2、3人;

(4)分配到三個班的人數分別為1、1、4人;

(5)分配到三個班的人數分別為2、2、2人;

四、分組分配問題(相同元素)

例4:9個相同的乒乓球分給3個不同的人,在下列條件下,有多少種情況?

(1)3個人分別分到2個乒乓球,3個乒乓球,4個乒乓球;

(2)3個人分別分到2個乒乓球,2個乒乓球,5個乒乓球;

(3)3個人平均分,每人得到3個乒乓球;

(4)3個人每人至少分到1個乒乓球;

(5)3個人每個人至少分到2個乒乓球;

(6)3個人隨機分配這9個乒乓球;

五、分組分配問題(部分元素相同)

例5:有形狀大小相同,顏色不全相同的乒乓球,其中紅色乒乓球,黃色乒乓球,黑色乒乓球分別有5個,從中取出四個乒乓球排一排,在下列條件下,有多少種情況?

(1)取3個紅色乒乓球,1個黃色乒乓球;

(2)取2個紅色乒乓球,2個黃色乒乓球;

(3)取2個紅色乒乓球,1個黑色乒乓球,1個黃色乒乓球;

(4)取出的4個乒乓球中剛好3個乒乓球顏色相同;

(5)取出的4個乒乓球中剛好2個乒乓球顏色相同,其他兩個乒乓球顏色也相同;

取出的4個乒乓球中剛好2個乒乓球顏色相同,其他兩個乒乓球顏色不同;

所選技術以及技術使用的目的:選取的技術是PPT演示文稿,電子文檔,交互式電子白板,目的是能和學生共享資源,實時授課,不用邊抄題目邊講課,節約時間,集中精力。便于分享交流保存,復習資料可以打印存檔,電子檔紙質檔都可以,提高學習教學的效率。

免費下載高中數學教案篇7

一、教材分析

1.地位及作用

"余弦定理"是人教A版數學必修5主要內容之一,是解決有關斜三角形問題的兩個重要定理之一,也是初中"勾股定理"內容的直接延拓,它是三角函數一般知識和平面向量知識在三角形中的具體運用,是解可轉化為三角形計算問題的其它數學問題及生產、生活實際問題的重要工具具有廣泛的應用價值,起到承上啟下的作用。

2.教學重、難點

重點:余弦定理的證明過程和定理的簡單應用。

難點:利用向量的數量積證余弦定理的思路。

二、教學目標

知識目標:能推導余弦定理及其推論,能運用余弦定理解已知"邊,角,邊"和"邊,邊,邊"兩類三角形。

能力目標:培養學生知識的遷移能力;歸納總結的能力;運用所學知識解決實際問題的能力。

情感目標:從實際問題出發運用數學知識解決問題這個過程體驗數學在實際生活中的運用,激發學生學習數學的興趣。通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。

三、教學方法

數學課堂上首先要重視知識的發生過程,既能展現知識的`獲取,又能暴露解決問題的思維。在本節教學中,我將遵循"提出問題、分析問題、解決問題"的步驟逐步推進,以課堂教學的組織者、引導者、合作者的身份,組織學生探究、歸納、推導,引導學生逐個突破難點,師生共同解決問題,使學生在各種數學活動中掌握各種數學基本技能,初步學會從數學角度去觀察事物和思考問題,產生學習數學的愿望和興趣。

四、教學過程

本節教學中通過創設情境,充分調動學生已有的學習經驗,讓學生經歷"現實問題轉化為數學問題"的過程,發現新的知識,把學生的潛意識狀態的好奇心變為自覺求知的創新意識。又通過實際操作,使剛產生的數學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質。

幫助學生從平面幾何、三角函數、向量知識等方面進行分析討論,選擇簡潔的處理工具,引發學生的積極討論。你能夠有更好的具體的量化方法嗎?問題可轉化為已知三角形兩邊長和夾角求第三邊的問題,即:在其中已知AC=b,AB=c和A,求a.

學生對向量知識可能遺忘,注意復習;在利用數量積時,角度可能出現錯誤,出現不同的表示形式,讓學生從錯誤中發現問題,鞏固向量知識,明確向量工具的作用。同時,讓學生明確數學中的轉化思想:化未知為已知。將實際問題轉化成數學問題,引導學生分析問題。其中已知a=5,b=7,c=8,求B.

學生思考或者討論,若有同學答則順勢引出推論,若不能作答則由老師引導推出推論,然后返回解決該問題。

讓學生觀察推論的特征,討論該推論有什么用。

免費下載高中數學教案篇8

教學目標:

1、使學生通過觀察、操作、實驗等活動,找出簡單事物的排列組合規律。

2、培養學生初步的觀察、分析和推理能力以及有順序地、全面地思考問題的意識。

3、使學生感受數學在現實生活中的廣泛應用,嘗試用數學的方法來解決實際生活中的問題。使學生在數學活動中養成與人合作的良好習慣。

教學過程:

一、創設增境,激發興趣。

師:今天我們要去"數學廣角樂園"游玩,你們想去嗎?

二、操作探究,學習新知。

<一>組合問題

l、看一看,說一說

師:那我們先在家里挑選穿上漂亮的衣服吧。(課件出示主題圖)

師引導思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學生說一說)

2、想一想,擺一擺

(l)引導討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復呢?

①學生小組討論交流,老師參與小組討論。

②學生匯報

(2)引導操作:小組同學互相合作,把你們設計的穿法有序的貼在展示板上。(要求:小組長拿出學具衣服圖片、展示板)

①學生小組合作操作擺,教師巡視參與小組活動。

②學生展示作品,介紹搭配方案。

③生生互相評價。

(3)師引導觀察:

第一種方案(按上裝搭配下裝)有幾種穿法?(4種)

第二種方案(按下裝搭配上裝)有幾種穿法?(4種)

師小結:不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復、不遺漏的把所有的方法找出來。在今后的學習和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。

<二>排列問題

師:數學廣角樂園到了,不過進門之前我們必須找到開門密碼。(課件出示課件密碼門)

密碼是由1、2、3組成的兩位數.

(1)小組討論擺出不同的兩位數,并記下結果。

(2)學生匯報交流(老師根據學生的回答,點擊課件展示密碼)

(3)生生相互評價。方法一:每次拿出兩張數字卡片能擺出不同的兩位數;

方法二:固定十位上的數字,交換個位數字得到不同的兩位數;

方法三:固定個位上的數字,交換十位數字得到不同的兩位數.

師小結:三種方法雖然不同,但都能正確并有序地擺出6個不同的兩位數,同學們可以用自己喜歡的方法.

三、課堂實踐,鞏固新知。

1、乒乓球賽場次安排。

師:我們先去活動樂園看看,這兒正好有乒乓球比賽呢.(課件出示情境圖)

(l)老師提出要求:每兩個運動員之間打一場球賽,一共要比幾場?

(2)學生獨立思考.

(3)指名學生匯報.規

2、路線選擇。(課件展示游玩景點圖)

師:我們去公園看看吧。途中要經過游戲樂園。

(l)師引導觀察:從活動樂園到游戲樂園有幾條路線?哪幾條?(甲,乙兩條)從游戲樂園去公園有幾條路線?哪幾條?(A,B,C三條)(根據學生的回答課件展示)

從活動樂園到時公園到底有幾種不同的走法?

(2)學生獨立思索后小組交流。

(3)全班同學互相交流。

3、照像活動。

師:我們來到公園,這兒的景色真不錯,大家照幾張像吧.

師提出要求:攝影師要求三名同學站成一排照像,每小組根據每次合影人數(雙人照或三人照)設計排列方案,由組長作好活動記錄。

(1)小組活動,老師參與小組活動。

(2)各小組展示記錄方案。

(3)師生共同評價。

4、欣賞照片.

師:在同學們照像的同時,小麗一家三口人也正在照像呢,看看她們是怎樣照的.(課件展示照片集欣賞)

四、總結

今天的游玩到此結束,同學們互相握手告別好嗎?如果小組里的四個同學每兩人握一次手,一共要握幾次手?

免費下載高中數學教案篇9

橢圓的簡單幾何性質中的考查點:

(一)、對性質的考查:

1、范圍:要注意方程與函數的區別與聯系;與橢圓有關的求最值是變量的取值范圍;作橢圓的草圖。

2、對稱性:橢圓的中心及其對稱性;判斷曲線關于x軸、y軸及原點對稱的依據;如果曲線具有關于x軸、y軸及原點對稱中的任意兩種,那么它也具有另一種對稱性;注意橢圓不因坐標軸改變的固有性質。

3、頂點:橢圓的頂點坐標;一般二次曲線的頂點即是曲線與對稱軸的交點;橢圓中a、b、c的幾何意義(橢圓的特征三角形及離心率的三角函數表示)。

4、離心率:離心率的定義;橢圓離心率的取值范圍:(0,1);橢圓的離心率的變化對橢圓的影響:當e趨向于1時:c趨向于a,此時,橢圓越扁平;當e趨向于0時:c趨向于0,此時,橢圓越接近于圓;當且僅當a=b時,c=0,兩焦點重合,橢圓變成圓。

(二)、課本例題的變形考查:

1、近日點、遠日點的概念:橢圓上任意一點p(x,y)到橢圓一焦點距離的最大值:a+c與最小值:a-c及取最值時點p的坐標;

2、橢圓的第二定義及其應用;橢圓的準線方程及兩準線間的距離、焦準距:焦半徑公式。

3、已知橢圓內一點m,在橢圓上求一點p,使點p到點m與到橢圓準線的距離的和最小的求法。

4、橢圓的參數方程及橢圓的離心角:橢圓的參數方程的簡單應用:

5、直線與橢圓的位置關系,直線與橢圓相交時的弦長及弦中點問題。

免費下載高中數學教案篇10

教學目標

1、了解基底的含義,理解并掌握平面向量基本定理。會用基底表示平面內任一向量。

2、掌握向量夾角的定義以及兩向量垂直的定義。

學情分析

前幾節課已經學習了向量的基本概念和基本運算,如共線向量、向量的加法、減法和數乘運算及向量共線的充要條件等;另外學生對向量的物理背景有了初步的了解。如:力的合成與分解、位移、速度的合成與分解等,都為學習這節課作了充分準備

重點難點

重點:對平面向量基本定理的探究

難點:對平面向量基本定理的理解及其應用

教學過程

4.1第一學時教學活動

活動1【導入】情景設置

火箭在升空的某一時刻,速度可以分解成豎直向上和水平向前的兩個分速度v=vx+vy=6i+4j。

活動2【活動】探究

已知平面中兩個不共線向量e1,e2,c是平面內任意向量,求向量

c=___e1+___e2(課堂上準備好幾張帶格子的紙張,上面有三個向量,e1,e2,c)

做法:

作OA=e1,OB=e2,OC=c,過點C作平行于OB的直線,交直線OA于M;過點C作平行于OA的直線,交OB于N,則有且只有一對實數l1,l2,使得OM=l1e1,ON=l2e2。

因為OC=OM+ON,所以c=6e1+6e2。

向量c=__6__e1+___6__e2

活動3【練習】動手做一做

請同學們自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____

(做完后,思考一下,這樣的一組實數是否是唯一的呢?)(是唯一的)

由剛才的幾個實例,可以得出結論:如果給定向量e1,e2,平面內的任一向量a,都可以表示成a=入1e1+入2e2。

活動4【活動】思考

問題2:如果e1,e2是平面內任意兩向量,那么平面內的任一向量a還可以表示成a=入1e1+入2e2的形式嗎?

生:不行,e1,e2必須是平面內兩不共線向量

活動5【講授】平面向量基本定理

平面向量基本定理:如果e1,e2是平面內兩個不共線的向量,那么對于這一平面內的任一向量a,有且只有一對實數l1,l2,使a=l1e1+l2e2。我們把不共線向量e1,e2叫做這一平面內所有向量的一組基底。一個平面向量用一組基底e1,e2表示成a=l1e1+l2e2的形式,我們稱它為向量的分解。當e1,e2互相垂直時,就稱為向量的正交分解。

說明:

(1)基底不惟一,關鍵是作為基底的兩個向量不共線。

(2)由定理可將任一向量a在給出基底e1,e2的條件下進行分解,基底給定時,分解形式惟一,即l1,l2是被a,e1,e2惟一確定的數量。

活動6【講授】平面向量基底運用

例1.如圖所示,平行四邊形ABCD的對角線AC和BD交于點M,AB=a,AD=b,試用基底a,b表示MC,MA,MB和MD

活動7【講授】向量夾角的定義

閱讀教材P94,回答如下問題:

1、兩個向量夾角是如何形成的?,必須要滿足什么條件才是它們的夾角。

2、有向量夾角范圍是多少?有夾角大小來描述一下向量同向,反向,垂直?

活動8【練習】完成《聚焦課堂》活動9【講授】課后小結

1、平面向量基本定理

2、平面向量基本定理的運用

3、向量夾角的定義。

活動10【作業】課后作業

1、已知向量e1,e2,求做:-3e1+2e2

2、做育才報第八期專項訓練1

免費下載高中數學教案篇11

一、教學目標

1.掌握任意角的正弦、余弦、正切函數的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數的定義.

2.經歷從銳角三角函數定義過度到任意角三角函數定義的推廣過程,體驗三角函數概念的產生、發展過程.領悟直角坐標系的工具功能,豐富數形結合的經驗.

3.培養學生通過現象看本質的唯物主義認識論觀點,滲透事物相互聯系、相互轉化的辯證唯物主義世界觀.

4.培養學生求真務實、實事求是的科學態度.

二、重點、難點、關鍵

重點:任意角的正弦、余弦、正切函數的定義、定義域、(正負)符號判斷法.

難點:把三角函數理解為以實數為自變量的函數.

關鍵:如何想到建立直角坐標系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).

三、教學理念和方法

教學中注意用新課程理念處理傳統教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、動手實踐、合作交流、閱讀自學,師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程.

根據本節課內容、高一學生認知特點和我自己的教學風格,本節課采用"啟發探索、講練結合"的方法組織教學.

四、教學過程

[執教線索:

回想再認:函數的概念、銳角三角函數定義(銳角三角形邊角關系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優化認知:用直角坐標系研究銳角三角函數--探索發展:對任意角研究六個比值(與角之間的關系:確定性、依賴性,滿足函數定義嗎?)--自主定義:任意角三角函數定義--登高望遠:三角函數的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習小明回顧小結--布置作業]

(一)復習引入、回想再認

開門見山,面對全體學生提問:

在初中我們初步學習了銳角三角函數,前幾節課,我們把銳角推廣到了任意角,學習了角度制和弧度制,這節課該研究什么呢?

探索任意角的三角函數(板書課題),請同學們回想,再明確一下:

(情景1)什么叫函數?或者說函數是怎樣定義的?

讓學生回想后再點名回答,投影顯示規范的定義,教師根據回答情況進行修正、強調:

傳統定義:設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數,x叫做自變量,自變量x的取值范圍叫做函數的定義域.

現代定義:設A、B是非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數,在集合B中都有唯一確定的數f(x)和它對應,那么就稱映射?:A→B為從集合A到集合B的一個函數,記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數的定義域.

設計意圖:

函數和三角函數是一般和特殊的關系,是共性和個性的關系,學生已經學習了函數的概念,因此對三角函數的學習就是一個從一般到特殊的演繹的過程,也是以具體函數豐富函數概念的過程.教學經驗表明:學生對函數兩種定義的記憶是有一定困難的,容易遺忘,此處讓學生對函數概念進行回想再認,目的在于明確函數概念的本質,為演繹學習任意角三角函數概念作好知識和認知準備.

(情景2)我們在初中通過銳角三角形的邊角關系,學習了銳角的正弦、余弦、正切等三個三角函數.請回想:這三個三角函數分別是怎樣規定的?

學生口述后再投影展示,教師再根據投影進行強調:

設計意圖:

學生在初中學習了銳角的三角函數概念,現在學習任意角的三角函數,又是一種推廣和拓展的過程(類似于從有理數到實數的擴展).溫故知新,要讓學生體會知識的產生、發展過程,就要從源頭上開始,從學生現有認知狀況開始,對銳角三角函數的復習就必不可少.

(二)引伸鋪墊、創設情景

(情景3)我們已經把銳角推廣到了任意角,銳角的三角函數概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!

留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發引導.

能推廣嗎?怎樣推廣?針對剛才的問題點名讓學生回答.用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節已經以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續用直角坐標系來研究任意角的三角函數.

設計意圖:

從學生現有知識水平和認知能力出發,創設問題情景,讓學生產生認知沖突,進行必要的啟發,將學生思維引上自主探索、合作交流的"再創造"征程.

教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數定義!

師生共做(學生口述,教師板書圖形和比值):

把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構造一個RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長oP∣=r.

根據銳角三角函數定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應列出三個倒數比值:

設計意圖:

此處做法簡單,思想重要.為了順利實現推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節已經以直角坐標系為工具來研究任意角了,學生自然能想到仍然以直角坐標系為工具來研究任意角的三角函數.初中以直角三角形邊角關系來定義銳角三角函數,現在要用坐標系來研究,探索的結論既要滿足任意角的情形,又要包容初中銳角三角函數定義.這是一個認識的飛躍,是理解任意角三角函數概念的關鍵之一,也是數學發現的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學生在以后學習中對某些知識進行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實數到復數的擴展等).

(情景4)各個比值與角之間有怎樣的關系?比值是角的函數嗎?

追問:銳角α大小發生變化時,比值會改變嗎?

先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉即α在銳角范圍內變化,六個比值隨之變化的直觀形象。結論是:比值隨α的變化而變化.

引導學生觀察圖3,聯系相似三角形知識,

探索發現:

對于銳角α的每一個確定值,六個比值都是

確定的,不會隨P在終邊上的移動而變化.

得出結論(強調):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.所以,六個比值分別是以角α為自變量、以比值為函數值的函數.

設計意圖:

初中學生對函數理解較膚淺,這里在學生思維的最近發展區進一步研究初中學過的銳角三角函數,在思維上更上了一個層次,扣準函數概念的內涵,突出變量之間的依賴關系或對應關系,是從函數知識演繹到三角函數知識的主要依據,是準確理解三角函數概念的關鍵,也是在認知上把三角函數知識納入函數知識結構的關鍵.這樣做能夠使學生有效地增強函數觀念.

(三)分析歸納、自主定義

(情境5)能將銳角的比值情形推廣到任意角α嗎?

水到渠成,師生共同進行探索和推廣:

對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):

終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:

(指出:不畫出角的方向,表明角具有任意性)

怎樣刻畫任意角的三角函數呢?研究它的六個比值:

(板書)設α是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:

α=kππ/2時,x=0,比值y/x、r/x無意義;

α=kπ時,y=0,比值x/y、r/y無意義.

追問:α大小發生變化時,比值會改變嗎?

先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉即角α變化,六個比值隨之改變的直觀形象。結論是:各比值隨α的變化而變化.

再引導學生利用相似三角形知識,探索發現:對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.

綜上得到(強調):當角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應的多值性即誘導公式一留到下節課分析).

因此,六個比值分別是以角α為自變量、以比值為函數值的函數.

根據歷史上的規定,對比值進行命名,指出英文記法和讀法,記作(承前作復合板書):

=sinα(正弦)=cosα(余弦)=tanα(正切)

=cscα(余割)=sec(正弦)=cotα(余切)

教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數記號,是一個整體,相當于函數記號f(x).其它幾個三角函數也如此

投影顯示圖六,指導學生分析其對應關系,進一步體會其函數內涵:

(圖六)

指導學生識記六個比值及函數名稱.

教師指出:正弦、余弦、正切、余切、正割、余割六個函數統稱為三角函數,三角函數有非常豐富的知識和思想方法,我們以后主要學習正弦、余弦、正切三個函數的相關知識和方法,對于余切、正割、余割,只要同學們了解它們的定義就夠了(遵循大綱要求).

引導學生進一步分析理解:

已知角的集合與實數集之間可以建立一一對應關系,對于每一個確定的實數,把它看成一個弧度數,就對應著唯一的一個角,從而分別對應著六個唯一的三角函數值.因此,(板書)三角函數可以看成是以實數為自變量的函數,這將為以后的應用帶來很多方便.

設計意圖:

把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數定義域作準備.動畫演示比值與角之間的依賴性與確定性關系,深化理解三角函數內涵.引導學生在理解的基礎上自主地對三角函數作出明確定義,是本節課的中心任務.由于學生剛學弧度制,對弧度制的理解有待于在以后的學習應用中逐步感悟,因此部分學生對"三角函數可以看成是以實數為自變量的函數"的理解有半信半疑之感,有待通過后續的應用加深理解.

(四)探索定義域

(情景6)(1)函數概念的三要素是什么?

函數三要素:對應法則、定義域、值域.

正弦函數sinα的對應法則是什么?

正弦函數sinα的對應法則,實質上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.

(2)布置任務情景:什么是三角函數的定義域?請求出六個三角函數的定義域,填寫下表:

三角函數

sinα

cosα

tanα

cotα

cscα

secα

定義域

引導學生自主探索:

如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數的定義域,三角函數的定義域自然是指:使比值有意義的角α的取值范圍.

關于sinα=y/r、cosα=x/r,對于任意角α(弧度數),r>0,y/r、x/r恒有意義,定義域都是實數集R.

對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{αα∈R,且α≠kππ/2}..........

教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.

(關于值域,到后面再學習).

設計意圖:

定義域是函數三要素之一,研究函數必須明確定義域.指導學生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數概念的掌握.

(五)符號判斷、形象識記

(情景7)能判斷三角函數值的正、負嗎?試試看!

引導學生緊緊抓住三角函數定義來分析,r>0,三角函數值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣:

(同好得正、異號得負)

sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負

設計意圖:

判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關鍵.

(六)練習鞏固、理解記憶

1、自學例1:已知角α的終邊經過點P(2,-3),求α的六個三角函數值.

要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書面表達格式,鞏固定義.

課堂練習:

p19題1:已知角α的終邊經過點P(-3,-1),求α的六個三角函數值.

要求心算,并提問中下學生檢驗,--------

點評:角α終邊上有無窮多個點,根據三角函數的定義,只要知道α終邊上任意一個點的坐標,就可以計算這個角的三角函數值(或判斷其無意義).

補充例題:已知角α的終邊經過點P(x,-3),cosα=4/5,求α的其它五個三角函數值.

師生探索:已知y=-3,要求其它五個三角函數值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略.

2、自學例2:求下列各角的六個三角函數值:(1)0;(2)π/2;(3)3π/2.

提問,據反饋信息作點評、修正.

師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數值,都可以。

取特殊點能使計算更簡明。課堂練習:p19題2.(改編)填表:

角α(角度)

90°

180°

270°

360°

角α(弧度)

sinα

cosα

tanα

處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義.

強調:終邊在坐標軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經常用到軸線角的三角函數值,要結合三角函數定義記熟這些值.

設計意圖:

及時安排自學例題、自做教材練習題,一般性與特殊性相結合,進行適量的變式練習,以鞏固和加深對三角函數概念的理解,通過課堂積極主動的練習活動進行思維訓練,把"培養學生分析解決問題的能力"貫穿在每一節課的課堂教學始終.

(七)回顧小結、建構網絡

要求全體學生根據教師所提問題進行總結識記,提問檢查并強調:

1.你是怎樣把銳角三角函數定義推廣到任意角的?或者說任意角三角函數具體是怎樣定義的?(建立直角坐標系,使角的頂點與坐標原點重合,---,在終邊上任意取定一點P,---)

2.你如何判斷和記憶正弦、余弦、正切函數的定義域?(根據定義,------)

3.你如何記憶正弦、余弦、正切函數值的符號?(根據定義,想象坐標位置,-----)

設計意圖:

遺忘的規律是先快后慢,回顧再現是記憶的重要途徑,在課堂內及時總結識記主要內容是上策.此處以問題形式讓學生自己歸納識記本節課的主體內容,抓住要害,人人參與,及時建構知識網絡,優化知識結構,培養認知能力.

(八)布置課外作業

1.書面作業:習題4.3第3、4、5題.

2.認真閱讀p22"閱讀材料:三角函數與歐拉",了解歐拉的生平和貢獻,特別學習他對科學的摯著精神和堅忍不拔的頑強毅力!有興趣的同學可以上網查閱歐拉的相關情況.

教學設計說明

一、對本節教材的理解

三角函數是描述周期運動現象的重要的數學模型,有非常廣泛的應用.

星星之火,可以燎原.

直角三角形簡單樸素的邊角關系,以直角坐標系為工具進行自然地推廣而得到簡明的任意角的三角函數定義,緊緊扣住三角函數定義這個寶貴的源泉,自然地導出三角函數線、定義域、符號判斷、值域、同角三角函數關系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質,本章教材就是這些內容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標、部分曲線的參數方程等),定義還是直接解決某些問題的工具,三角函數知識是物理學、高等數學、測量學、天文學的重要基礎.

三角函數定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續內容的學習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點就是定義本身.

二、教學法加工

數學教材通常用抽象概括的形式化的數學書面語言闡述其知識和方法,教師只有通過教學法加工,始終貫徹"以學生的發展為本"的科學教育觀,"將數學的學術形態轉化為教育形態"(張奠宙語),引導學生積極主動地進行思考活動,直接參與體驗數學知識產生發展的背景、過程,返璞歸真,揭示本質,體會其中的思想和方法,學生只有這樣才能真正理解掌握數學知識和方法,有效地發展智力、培養能力.

在本節教材中,三角函數定義是重點,三角函數線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習的協調匹配,將不按教材順序來進行教學,第一課時安排三角函數的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時安排三角函數線、p15練習(突破難點)、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時.

教學經驗表明,三角函數定義"簡單易記",學生很容易輕視它,不少學生機械記憶、一知半解.本課例堅持"教師主導、學生主體"的原則,采用"啟發探索、講練結合"的常規教學方法,在學生的最近發展區圍繞學生的學習目標設計了一系列符合學生認知規律的程序,通過多媒體輔助教學動畫演示比值與角之間的依賴關系,拓展思維活動時空,力求使學生全員主動參與,積極思考,體會定義產生、發展的過程,通過思維過程來理解知識、培養能力.

將六個比值放在一起來研究,同時給出六個三角函數的定義,能夠增強對比感和整體感,至于大綱對兩組函數掌握與了解的不同要求,在下一步的教學中注意區分就行了.

教學中關于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數關系;另外可以先研究六個比值與α之間的函數關系,然后再對六個比值取名給出記法.后者更能突出函數內涵,揭示三角函數本質.本課例采用后者組織教學.

三、教學過程分析(見穿插在教案中的設計意圖).

免費下載高中數學教案篇12

各位評委老師,上午好,我是__號考生葉新穎。今天我的說課題目是集合。首先我們來進行教材分析。

教材分析

集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

本節課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。

教學目標

1、學習目標

(1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬于”關系;

(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

2、能力目標

(1)能夠把一句話一個事件用集合的方式表示出來。

(2)準確理解集合與及集合內的元素之間的關系。

3、情感目標

通過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了解到數學于生活中。

教學重點與難點

重點:集合的基本概念與表示方法;

難點:運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

教學方法

(1)本課將采用探究式教學,讓學生主動去探索,激發學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果;

(2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。

學習方法

(1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,

教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象的綜合能力。

(2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培

優扶差,滿足不同。”

教學思路,具體的思路如下

一、引入課題

軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。

二、正體部分

學生閱讀教材,并思考下列問題:

(1)集合有那些概念?

(2)集合有那些符號?

(3)集合中元素的特性是什么?

(4)如何給集合分類?

(一)集合的有關概念

(1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象.

(2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合.

(3)元素:集合中每個對象叫做這個集合的元素.集合通常用大寫的拉丁字母表示,如A、B、C、元素通常用小寫的

拉丁字母表示,如a、b、c、

1.思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,對學生的例子予以討論、點評,進而講解下面的問題。

2、元素與集合的關系

(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)

集合A={2,3,4,6,9}a=2因此我們知道a∈A(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA

要注意“∈”的方向,不能把a∈A顛倒過來寫.(舉例)集合A={3,4,6,9}a=2因此我們知道aA

3、集合中元素的特性(1)確定性:(2)互異性:(3)無序性:

4、集合分類

根據集合所含元素個屬不同,可把集合分為如下幾類:

(1)把不含任何元素的集合叫做空集Ф

(2)含有有限個元素的集合叫做有限集

(3)含有無窮個元素的集合叫做無限集注:應區分,{},{0},0等符號的含義

5、常用數集及其表示方法

(1)非負整數集(自然數集):全體非負整數的集合.記作N

(2)正整數集:非負整數集內排除0的集.記作N__或N+

(3)整數集:全體整數的集合.記作Z

(4)有理數集:全體有理數的集合.記作Q

(5)實數集:全體實數的集合.記作R注:

(1)自然數集包括數0.

(2)非負整數集內排除0的集.記作N__或N+,Q、Z、R等其它數集內排除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z__

(二)集合的表示方法

我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

(1)列舉法:把集合中的元素一一列舉出來,寫在大括號內。如:{1,2,3,4,5},{-2,3-+2,5y3--,-2+y2},;例1.(課本例1)思考2,引入描述法

說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

(2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

如:{---3>2},{(-,y)y=-2+1},{直角三角形},;例2.(課本例2)說明:(課本P5最后一段)思考3:(課本P6思考)

強調:描述法表示集合應注意集合的代表元素

{(-,y)y=-2+3-+2}與{yy=-2+3-+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

辨析:這里的{}已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

(三)課堂練習(課本P6練習)

三、歸納小結與作業

本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

書面作業:習題1.1,第1-4題。

免費下載高中數學教案篇13

課題:

等比數列的概念

教學目標

1、通過教學使學生理解等比數列的概念,推導并掌握通項公式、

2、使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力、

3、培養學生勤于思考,實事求是的精神,及嚴謹的科學態度、

教學重點,難點

重點、難點是等比數列的定義的歸納及通項公式的推導、

教學用具

投影儀,多媒體軟件,電腦、

教學方法

討論、談話法、

教學過程

一、提出問題

給出以下幾組數列,將它們分類,說出分類標準、(幻燈片)

①—2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,—1,1,—1,1,—1,1,—1,…

⑦1,—10,100,—1000,10000,—100000,…

⑧0,0,0,0,0,0,0,…

由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數列)、

二、講解新課

請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題、假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數

這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——等比數列、(這里播放變形蟲分裂的多媒體軟件的第一步)

等比數列(板書)

1、等比數列的定義(板書)

根據等比數列與等差數列的名字的區別與聯系,嘗試給等比數列下定義、學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的教師寫出等比數列的定義,標注出重點詞語、

請學生指出等比數列②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是等比數列、學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例、而后請學生概括這類數列的一般形式,學生可能說形如的數列都滿足既是等差又是等比數列,讓學生討論后得出結論:當時,數列既是等差又是等比數列,當時,它只是等差數列,而不是等比數列、教師追問理由,引出對等比數列的認識:

2、對定義的認識(板書)

(1)等比數列的首項不為0;

(2)等比數列的每一項都不為0,即

問題:一個數列各項均不為0是這個數列為等比數列的什么條件?

(3)公比不為0、

用數學式子表示等比數列的定義、

是等比數列

①、在這個式子的寫法上可能會有一些爭議,如寫成

,可讓學生研究行不行,好不好;接下來再問,能否改寫為

是等比數列?為什么不能?式子給出了數列第項與第

項的數量關系,但能否確定一個等比數列?(不能)確定一個等比數列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、

3、等比數列的通項公式(板書)

問題:用和表示第項

①不完全歸納法

②疊乘法,…,,這個式子相乘得,所以(板書)

(1)等比數列的通項公式得出通項公式后,讓學生思考如何認識通項公式、(板書)

(2)對公式的認識

由學生來說,最后歸結:

①函數觀點;

②方程思想(因在等差數列中已有認識,此處再復習鞏固而已)、

這里強調方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)

如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究、同學可以試著編幾道題。

三、小結

1、本節課研究了等比數列的概念,得到了通項公式;

2、注意在研究內容與方法上要與等差數列相類比;

3、用方程的思想認識通項公式,并加以應用。

探究活動

將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0、01毫米。

參考答案:

30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(對數算也行)。

免費下載高中數學教案篇14

一、說教材

1、從在教材中的地位與作用來看

《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。

2、從學生認知角度看

從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

3、學情分析

教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

4、重點、難點

教學重點:公式的推導、公式的特點和公式的運用。

教學難點:公式的推導方法和公式的靈活運用。

公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。

二、說目標

知識與技能目標:

理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。

過程與方法目標:

通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

情感與態度價值觀:

通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點。

三、說過程

學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:

1。創設情境,提出問題

在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。為什么呢?

設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性。故事內容緊扣本節課的主題與重點。

此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆。

2、師生互動,探究問題

在肯定他們的思路后,我接著問:1,2,22,…,263是什么數列?有何特征?應歸結為什么數學問題呢?

探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)

探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發現?

設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機。

經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心。

3、類比聯想,解決問題

這時我再順勢引導學生將結論一般化,

這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。

設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)

再次追問:結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力。這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

4、討論交流,延伸拓展

免費下載高中數學教案篇15

如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的`公比,公比通常用字母q表示。

(1)等比數列的通項公式是:An=A1×q^(n-1)

若通項公式變形為an=a1/q-q^n(n∈N-),當q>0時,則可把an看作自變量n的函數,點(n,an)是曲線y=a1/q-q^x上的一群孤立的點。

(2)任意兩項am,an的關系為an=am·q^(n-m)

(3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

(5)等比求和:Sn=a1+a2+a3+.......+an

①當q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

②當q=1時,Sn=n×a1(q=1)

記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一個各項均為正數的等比數列各項取同底數數后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。

免費下載高中數學教案篇16

一、教材分析:

集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

二、目標分析:

教學重點.難點

重點:集合的含義與表示方法.

難點:表示法的恰當選擇.

教學目標

l.知識與技能

(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;

(2)知道常用數集及其專用記號;

(3)了解集合中元素的確定性.互異性.無序性;

(4)會用集合語言表示有關數學對象;

2.過程與方法

(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

(2)讓學生歸納整理本節所學知識.

3.情感.態度與價值觀

使學生感受到學習集合的必要性,增強學習的積極性.

三.教法分析

1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.

四.過程分析

(一)創設情景,揭示課題

1.教師首先提出問題:

(1)介紹自己的家庭、原來就讀的學校、現在的班級。

(2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征?

引導學生互相交流.與此同時,教師對學生的活動給予評價.

2.活動:

(1)列舉生活中的集合的例子;

(2)分析、概括各實例的共同特征

由此引出這節要學的內容。

設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊

(二)研探新知,建構概念

1.教師利用多媒體設備向學生投影出下面7個實例:

(1)1—20以內的所有質數;

(2)我國古代的.四大發明;

(3)所有的安理會常任理事國;

(4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交橋;

(6)到一個角的兩邊距離相等的所有的點;

(7)國興中學2004年9月入學的高一學生的全體.

2.教師組織學生分組討論:這7個實例的共同特征是什么?

3.每個小組選出——位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.

設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神

(三)質疑答辯,發展思維

1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.

2.教師組織引導學生思考以下問題:

判斷以下元素的全體是否組成集合,并說明理由:

(1)大于3小于11的偶數;

(2)我國的小河流.讓學生充分發表自己的建解.

3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.

4.教師提出問題,讓學生思考

b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,

高一(4)班的一位同學,那么a,b與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.

如果a是集合A的元素,就說a屬于集合A,記作a?A.

如果a不是集合A的元素,就說a不屬于集合A,記作a?A.

(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關系分別是什么?請用數學符號分別表示.

(3)讓學生完成教材第6頁練習第1題.

5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1A組第1題.

6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:

(1)要表示一個集合共有幾種方式?

(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?

(3)如何根據問題選擇適當的集合表示法?

使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。

設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。

(四)鞏固深化,反饋矯正

教師投影學習:

(1)用自然語言描述集合{1,3,5,7,9};

(2)用例舉法表示集合A?{x?N1?x?8}

(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.

設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象

(五)歸納小結,布置作業

小結:在師生互動中,讓學生了解或體會下例問題:

1.本節課我們學習了哪些知識內容?2.你認為學習集合有什么意義?

3.選擇集合的表示法時應注意些什么?

設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

作業:1.課后書面作業:第13頁習題1.1A組第4題.

2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種

呢?如何表示?請同學們通過預習教材.

五.板書分析

免費下載高中數學教案篇17

【學習導航】

(一)兩角和與差公式

(二)倍角公式

2cos2α=1+cos2α 2sin2α=1-cos2α

注意:倍角公式揭示了具有倍數關系的兩個角的三角函數的運算規律,可實現函數式的降冪的變化。

注: (1)兩角和與差的三角函數公式能夠解答的三類基本題型:求值題,化簡題,證明題。

(2)對公式會“正用”,“逆用”,“變形使用”;

(3)掌握“角的演變”規律,

(4)將公式和其它知識銜接起來使用。

重點難點

重點:幾組三角恒等式的應用

難點:靈活應用和、差、倍角等公式進行三角式化簡、求值、證明恒等式

【精典范例】

例1 已知

求證:

例2 已知 求 的取值范圍

分析 難以直接用 的式子來表達,因此設 ,并找出 應滿足的等式,從而求出 的取值范圍.

例3 求函數 的值域.

例4 已知且 、 、 均為鈍角,求角 的值.

分析 僅由 ,不能確定角 的值,還必須找出角 的范圍,才能判斷 的值. 由單位圓中的余弦線可以看出,若 使 的角為 或 若 則 或

【選修延伸】

例5 已知

求 的值.

例6 已知 ,

求 的值.

例7 已知

求 的值.

例8 求值:(1) (2)

【追蹤訓練】

1. 等于 ( )

A. B. C. D.

2.已知 ,且,則 的值等于 ( )

A. B. C. D.

3.求值: = .

4.求證:(1)

免費下載高中數學教案篇18

圓的方程

教學目標

(1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.

(2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.

(3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.

(4)掌握直線和圓的位置關系,會求圓的切線.

(5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.

教學建議

教材分析

(1)知識結構

(2)重點、難點分析

①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求圓的方程,用圓的方程解決相關問題.

②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.

教法建議

(1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.

(2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.

(3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.

(4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.

教學設計示例

圓的一般方程

教學目標:

(1)掌握圓的一般方程及其特點.

(2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.

(3)能用待定系數法,由已知條件求出圓的一般方程.

(4)通過本節課學習,進一步掌握配方法和待定系數法.

教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.

(2)用待定系數法求圓的方程.

教學難點:圓的一般方程特點的研究.

教學用具:計算機.

教學方法:啟發引導法,討論法.

教學過程:

【引入】

前邊已經學過了圓的標準方程

把它展開得

任何圓的方程都可以通過展開化成形如

的方程

【問題1】

形如①的方程的曲線是否都是圓?

師生共同討論分析:

如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:

(1)當 時,②表示以 為圓心、以 為半徑的圓;

(2)當 時,②表示一個點 ;

(3)當 時,②不表示任何曲線.

總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

圓的一般方程的定義:

當 時,①表示以 為圓心、以 為半徑的圓,

此時①稱作圓的一般方程.

即稱形如 的方程為圓的一般方程.

【問題2】圓的一般方程的特點,與圓的標準方程的異同.

(1) 和 的系數相同,都不為0.

(2)沒有形如 的二次項.

圓的一般方程與一般的二元二次方程

相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

圓的一般方程與圓的標準方程各有千秋:

(1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.

(2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.

【實例分析】

例1:下列方程各表示什么圖形.

(1) ;

(2) ;

(3) .

學生演算并回答

(1)表示點(0,0);

(2)配方得 ,表示以 為圓心,3為半徑的圓;

(3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.

例2:求過三點 , , 的圓的方程,并求出圓心坐標和半徑.

分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.

解:設圓的方程為

因為 、 、 三點在圓上,則有

解得: , ,

所求圓的方程為

可化為

圓心為 ,半徑為5.

請同學們再用標準方程求解,比較兩種解法的區別.

【概括總結】通過學生討論,師生共同總結:

(1)求圓的方程多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.

(2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.

下面再看一個問題:

例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.

解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.

化簡得

點 在曲線上,并且曲線為圓 內部的一段圓弧.

【練習鞏固】

(1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)

(2)求經過三點 、 、 的圓的方程.

分析:用圓的一般方程,代入點的坐標,解方程組得圓的方程為 .

(3)課本第79頁練習1,2.

【小結】師生共同總結:

(1)圓的一般方程及其特點.

(2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.

(3)用待定系數法求圓的方程.

【作業】課本第82頁5,6,7,8.

100104 主站蜘蛛池模板: 拖链电缆_柔性电缆_伺服电缆_坦克链电缆-深圳市顺电工业电缆有限公司 | 外贸资讯网 - 洞悉全球贸易,把握市场先机 | 转向助力泵/水泵/发电机皮带轮生产厂家-锦州华一精工有限公司 | Copeland/谷轮压缩机,谷轮半封闭压缩机,谷轮涡旋压缩机,型号规格,技术参数,尺寸图片,价格经销商 CTP磁天平|小电容测量仪|阴阳极极化_双液系沸点测定仪|dsj电渗实验装置-南京桑力电子设备厂 | 开平机_纵剪机厂家_开平机生产厂家|诚信互赢-泰安瑞烨精工机械制造有限公司 | 大型多片锯,圆木多片锯,方木多片锯,板材多片锯-祥富机械有限公司 | 翰墨AI智能写作助手官网_人工智能问答在线AI写作免费一键生成 | 碳纤维复合材料制品生产定制工厂订制厂家-凯夫拉凯芙拉碳纤维手机壳套-碳纤维雪茄盒外壳套-深圳市润大世纪新材料科技有限公司 | 污水处理设备维修_污水处理工程改造_机械格栅_过滤设备_气浮设备_刮吸泥机_污泥浓缩罐_污水处理设备_污水处理工程-北京龙泉新禹科技有限公司 | 中空玻璃生产线,玻璃加工设备,全自动封胶线,铝条折弯机,双组份打胶机,丁基胶/卧式/立式全自动涂布机,玻璃设备-山东昌盛数控设备有限公司 | 东莞螺丝|东莞螺丝厂|东莞不锈钢螺丝|东莞组合螺丝|东莞精密螺丝厂家-东莞利浩五金专业紧固件厂家 | 英国雷迪地下管线探测仪-雷迪RD8100管线仪-多功能数字听漏仪-北京迪瑞进创科技有限公司 | 气体热式流量计-定量控制流量计(空气流量计厂家)-湖北南控仪表科技有限公司 | 医用酒精_84消毒液_碘伏消毒液等医用消毒液-漓峰消毒官网 | 顶空进样器-吹扫捕集仪-热脱附仪-二次热解吸仪-北京华盛谱信仪器 | 尼龙PA610树脂,尼龙PA612树脂,尼龙PA1010树脂,透明尼龙-谷骐科技【官网】 | 国产离子色谱仪,红外分光测油仪,自动烟尘烟气测试仪-青岛埃仑通用科技有限公司 | 恒温油槽-恒温水槽-低温恒温槽厂家-宁波科麦仪器有限公司 | 真空冷冻干燥机_国产冻干机_冷冻干燥机_北京四环冻干 | 大连海岛旅游网>>大连旅游,大连海岛游,旅游景点攻略,海岛旅游官网 | 锂辉石检测仪器,水泥成分快速分析仪-湘潭宇科分析仪器有限公司 | 网站建设-高端品牌网站设计制作一站式定制_杭州APP/微信小程序开发运营-鼎易科技 | 广州物流公司_广州货运公司_广州回程车运输 - 万信物流 | 不锈钢反应釜,不锈钢反应釜厂家-价格-威海鑫泰化工机械有限公司 不干胶标签-不干胶贴纸-不干胶标签定制-不干胶标签印刷厂-弗雷曼纸业(苏州)有限公司 | 消泡剂_水处理消泡剂_切削液消泡剂_涂料消泡剂_有机硅消泡剂_广州中万新材料生产厂家 | 传动滚筒,改向滚筒-淄博建凯机械科技有限公司 | 物联网卡_物联网卡购买平台_移动物联网卡办理_移动联通电信流量卡通信模组采购平台? | 舞台木地板厂家_体育运动木地板_室内篮球馆木地板_实木运动地板厂家_欧氏篮球地板推荐 | 高尔夫球杆_高尔夫果岭_高尔夫用品-深圳市新高品体育用品有限公司 | 精密模具制造,注塑加工,吹塑和吹瓶加工,EPS泡沫包装生产 - 济南兴田塑胶有限公司 | 披萨石_披萨盘_电器家电隔热绵加工定制_佛山市南海区西樵南方综合保温材料厂 | 国产离子色谱仪,红外分光测油仪,自动烟尘烟气测试仪-青岛埃仑通用科技有限公司 | 深圳APP开发_手机软件APP定制外包_小程序开发公司-来科信 | 天津暖气片厂家_钢制散热器_天津铜铝复合暖气片_维尼罗散热器 | 离子色谱自动进样器-青岛艾力析实验科技有限公司 | 变色龙PPT-国内原创PPT模板交易平台 - PPT贰零 - 西安聚讯网络科技有限公司 | Safety light curtain|Belt Sway Switches|Pull Rope Switch|ultrasonic flaw detector-Shandong Zhuoxin Machinery Co., Ltd | 锂电混合机-新能源混合机-正极材料混料机-高镍,三元材料混料机-负极,包覆混合机-贝尔专业混合混料搅拌机械系统设备厂家 | 横河变送器-横河压力变送器-EJA变送器-EJA压力变送器-「泉蕴仪表」 | 深圳公司注册-工商注册代理-注册公司流程和费用_护航财税 | Boden齿轮油泵-ketai齿轮泵-yuken油研-无锡新立液压有限公司 |