小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數學教案 >

2021八年級數學滬科版教案

時間: 曉晴2 數學教案

加強數學學習,提高綜合能力,需要做大量的習題練習,因此數學教師必須不斷加強習題設計,使其貼近學生實際生活,使數學習題能夠更加具有人文性和靈活性。今天小編在這給大家整理了一些2021八年級數學滬科版教案,我們一起來看看吧!

2021八年級數學滬科版教案

2021八年級數學滬科版教案1

一、學習目標:

1.多項式除以單項式的運算法則及其應用.

2.多項式除以單項式的運算算理.

二、重點難點:

重 點: 多項式除以單項式的運算法則及其應用

難 點: 探索多項式與單項式相除的運算法則的過程

三、合作學習:

(一) 回顧單項式除以單項式法則

(二) 學生動手,探究新課

1. 計算下列各式:

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

2. 提問:①說說你是怎樣計算的 ②還有什么發現嗎?

(三) 總結法則

1. 多項式除以單項式:先把這個多項式的每一項除以___________,再把所得的商______

2. 本質:把多項式除以單項式轉化成______________

四、精講精練

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

隨堂練習: 教科書 練習

五、小結

1、單項式的除法法則

2、應用單項式除法法則應注意:

A、系數先相除,把所得的結果作為商的系數,運算過程中注意單項式的系數飽含它前面的符號

B、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數不小于除式中同一字母的指數;

C、被除式單獨有的字母及其指數,作為商的一個因式,不要遺漏;

D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行.

E、多項式除以單項式法則

2021八年級數學滬科版教案2

教學目標

1.知識與技能

能確定多項式各項的公因式,會用提公因式法把多項式分解因式.

2.過程與方法

使學生經歷探索多項式各項公因式的過程,依據數學化歸思想方法進行因式分解.

3.情感、態度與價值觀

培養學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經驗,體會其應用價值.

重、難點與關鍵

1.重點:掌握用提公因式法把多項式分解因式.

2.難點:正確地確定多項式的公因式.

3.關鍵:提公因式法關鍵是如何找公因式.方法是:一看系數、二看字母.公因式的系數取各項系數的公約數;字母取各項相同的字母,并且各字母的指數取最低次冪.

教學方法

采用“啟發式”教學方法.

教學過程

一、回顧交流,導入新知

【復習交流】

下列從左到右的變形是否是因式分解,為什么?

(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);

(2)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;

(3)x2-2xy+y2=(x-y)2.

問題:

1.多項式mn+mb中各項含有相同因式嗎?

2.多項式4x2-x和xy2-yz-y呢?

請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.

【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.

二、小組合作,探究方法

【教師提問】多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?

【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數、二看字母,公因式的系數取各項系數的公約數;字母取各項相同的字母,并且各字母的指數取最低次冪.

三、范例學習,應用所學

【例1】把-4x2yz-12xy2z+4xyz分解因式.

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

【例2】分解因式,3a2(x-y)3-4b2(y-x)2

【思路點撥】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)2?3a2(y-x)+4b2(y-x)2]

=-(y-x)2[3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)2?3a2(x-y)-4b2(x-y)2

=(x-y)2[3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

【例3】用簡便的方法計算:0.84×12+12×0.6-0.44×12.

【教師活動】引導學生觀察并分析怎樣計算更為簡便.

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

【教師活動】在學生完全例3之后,指出例3是因式分解在計算中的應用,提出比較例1,例2,例3的公因式有什么不同?

四、隨堂練習,鞏固深化

課本P167練習第1、2、3題.

【探研時空】

利用提公因式法計算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、課堂總結,發展潛能

1.利用提公因式法因式分解,關鍵是找準公因式.在找公因式時應注意:(1)系數要找公約數;(2)字母要找各項都有的;(3)指數要找最低次冪.

2.因式分解應注意分解徹底,也就是說,分解到不能再分解為止.

六、布置作業,專題突破

課本P170習題15.4第1、4(1)、6題.

板書設計

2021八年級數學滬科版教案3

教學目標:

知識與技能

1.掌握直角三角形的判別條件,并能進行簡單應用;

2.進一步發展數感,增加對勾股數的直觀體驗,培養從實際問題抽象出數學問題的能力,建立數學模型.

3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.

情感態度與價值觀

敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識.

教學重點

運用身邊熟悉的事物,從多種角度發展數感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.

教學難點

會辨析哪些問題應用哪個結論.

課前準備

標有單位長度的細繩、三角板、量角器、題篇

教學過程:

復習引入:

請學生復述勾股定理;使用勾股定理的前提條件是什么?

已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?

創設問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法.

這樣做得到的是一個直角三角形嗎?

提出課題:能得到直角三角形嗎

講授新課:

⒈如何來判斷?(用直角三角板檢驗)

這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關系?

就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)

⒉繼續嘗試:下面的三組數分別是一個三角形的三邊長a,b,c:

5,12,13;6,8,10;8,15,17.

(1)這三組數都滿足a2+b2=c2嗎?

(2)分別以每組數為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

⒊直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.

滿足a2+b2=c2的三個正整數,稱為勾股數.

⒋例1一個零件的形狀如左圖所示,按規定這個零件中∠A和∠DBC都應為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?

隨堂練習:

⒈下列幾組數能否作為直角三角形的三邊長?說說你的理由.

⑴9,12,15;⑵15,36,39;

⑶12,35,36;⑷12,18,22.

⒉已知?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.

⒊四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積.

⒋習題1.3

課堂小結:

⒈直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.

⒉滿足a2+b2=c2的三個正整數,稱為勾股數.勾股數擴大相同倍數后,仍為勾股數.

2021八年級數學滬科版教案4

勾股定理的應用

教學目標

教學知識點:能運用勾股定理及直角三角形的判別條件(即勾股定理的逆定理)解決簡單的實際問題.

能力訓練要求:1.學會觀察圖形,勇于探索圖形間的關系,培養學生的空間觀念.

2.在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數學建模的思想.

情感與價值觀要求:1.通過有趣的問題提高學習數學的興趣.

2.在解決實際問題的過程中,體驗數學學習的實用性,體現人人都學有用的數學.

教學重點難點:

重點:探索、發現給定事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.

難點:利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題.

教學過程

1、創設問題情境,引入新課:

前幾節課我們學習了勾股定理,你還記得它有什么作用嗎?

例如:欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長的梯子?

根據題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.

所以至少需13米長的梯子.

2、講授新課:①、螞蟻怎么走最近

出示問題:有一個圓柱,它的高等于12厘米,底面半徑等于3厘米.在圓行柱的底面A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,需要爬行的的最短路程是多少?(π的值取3).

(1)同學們可自己做一個圓柱,嘗試從A點到B點沿圓柱的側面畫出幾條路線,你覺得哪條路線最短呢?(小組討論)

(2)如圖,將圓柱側面剪開展開成一個長方形,從A點到B點的最短路線是什么?你畫對了嗎?

(3)螞蟻從A點出發,想吃到B點上的食物,它沿圓柱側面爬行的最短路程是多少?(學生分組討論,公布結果)

我們知道,圓柱的側面展開圖是一長方形.好了,現在咱們就用剪刀沿母線AA′將圓柱的側面展開(如下圖).

我們不難發現,剛才幾位同學的走法:

(1)A→A′→B;(2)A→B′→B;

(3)A→D→B;(4)A—→B.

哪條路線是最短呢?你畫對了嗎?

第(4)條路線最短.因為“兩點之間的連線中線段最短”.

②、做一做:教材14頁。李叔叔隨身只帶卷尺檢測AD,BC是否與底邊AB垂直,也就是要檢測∠DAB=90°,∠CBA=90°.連結BD或AC,也就是要檢測△DAB和△CBA是否為直角三角形.很顯然,這是一個需用勾股定理的逆定理來解決的實際問題.

③、隨堂練習

出示投影片

1.甲、乙兩位探險者,到沙漠進行探險.某日早晨8∶00甲先出發,他以6千米/時的速度向東行走.1時后乙出發,他以5千米/時的速度向北行進.上午10∶00,甲、乙兩人相距多遠?

2.如圖,有一個高1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分是0.5米,問這根鐵棒應有多長?

1.分析:首先我們需要根據題意將實際問題轉化成數學模型.

解:(如圖)根據題意,可知A是甲、乙的出發點,10∶00時甲到達B點,則AB=2×6=12(千米);乙到達C點,則AC=1×5=5(千米).

在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙兩人相距13千米.

2.分析:從題意可知,沒有告訴鐵棒是如何插入油桶中,因而鐵棒的長是一個取值范圍而不是固定的長度,所以鐵棒最長時,是插入至底部的A點處,鐵棒最短時是垂直于底面時.

解:設伸入油桶中的長度為x米,則應求最長時和最短時的值.

(1)x2=1.52+22,x2=6.25,x=2.5

所以最長是2.5+0.5=3(米).

(2)x=1.5,最短是1.5+0.5=2(米).

答:這根鐵棒的長應在2~3米之間(包含2米、3米).

3.試一試(課本P15)

在我國古代數學著作《九章算術》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面.請問這個水池的深度和這根蘆葦的長度各為多少?

我們可以將這個實際問題轉化成數學模型.

解:如圖,設水深為x尺,則蘆葦長為(x+1)尺,由勾股定理可求得

(x+1)2=x2+52,x2+2x+1=x2+25

解得x=12

則水池的深度為12尺,蘆葦長13尺.

④、課時小結

這節課我們利用勾股定理和它的逆定理解決了生活中的幾個實際問題.我們從中可以發現用數學知識解決這些實際問題,更為重要的是將它們轉化成數學模型.

⑤、課后作業

課本P25、習題1.52

2021八年級數學滬科版教案5

一、素質教育目標

(一)知識教學點

使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系。

(二)能力訓練點

逐步培養學生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力。

(三)德育滲透點

培養學生獨立思考、勇于創新的精神。

二、教學重點、難點

1.重點:使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系并會應用。

2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關系的應用。

三、教學步驟

(一)明確目標

1.復習提問

(1)什么是∠A的正弦、什么是∠A的余弦,結合圖形請學生回答.因為正弦、余弦的概念是研究本課內容的知識基礎,請中下學生回答,從中可以了解教學班還有多少人不清楚的,可以采取適當的補救措施.

(2)請同學們回憶30°、45°、60°角的正、余弦值(教師板書).

(3)請同學們觀察,從中發現什么特征?學生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”。

2.導入新課

根據這一特征,學生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題。

(二)整體感知

關于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系,是通過30°、45°、60°角的正弦、余弦值之間的關系引入的,然后加以證明。引入這兩個關系式是為了便于查“正弦和余弦表”,關系式雖然用黑體字并加以文字語言的證明,但不標明是定理,其證明也不要求學生理解,更不應要求學生利用這兩個關系式去推證其他三角恒等式.在本章,這兩個關系式的用處僅僅限于查表和計算,而不是證明。

(三)重點、難點的學習和目標完成過程

1.通過復習特殊角的三角函數值,引導學生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發學生的學習熱情,使學生的思維積極活躍。

2.這時少數反應快的學生可能頭腦中已經“畫”出了圖形,并有了思路,但對部分學生來說仍思路凌亂.因此教師應進一步引導:sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學生結合正、余弦的概念,完全可以自己解決,教師要給學生足夠的研究解決問題的時間,以培養學生邏輯思維能力及獨立思考、勇于創新的精神。

3.教師板書:

任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。

sinA=cos(90°-A),cosA=sin(90°-A)。

4.在學習了正、余弦概念的基礎上,學生了解以上內容并不困難,但是,由于學生初次接觸三角函數,還不熟練,而定理又涉及余角、余函數,使學生極易混淆.因此,定理的應用對學生來說是難點、在給出定理后,需加以鞏固。

已知∠A和∠B都是銳角,

(1)把cos(90°-A)寫成∠A的正弦。

(2)把sin(90°-A)寫成∠A的余弦。

這一練習只能起到鞏固定理的作用.為了運用定理,教材安排了例3。

學生獨立完成練習2,就說明定理的教學較成功,學生基本會運用。

教材中3的設置,實際上是對前二節課內容的綜合運用,既考察學生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習,因此例3的安排恰到好處.同時,做例3也為下一節查正余弦表做了準備。

(四)小結與擴展

1.請學生做知識小結,使學生對所學內容進行歸納總結,將所學內容變成自己知識的組成部分。

2.本節課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關系,以及正弦、余弦的概念得出的結論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值。

5028 主站蜘蛛池模板: 铁素体测量仪/检测仪/铁素体含量测试仪-苏州圣光仪器有限公司 | 工业风机_环保空调_冷风机_工厂车间厂房通风降温设备旺成服务平台 | 聚丙烯酰胺PAM-聚合氯化铝PAC-絮凝剂-河南博旭环保科技有限公司 巨野电机维修-水泵维修-巨野县飞宇机电维修有限公司 | 科研ELISA试剂盒,酶联免疫检测试剂盒,昆虫_植物ELISA酶免试剂盒-上海仁捷生物科技有限公司 | 环氧树脂地坪_防静电地坪漆_环氧地坪漆涂料厂家-地壹涂料地坪漆 环球电气之家-中国专业电气电子产品行业服务网站! | 根系分析仪,大米外观品质检测仪,考种仪,藻类鉴定计数仪,叶面积仪,菌落计数仪,抑菌圈测量仪,抗生素效价测定仪,植物表型仪,冠层分析仪-杭州万深检测仪器网 | 涡轮流量计_LWGY智能气体液体电池供电计量表-金湖凯铭仪表有限公司 | 实验室pH计|电导率仪|溶解氧测定仪|离子浓度计|多参数水质分析仪|pH电极-上海般特仪器有限公司 | 西安文都考研官网_西安考研辅导班_考研培训机构_西安在职考研培训 | 北京软件开发_软件开发公司_北京软件公司-北京宜天信达软件开发公司 | 科研ELISA试剂盒,酶联免疫检测试剂盒,昆虫_植物ELISA酶免试剂盒-上海仁捷生物科技有限公司 | 深圳装修_店面装修设计_餐厅设计_装修全包价格-尚泰装饰设计 | 猎头招聘_深圳猎头公司_知名猎头公司 | 浇注料-高铝砖耐火砖-郑州凯瑞得窑炉耐火材料有限公司 | 机床主轴维修|刀塔维修|C轴维修-常州翔高精密机械有限公司 | 布袋式除尘器|木工除尘器|螺旋输送机|斗式提升机|刮板输送机|除尘器配件-泊头市德佳环保设备 | 上海小程序开发-小程序制作-上海小程序定制开发公司-微信商城小程序-上海咏熠 | 药品仓库用除湿机-变电站用防爆空调-油漆房用防爆空调-杭州特奥环保科技有限公司 | 吹塑加工_大型吹塑加工_滚塑代加工-莱力奇吹塑加工有限公司 | 铝镁锰板_铝镁锰合金板_铝镁锰板厂家_铝镁锰金属屋面板_安徽建科 | 运动木地板厂家,篮球场木地板品牌,体育场馆木地板安装 - 欧氏运动地板 | 全自动固相萃取仪_高通量真空平行浓缩仪-勤业永为 | 双杰天平-国产双杰电子天平-美国双杰-常熟双杰仪器 | 钣金加工厂家-钣金加工-佛山钣金厂-月汇好 | 驾驶式洗地机/扫地机_全自动洗地机_工业洗地机_荣事达工厂官网 | 低合金板|安阳低合金板|河南低合金板|高强度板|桥梁板_安阳润兴 北京租车牌|京牌指标租赁|小客车指标出租 | 加中寰球移民官网-美国移民公司,移民机构,移民中介,移民咨询,投资移民 | 瑞典Blueair空气净化器租赁服务中心-专注新装修办公室除醛去异味服务! | 喷砂机厂家_自动喷砂机生产_新瑞自动化喷砂除锈设备 | 水厂自动化-水厂控制系统-泵站自动化|控制系统-闸门自动化控制-济南华通中控科技有限公司 | 工业废水处理|污水处理厂|废水治理设备工程技术公司-苏州瑞美迪 今日娱乐圈——影视剧集_八卦娱乐_明星八卦_最新娱乐八卦新闻 | 报警器_家用防盗报警器_烟雾报警器_燃气报警器_防盗报警系统厂家-深圳市刻锐智能科技有限公司 | 北京浩云律师事务所-企业法律顾问_破产清算等公司法律服务 | 钢衬玻璃厂家,钢衬玻璃管道 -山东东兴扬防腐设备有限公司 | RV减速机-蜗轮蜗杆减速机-洗车机减速机-减速机厂家-艾思捷 | PC阳光板-PC耐力板-阳光板雨棚-耐力板雨棚,厂家定制[优尼科板材] | 芝麻黑-芝麻黑石材厂家-永峰石业 | 对辊式破碎机-对辊制砂机-双辊-双齿辊破碎机-巩义市裕顺机械制造有限公司 | 北京易通慧公司从事北京网站优化,北京网络推广、网站建设一站式服务商-北京网站优化公司 | 中式装修设计_全屋定制家具_实木仿古门窗花格厂家-喜迎门 | 石英粉,滑石粉厂家,山东滑石粉-莱州市向阳滑石粉有限公司 |