數(shù)學(xué)教案八年級(jí)2023
數(shù)學(xué)教案八年級(jí)都有哪些?數(shù)學(xué)家也研究純數(shù)學(xué),也就是數(shù)學(xué)本身,而不以任何實(shí)際應(yīng)用為目標(biāo)。雖然有許多工作以研究純數(shù)學(xué)為開(kāi)端,但之后也許會(huì)發(fā)現(xiàn)合適的應(yīng)用。下面是小編為大家?guī)?lái)的數(shù)學(xué)教案八年級(jí)2023(七篇),希望大家能夠喜歡!
數(shù)學(xué)教案八年級(jí)2023(篇1)
一、教學(xué)目標(biāo)
(一)知識(shí)與技能:
(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
(二)過(guò)程與方法:
(1)由學(xué)生自主探索解題途徑,在此過(guò)程中,通過(guò)觀察、類(lèi)比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類(lèi)比思想。
(2)由整式乘法的逆運(yùn)算過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
(3)通過(guò)對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問(wèn)題能力與綜合應(yīng)用能力。
(三)情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):因式分解的概念及提公因式法。
難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學(xué)過(guò)程
教學(xué)環(huán)節(jié):
活動(dòng)1:復(fù)習(xí)引入
看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ;
(2)-2、67×132+25×2、67+7×2、67= ;
(3)992–1= 。
設(shè)計(jì)意圖:
如果說(shuō)學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉。引入這一步的目的旨在讓學(xué)生通過(guò)回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過(guò)類(lèi)比很自然地過(guò)渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階。
注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過(guò)的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
活動(dòng)2:導(dǎo)入課題
P165的探究(略);
2、看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?
設(shè)計(jì)意圖:
引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類(lèi)比因式分解提供必要的精神準(zhǔn)備。
活動(dòng)3:探究新知
看誰(shuí)算得準(zhǔn):
計(jì)算下列式子:
(1)3x(x-1)= ;
(2)(a+b+c)= ;
(3)(+4)(-4)= ;
(4)(-3)2= ;
(5)a(a+1)(a-1)= ;
根據(jù)上面的算式填空:
(1)a+b+c= ;
(2)3x2-3x= ;
(3)2-16= ;
(4)a3-a= ;
(5)2-6+9= 。
在第一組的整式乘法的計(jì)算上,學(xué)生通過(guò)對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過(guò)對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動(dòng)4:歸納、得出新知
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運(yùn)算中還有其它類(lèi)似的例子嗎?除此之外,你還能找到類(lèi)似的例子嗎?
數(shù)學(xué)教案八年級(jí)2023(篇2)
教學(xué)內(nèi)容分析:
⑴ 學(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
⑵前面學(xué)習(xí)了平行四邊形、矩形菱形,類(lèi)比他們的性質(zhì)與判斷,有利于對(duì)正方形的研究。
⑶ 對(duì)本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類(lèi)研究的思想,并且建立新舊知識(shí)的聯(lián)系,類(lèi)比的基礎(chǔ)上進(jìn)行歸納,梳理知識(shí),進(jìn)一步發(fā)展學(xué)生的推理能力。
學(xué)生分析:
⑴學(xué)生在小學(xué)初步認(rèn)識(shí)了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗(yàn)與知識(shí)基礎(chǔ)。
⑵學(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對(duì)于證明,學(xué)生的思維能力還不成熟,有待于提高。
教學(xué)目標(biāo):
⑴知識(shí)與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會(huì)利用性質(zhì)與判定進(jìn)行簡(jiǎn)單的說(shuō)理。
⑵過(guò)程與方法:通過(guò)類(lèi)比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過(guò)運(yùn)用提高學(xué)生的推理能力。
⑶情感態(tài)度與價(jià)值觀:在學(xué)習(xí)中體會(huì)正方形的完美性,通過(guò)活動(dòng)獲得成功的喜悅與自信。
重點(diǎn):
掌握正方形的性質(zhì)與判定,并進(jìn)行簡(jiǎn)單的推理。
難點(diǎn):
探索正方形的判定,發(fā)展學(xué)生的推理能
教學(xué)方法:
類(lèi)比與探究
教具準(zhǔn)備:
可以活動(dòng)的四邊形模型。
教學(xué)過(guò)程:
一:復(fù)習(xí)鞏固,建立聯(lián)系。
【教師活動(dòng)】
問(wèn)題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
②( ) 的四邊形是平行四邊形。( )的平行四邊形是矩形。( )的平行四邊形是菱形。( )的四邊形是矩形。( )的四邊形是菱形。
【學(xué)生活動(dòng)】
學(xué)生回憶,并舉手回答,對(duì)于填空題,讓更多的學(xué)生參與,說(shuō)出更多的答案。
【教師活動(dòng)】
評(píng)析學(xué)生的結(jié)果,給予表?yè)P(yáng)。
總結(jié)性質(zhì)從邊角對(duì)角線考慮,在填空時(shí)也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^(guò)程。
二:動(dòng)手操作,探索發(fā)現(xiàn)。
活動(dòng)一:拿出一張矩形紙片,拉起一角,使其寬AB落在長(zhǎng)AD邊上,如下圖所示,沿著B(niǎo)′E剪下,能得到什么圖形?
【學(xué)生活動(dòng)】
學(xué)生拿出自備矩形紙片,動(dòng)手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問(wèn)題:①什么是正方形?
觀察發(fā)現(xiàn),從活動(dòng)中體會(huì)。
【教師活動(dòng)】:演示矩形變?yōu)檎叫蔚倪^(guò)程,菱形變?yōu)檎叫蔚倪^(guò)程。
【學(xué)生活動(dòng)】認(rèn)真觀察變化過(guò)程,思考之間的聯(lián)系,舉手回答設(shè)置問(wèn)題。
設(shè)置問(wèn)題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學(xué)生活動(dòng)】
小組討論,分組回答。
【教師活動(dòng)】
總結(jié)板書(shū):
㈠(一組鄰邊相等)的矩形是正方形,(一個(gè)角是直角)的菱形是正方形。
設(shè)置問(wèn)題③正方形有那些性質(zhì)?
【學(xué)生活動(dòng)】
小組討論,舉手搶答。
【教師活動(dòng)】
表?yè)P(yáng)學(xué)生發(fā)言,板書(shū)學(xué)生發(fā)現(xiàn),㈡正方形 每一條對(duì)角線平分一組對(duì)角
活動(dòng)二:拿出活動(dòng)一得到的正方形折一折,正方形是軸對(duì)稱圖形嗎?有幾條對(duì)稱軸?
學(xué)生活動(dòng)
折紙發(fā)現(xiàn),說(shuō)出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對(duì)稱圖形。
教師活動(dòng)
演示從平行四邊形變?yōu)檎叫蔚倪^(guò)程,擦去板書(shū)㈠中的括號(hào)內(nèi)容,出示一下問(wèn)題:你還可以怎樣填空?
( )的菱形是正方形,( )的矩形是正方形,( )的平行四邊形是正方形,( )的四邊形是正方形。
學(xué)生活動(dòng)
小組充分交流,表達(dá)不同的意見(jiàn)。
教師活動(dòng)
評(píng)析活動(dòng),總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對(duì)角線互相平分的矩形是正方形;
有一個(gè)角是直角的菱形是正方形,對(duì)角線相等的菱形是正方形,;
有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形,對(duì)角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對(duì)角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的`判定方法。
正方形是一個(gè)多么完美的平行四邊形呀?大家互相說(shuō)一說(shuō),它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學(xué)生交流,感受正方形
三,應(yīng)用體驗(yàn),推理證明。
出示例一:正方形ABCD的兩條對(duì)角線AC,BD交與O,AB長(zhǎng)4cm,求AC,AO長(zhǎng),及 的度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個(gè)角是直角)。
BC=AB=4cm(正方形的四條邊相等)
∴ =45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC= = =4 cm
∵AO= AC(正方形的對(duì)角線互相平分)
∴AO= ×4 =2 cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學(xué)生活動(dòng)
獨(dú)立思考,寫(xiě)出推理過(guò)程,再進(jìn)行小組討論,并且各小組指派代表寫(xiě)在黑板上,共同交流。
教師活動(dòng)
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評(píng)析解題步驟,表?yè)P(yáng)突出學(xué)生。
出示例二:在正方形ABCD中,E、F、G、H 分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學(xué)生活動(dòng)
小組交流,分析題意,整理思路,指名口答。
教師活動(dòng)
說(shuō)明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識(shí)。
這一節(jié)課你有什么收獲?
學(xué)生舉手談?wù)撟约旱氖斋@。
請(qǐng)把平行四邊形,矩形,菱形,正方形分別填寫(xiě)在下圖的ABCDC處,說(shuō)明它們的關(guān)系。
發(fā)表評(píng)論
數(shù)學(xué)教案八年級(jí)2023(篇3)
一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。
1、平移
2、平移的性質(zhì):
⑴經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等;
⑵對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。
⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。
(4)平移后的圖形與原圖形全等。
3、簡(jiǎn)單的平移作圖
①確定個(gè)圖形平移后的位置的條件:
⑴需要原圖形的位置;
⑵需要平移的方向;
⑶需要平移的距離或一個(gè)對(duì)應(yīng)點(diǎn)的位置。
②作平移后的圖形的方法:
⑴找出關(guān)鍵點(diǎn);
⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn);
⑶將所作的對(duì)應(yīng)點(diǎn)按原來(lái)方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。
1、旋轉(zhuǎn)
2、旋轉(zhuǎn)的性質(zhì)
⑴旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
⑵旋轉(zhuǎn)過(guò)程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。
⑶任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
⑷旋轉(zhuǎn)前后的兩個(gè)圖形全等。
3、簡(jiǎn)單的旋轉(zhuǎn)作圖
⑴已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。
⑵已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
①確定組合圖案中的“基本圖案”
②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
③探索該圖案的形成過(guò)程,類(lèi)型有:
⑴平移變換;
⑵旋轉(zhuǎn)變換;
⑶軸對(duì)稱變換;
⑷旋轉(zhuǎn)變換與平移變換的組合;
⑸旋轉(zhuǎn)變換與軸對(duì)稱變換的組合;
⑹軸對(duì)稱變換與平移變換的組合。
數(shù)學(xué)教案八年級(jí)2023(篇4)
教學(xué)目標(biāo)
1、熟練掌握一元一次不等式組的解法,會(huì)用一元一次不等式組解決有關(guān)的實(shí)際問(wèn)題;
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問(wèn)題和解決問(wèn)題的能力;
3、體驗(yàn)數(shù)學(xué)學(xué)習(xí)的樂(lè)趣,感受一元一次不等式組在解決實(shí)際問(wèn)題中的價(jià)值。
教學(xué)難點(diǎn)
正確分析實(shí)際問(wèn)題中的不等關(guān)系,列出不等式組。
知識(shí)重點(diǎn)
建立不等式組解實(shí)際問(wèn)題的數(shù)學(xué)模型。
探究實(shí)際問(wèn)題
出示教科書(shū)第145頁(yè)例2(略)
問(wèn):
(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?
(2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(3)解決這個(gè)問(wèn)題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?
師生一起討論解決例2.
歸納小結(jié)
1、教科書(shū)146頁(yè)“歸納”(略).
2、你覺(jué)得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?
在討論或議論的基礎(chǔ)上老師揭示:
步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見(jiàn)下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。
數(shù)學(xué)教案八年級(jí)2023(篇5)
教學(xué)目標(biāo)
1.使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡(jiǎn)單的與數(shù)量有關(guān)的詞語(yǔ)用代數(shù)式表示出來(lái);
2.初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):列代數(shù)式.
難點(diǎn):弄清楚語(yǔ)句中各數(shù)量的意義及相互關(guān)系.
課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
1庇么數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;(-7)
(4)乙數(shù)比x大16%((1+16%)x)
(應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)
2痹詿數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計(jì)算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問(wèn)題一樣,這一點(diǎn)同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴?jì)算關(guān)系式(即日常生活語(yǔ)言)列成代數(shù)式北窘誑撾頤薔屠匆黃鷓習(xí)這個(gè)問(wèn)題
二、講授新課
例1用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5;(2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7;(4)乙數(shù)比甲數(shù)大16%
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫(xiě)代數(shù)式以前需要把甲數(shù)具體設(shè)出來(lái),才能解決欲求的乙數(shù)
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x
(本題應(yīng)由學(xué)生口答,教師板書(shū)完成)
最后,教師需指出:第4小題的答案也可寫(xiě)成x+16%x
例2用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的與乙數(shù)的的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來(lái),然后依條件寫(xiě)出代數(shù)式
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)
(本題應(yīng)由學(xué)生口答,教師板書(shū)完成)
此時(shí),教師指出:a與b的和,以及b與a的和都是指(a+b),這是因?yàn)榧臃ㄓ薪粨Q律鋇玜與b的差指的是(a-b),而b與a的差指的是(b-a)繃秸咼饗圓煌,這就是說(shuō),用文字語(yǔ)言敘述的句子里應(yīng)特別注意其運(yùn)算順序
例3用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)
分析本題時(shí),可提出以下問(wèn)題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個(gè)數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n;(2)5m+2
(這個(gè)例子直接為以后讓學(xué)生用代數(shù)式表示任意一個(gè)偶數(shù)或奇數(shù)做準(zhǔn)備)
例4設(shè)字母a表示一個(gè)數(shù),用代數(shù)式表示:
(1)這個(gè)數(shù)與5的和的3倍;(2)這個(gè)數(shù)與1的差的;
(3)這個(gè)數(shù)的5倍與7的和的一半;(4)這個(gè)數(shù)的平方與這個(gè)數(shù)的的和
分析:?jiǎn)l(fā)學(xué)生,做分析練習(xí)比緄1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a
(通過(guò)本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個(gè)基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力)
例5設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個(gè)座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的,教室里總共有多少個(gè)座位?
分析本題時(shí),可提出如下問(wèn)題:
(1)教室里有6行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?
(2)教室里有m行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?
(3)通過(guò)上述問(wèn)題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個(gè);(2)(m)m個(gè)
三、課堂練習(xí)
1鄙杓資為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的的和;(2)甲數(shù)的與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商
2庇么數(shù)式表示:
(1)比a與b的和小3的數(shù);(2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù);(4)比a除b的商的3倍大8的數(shù)
3庇么數(shù)式表示:
(1)與a-1的和是25的數(shù);(2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù);(4)除以(y+3)的商是y的數(shù)
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄
四、師生共同小結(jié)
首先,請(qǐng)學(xué)生回答:
1痹躚列代數(shù)式?2繃寫(xiě)數(shù)式的關(guān)鍵是什么?
其次,教師在學(xué)生回答上述問(wèn)題的基礎(chǔ)上,指出:對(duì)于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變?cè)}敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);
(2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個(gè)基本的數(shù)量關(guān)系;
(3)把用日常生活語(yǔ)言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備幣求學(xué)生一定要牢固掌握
五、作業(yè)
1庇么數(shù)式表示:
(1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?
2幣閻一個(gè)長(zhǎng)方形的周長(zhǎng)是24厘米,一邊是a厘米,
求:(1)這個(gè)長(zhǎng)方形另一邊的長(zhǎng);(2)這個(gè)長(zhǎng)方形的面積.
學(xué)法探究
已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個(gè)這樣的圓環(huán)一個(gè)接著一個(gè)環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長(zhǎng)度是多少厘米?
分析:先深入研究一下比較簡(jiǎn)單的情形,比如三個(gè)圓環(huán)接在一起的情形,看有沒(méi)有規(guī)律.
當(dāng)圓環(huán)為三個(gè)的時(shí)候,如圖:
此時(shí)鏈長(zhǎng)為,這個(gè)結(jié)論可以繼續(xù)推廣到四個(gè)環(huán)、五個(gè)環(huán)、…直至100個(gè)環(huán),答案不難得到:
解:=99a+b(cm)
今天的內(nèi)容就介紹到這里了。
數(shù)學(xué)教案八年級(jí)2023(篇6)
初中數(shù)學(xué)分層教學(xué)的理論與實(shí)踐
天山六中裴煥民
一、分層教學(xué)的含義
分層教學(xué)是指教師在學(xué)生知識(shí)基礎(chǔ)、智力因素存在明顯差異的情況下,有區(qū)別地設(shè)計(jì)教學(xué)環(huán)節(jié)進(jìn)行教學(xué),遵循因材施教的原則,有針對(duì)性地實(shí)施對(duì)不同類(lèi)別學(xué)生的學(xué)習(xí)指導(dǎo),不僅根據(jù)學(xué)生的`不同選擇不同的教法、布置作業(yè),還因材施“助”、因材施“改”、因材施“教”,使每個(gè)學(xué)生都能在原有的基礎(chǔ)上得以發(fā)展,從而達(dá)到不同類(lèi)別的教學(xué)目標(biāo)的一種教學(xué)方法。
分層教學(xué)是“著眼于與學(xué)生的可持續(xù)性的、良性的發(fā)展”的教育觀念下的一種教學(xué)實(shí)施策略。所謂分層教學(xué)(同班、同年級(jí)分層次教學(xué))就是教師在教授同一教學(xué)內(nèi)容時(shí),對(duì)同一個(gè)班內(nèi)不同知識(shí)水平和接受能力的優(yōu)、中、差生以相應(yīng)的三個(gè)層次的教學(xué)深度和廣度進(jìn)行合講分練,做到課堂教學(xué)有的放矢,區(qū)別對(duì)待,使每個(gè)學(xué)生都在自己原來(lái)的基礎(chǔ)上學(xué)有所得,思有所進(jìn),在不同程度上有所提高,同步發(fā)展。教師的教學(xué)方法應(yīng)從最低點(diǎn)起步,分類(lèi)指導(dǎo),逐步推進(jìn),做到“分合”有序,動(dòng)靜結(jié)合,并分層設(shè)計(jì)練習(xí),分層設(shè)計(jì)課堂,分層布置作業(yè),引導(dǎo)學(xué)生全員參與,各得進(jìn)步。
二、分層教學(xué)必要性分析
1、教學(xué)現(xiàn)狀呼喚分層教學(xué)的實(shí)施
義務(wù)教育的實(shí)施使小學(xué)畢業(yè)生全部升入初中學(xué)習(xí),這樣,在同一班里,學(xué)生的知識(shí)、能力參差不齊。但是,應(yīng)試教育留下的種種弊端抑制了各層次的學(xué)生的學(xué)習(xí)積極性和興趣,整齊劃一的教學(xué)要求,忽視了學(xué)生之間的差異。為了使教育面向全體學(xué)生,減輕部分學(xué)生過(guò)重的負(fù)擔(dān),使他們?cè)谠械幕A(chǔ)上有所提高,全面提高教學(xué)質(zhì)量,又要使有特長(zhǎng)的學(xué)生得到更進(jìn)一步的發(fā)展。因此必須實(shí)施因材施教,根據(jù)不同的學(xué)生的具體情況,確立不同的教學(xué)目標(biāo),采取不同的教學(xué)方法,使其個(gè)性得到充分發(fā)展,為社會(huì)培養(yǎng)各種層次的有用之人。
2、新課程改革呼喚分層教學(xué)的實(shí)施
數(shù)學(xué)課程改革的核心是課程的實(shí)施,而教學(xué)是課程實(shí)施的基本途徑。課程改革歸根到底是要轉(zhuǎn)變教師的傳統(tǒng)教學(xué)觀念:包括教學(xué)方式的轉(zhuǎn)變——從“教”到
“引”;知識(shí)技能掌握理念的轉(zhuǎn)變——從“滿堂灌”、“書(shū)山題海”到“在親身經(jīng)歷中體會(huì)、理解、掌握知識(shí)技能”,強(qiáng)調(diào)自我的情感體驗(yàn);教材觀的轉(zhuǎn)變——從“教教材”到“用教材”,教材變成我們引導(dǎo)學(xué)生探究知識(shí)的工具之一;評(píng)價(jià)機(jī)制的轉(zhuǎn)變——從“唯分?jǐn)?shù)論”到“適合學(xué)生自身特點(diǎn)的發(fā)展”,這是實(shí)施分層教學(xué)的原動(dòng)力,但也是現(xiàn)今新課程改革的一個(gè)難點(diǎn)。
在新課改中實(shí)施分層教學(xué)法的目的是逐步樹(shù)立學(xué)困生學(xué)習(xí)的信心,激發(fā)中等生的學(xué)習(xí)潛力,擴(kuò)大優(yōu)生的學(xué)習(xí)面。為了適應(yīng)當(dāng)前素質(zhì)教育的需要,我們要采用針對(duì)性的矯正和幫助,進(jìn)行分層教學(xué),分類(lèi)指導(dǎo),及時(shí)反饋,從中探索出一條教學(xué)改革的新路子。
3、學(xué)生個(gè)體差異的客觀存在
心理學(xué)的研究結(jié)果表明:學(xué)生的學(xué)習(xí)能力差異是存在的,特別是學(xué)生在數(shù)學(xué)學(xué)習(xí)能力方面存在著較大的差異這已是一個(gè)不爭(zhēng)的事實(shí)。造成差異的原因有很多,學(xué)生的先天遺傳因素及環(huán)境、教育條件都有所不同,還有社會(huì)因素(即環(huán)境、教育條件、科學(xué)訓(xùn)練),這些原因是對(duì)學(xué)生學(xué)習(xí)能力的形成起著決定性作用,所以學(xué)生所表現(xiàn)出的數(shù)學(xué)能力有明顯差異也是正常的。
學(xué)生作為一個(gè)群體,存在著個(gè)體差異
(1)智力差異。每個(gè)學(xué)生因?yàn)檫z傳基因的不同,智力的差異是不可避免的。有的人聰明;有的人愚鈍,有的人形象思維強(qiáng);有的邏輯思維強(qiáng);有的人記憶力超人,但推理能力較差;有的人記憶力較差,卻推理能力過(guò)人。
(2)學(xué)習(xí)基礎(chǔ)差異。不同的學(xué)生在小學(xué)的數(shù)學(xué)狀況不一樣:有的學(xué)生數(shù)學(xué)十分優(yōu)秀,有的學(xué)生數(shù)學(xué)學(xué)習(xí)基本還沒(méi)入門(mén),兩極分化相當(dāng)嚴(yán)重。
(3)學(xué)習(xí)品質(zhì)差異。有的學(xué)生學(xué)習(xí)數(shù)學(xué)十分認(rèn)真,有一套自己的數(shù)學(xué)學(xué)習(xí)方法,學(xué)得輕松愉快;而有的學(xué)生因?yàn)闆](méi)有入門(mén),數(shù)學(xué)學(xué)得十分艱難,部分學(xué)生甚至對(duì)數(shù)學(xué)學(xué)習(xí)喪失了信心。
4、分層次教學(xué)符合因材施教的原則
目前我國(guó)大部分省市的數(shù)學(xué)教學(xué)采用的是統(tǒng)一教材、統(tǒng)一課時(shí)、統(tǒng)一教參,在學(xué)生學(xué)習(xí)能力存在差異的情況下,在教學(xué)過(guò)程中往往容易產(chǎn)全“顧中間、丟兩頭”。如不因材施教,就使部分學(xué)生就成了陪讀、陪考。數(shù)學(xué)能力強(qiáng)的學(xué)生潛能得不到充分發(fā)揮,能力稍差的學(xué)生就可能變成了后進(jìn)生。有研究結(jié)果表明:教師、
家庭、社會(huì)、學(xué)生、學(xué)校等方面的因素都有可能是形成后進(jìn)生的原因,其中有50%的原因是來(lái)自教師在教學(xué)中的失誤。我們的基礎(chǔ)教育既要注意確保學(xué)生的共性需求,又要顧及學(xué)生的個(gè)性發(fā)展,所以進(jìn)行分層教育確有必要。
5、分層次教學(xué)能夠有效推動(dòng)教學(xué)過(guò)程的展開(kāi)
按照教育家達(dá)尼洛夫關(guān)于教學(xué)過(guò)程的動(dòng)力理論之說(shuō),認(rèn)為只有學(xué)生學(xué)習(xí)的可能性與對(duì)他們的要求是一致的,才可能推動(dòng)教學(xué)過(guò)程的展開(kāi),從而加快學(xué)習(xí)成績(jī)的提高,而這兩者的統(tǒng)一關(guān)系若被破壞,就會(huì)造成學(xué)業(yè)的不良后果。學(xué)生的學(xué)習(xí)可能是由他們生理和心理的一般發(fā)展水平與對(duì)某項(xiàng)學(xué)習(xí)的具體準(zhǔn)備狀態(tài)所決定的,學(xué)生學(xué)習(xí)可能性的構(gòu)成因素中既有相對(duì)穩(wěn)定的因素,又有易變的因素。相對(duì)穩(wěn)定的因素,決定了學(xué)生在一段時(shí)間內(nèi)可能達(dá)到的學(xué)習(xí)水平的范圍,決定了學(xué)業(yè)不良學(xué)生要取得學(xué)業(yè)進(jìn)步只能是一個(gè)漸進(jìn)的過(guò)程;易變的因素,使學(xué)生能在:一定的主客觀條件下提高或降低自己的實(shí)際可能性水平,從而促進(jìn)或阻礙學(xué)習(xí)可能性與教學(xué)要求之間矛盾的轉(zhuǎn)化,加快學(xué)習(xí)成績(jī)提高或降低的速度。由此可見(jiàn),分層次教學(xué)是著眼于協(xié)調(diào)教學(xué)要求與學(xué)生學(xué)習(xí)可能性的關(guān)系的一種極好的手段,使它們之間能相適應(yīng),從而推動(dòng)教學(xué)過(guò)程的展開(kāi)。
三、分層教學(xué)研究的目的意義
捷克教育家夸美紐斯在十七世紀(jì)提出來(lái)的班級(jí)授課制以其大大提高教學(xué)效率、加強(qiáng)學(xué)校工作的計(jì)劃性和實(shí)際社會(huì)效益風(fēng)行了三百多年后,其固有的不利于學(xué)生創(chuàng)造能力的培養(yǎng)和因材施教等種種弊端與社會(huì)發(fā)展對(duì)教育的要求的矛盾越來(lái)越尖銳起來(lái)。隨著科學(xué)技術(shù)的發(fā)展,社會(huì)日益進(jìn)步,教育資源和教育需求的增長(zhǎng)和變化,班級(jí)授課制在我國(guó)做出輝煌的貢獻(xiàn)后逐步顯現(xiàn)出其先天的嚴(yán)重不足。教師在班級(jí)授課制下對(duì)能力強(qiáng)的學(xué)生“吃不飽”,能力欠佳的學(xué)生“吃不消”普遍感到力不從心。分層教學(xué)在這種情況下應(yīng)運(yùn)而生,成為優(yōu)化單一班級(jí)授課制的有利途徑。
1.有利于所有學(xué)生的提高:分層教學(xué)法的實(shí)施,避免了部分學(xué)生在課堂上完成作業(yè)后無(wú)所事事,同時(shí),所有學(xué)生都體驗(yàn)到學(xué)有所成,增強(qiáng)了學(xué)習(xí)信心。
2.有利于課堂效率的提高:首先,教師事先針對(duì)各層學(xué)生設(shè)計(jì)了不同的教學(xué)目標(biāo)與練習(xí),使得處于不同層的學(xué)生都能“摘到桃子”,獲得成功的喜悅,這極大地優(yōu)化了教師與學(xué)生的關(guān)系,從而提高師生合作、交流的效率;其次,教師在
備課時(shí)事先估計(jì)了在各層中可能出現(xiàn)的問(wèn)題,并做了充分的準(zhǔn)備,使得實(shí)際施教更有的放矢、目標(biāo)明確、針對(duì)性強(qiáng),增大了課堂教學(xué)的容量??傊?,通過(guò)這一教學(xué)法,有利于提高課堂教學(xué)的質(zhì)量和效率。
3.有利于教師全面能力的提升:通過(guò)有效地組織好對(duì)各層學(xué)生的教學(xué),靈活地安排不同的層次策略,極大地鍛煉了教師的組織調(diào)控與隨機(jī)應(yīng)變能力。分層教學(xué)本身引出的思考和學(xué)生在分層教學(xué)中提出來(lái)的挑戰(zhàn)都有利于教師能力的全面提升。
四、分層教學(xué)的理論基礎(chǔ)
1、掌握學(xué)習(xí)理論
布魯姆提出的“掌握學(xué)習(xí)理論”主張:“給學(xué)生足夠的學(xué)習(xí)時(shí)間,同時(shí)使他們獲得科學(xué)的學(xué)習(xí)方法,通過(guò)他們自己的努力,應(yīng)該都可以掌握學(xué)習(xí)內(nèi)容”?!安煌瑢W(xué)生需要用不同的方法去教,不同學(xué)生對(duì)不同的教學(xué)內(nèi)容能持久地集中注意力”。為了實(shí)現(xiàn)這個(gè)目標(biāo),就應(yīng)該采取分層教學(xué)的方法。
2、教學(xué)最優(yōu)化理論
巴班斯基的“教學(xué)最優(yōu)化理論”的核心是:教學(xué)過(guò)程的最優(yōu)化是選擇一種能使教師和學(xué)生在花費(fèi)最少的必要時(shí)間和精力的情況下獲得最好的教學(xué)效果的教學(xué)方案并加以實(shí)施。分層教學(xué)是實(shí)現(xiàn)這一目標(biāo)的有效方式之一。
3、新課標(biāo)的基本理念
《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出了一種全新的數(shù)學(xué)課程理念:“人人學(xué)有價(jià)值的數(shù)學(xué);人人都能獲得必需的數(shù)學(xué);不同的人在數(shù)學(xué)上得到不同的發(fā)展”。面向全體學(xué)生,體現(xiàn)了義務(wù)教育的基礎(chǔ)性、普及性和發(fā)展性。不僅為數(shù)學(xué)教學(xué)內(nèi)容的設(shè)定指出方向,而且考慮到學(xué)生的可持續(xù)發(fā)展對(duì)數(shù)學(xué)的需求,并為學(xué)生學(xué)習(xí)數(shù)學(xué)可能產(chǎn)生的差異性留有充分的余地。
五、分層教學(xué)實(shí)施的指導(dǎo)思想及原則
首先,分層次教學(xué)的主體是班級(jí)教學(xué)為主,按層次教學(xué)為輔,層次分得好壞直接影響到“分層次教學(xué)”的成功與否。其指導(dǎo)思想是變傳統(tǒng)的應(yīng)試教育為素質(zhì)教育,是成績(jī)差異的分層,而不是人格的分層。為了不給差生增加心理負(fù)擔(dān),必須做好分層前的思想工作,了解學(xué)生的心理特點(diǎn),講情道理:學(xué)習(xí)成績(jī)的差異是客觀存在的,分層次教學(xué)的目的不是人為地制造等級(jí),而是采用不同的方法幫助
他們提高學(xué)習(xí)成績(jī),讓不同成績(jī)的學(xué)生最大限度地發(fā)揮他們的潛力,以逐步縮小差距,達(dá)到班級(jí)整體優(yōu)化。
在對(duì)學(xué)生進(jìn)行分層要堅(jiān)持尊重學(xué)生,師生磋商,動(dòng)態(tài)分層的原則。應(yīng)該向?qū)W生宣布分層方案的設(shè)計(jì),講清分層的目的和意義,以統(tǒng)一師生認(rèn)識(shí);指導(dǎo)每位學(xué)生實(shí)事求是地估計(jì)自己,通過(guò)學(xué)生自我評(píng)估,完全由學(xué)生自己自愿選擇適應(yīng)自己的層次;最后,教師根據(jù)學(xué)生自愿選擇的情況進(jìn)行合理性分析,若有必要,在征得學(xué)生同意的基礎(chǔ)上作個(gè)別調(diào)整之后,公布分層結(jié)果。這樣使部分學(xué)生既分到了合適的層次上,又保留了“臉面”,自尊心也不至于受到傷害,也提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
其次,在分層教學(xué)中應(yīng)注意下列原則的使用:
①水平相近原則:在分層時(shí)應(yīng)將學(xué)習(xí)狀況相近的學(xué)生歸為“同一層”;
②差別模糊原則:分層是動(dòng)態(tài)的、可變的,有進(jìn)步的可以“升級(jí)”,退步的應(yīng)“轉(zhuǎn)級(jí)”,且分層結(jié)果不予公布;
③感受成功原則:在制定各層次教學(xué)目標(biāo)、方法、練習(xí)、作業(yè)時(shí),應(yīng)使學(xué)生跳一跳,才可摘到蘋(píng)果為宜,在分層中感受到成功的喜悅;
④零整分合原則:教學(xué)內(nèi)容的合與分,對(duì)學(xué)生的“放”與“扶”,以及課外的分層輔導(dǎo)都應(yīng)遵守這個(gè)原則;
⑤調(diào)節(jié)控制原則:由于各層次學(xué)生要求不一,因此在課堂上以學(xué)、議為主,教師要善于激趣、指導(dǎo)、精講、引思,調(diào)節(jié)并控制止好各層次學(xué)生的學(xué)習(xí),做好分類(lèi)指導(dǎo);
⑥積極激勵(lì)原則:對(duì)各層次學(xué)生的評(píng)價(jià),以縱向性為主。教師通過(guò)觀察、反饋信息,及時(shí)表?yè)P(yáng)激勵(lì),對(duì)進(jìn)步大的學(xué)生及時(shí)調(diào)到高一層次,相對(duì)落后的同意轉(zhuǎn)層。從而促進(jìn)各層學(xué)生學(xué)習(xí)的積極性,使所有學(xué)生隨時(shí)都處于最佳的學(xué)習(xí)狀態(tài)。
數(shù)學(xué)教案八年級(jí)2023(篇7)
重難點(diǎn)分析
本節(jié)的重點(diǎn)是矩形的性質(zhì)和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個(gè)角是直角,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。矩形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。
本節(jié)的難點(diǎn)是矩形性質(zhì)的靈活應(yīng)用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時(shí)還具有自己獨(dú)特的性質(zhì)。如果得到一個(gè)平行四邊形是矩形,就可以得到許多關(guān)于邊、角、對(duì)角線的條件,在實(shí)際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無(wú)措,教師在教學(xué)過(guò)程中應(yīng)給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點(diǎn)和與平行四邊形的關(guān)系,建議教師在教學(xué)過(guò)程中注意以下問(wèn)題:
1.矩形的知識(shí),學(xué)生在小學(xué)時(shí)接觸過(guò)一些,可由小學(xué)學(xué)過(guò)的知識(shí)作為引入。
2.矩形在現(xiàn)實(shí)中的實(shí)例較多,在講解矩形的性質(zhì)和判定時(shí),教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實(shí)例來(lái)進(jìn)行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識(shí).
3. 如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材145頁(yè)圖4-30所示,制作一個(gè)平行四邊形作為教學(xué)過(guò)程中的道具,既增強(qiáng)了學(xué)生的動(dòng)手能力和參與感,有在教學(xué)中有切實(shí)的體例,使學(xué)生對(duì)知識(shí)的掌握更輕松些.
4. 在對(duì)性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個(gè)學(xué)生分別對(duì)事先準(zhǔn)備后的圖形進(jìn)行邊、角、對(duì)角線的測(cè)量,然后在組內(nèi)進(jìn)行整理、歸納.
5. 由于矩形的性質(zhì)定理證明比較簡(jiǎn)單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來(lái)進(jìn)行具體的證明.
6.在矩形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。
矩形教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說(shuō)出矩形的四個(gè)角都是直角和矩形的的對(duì)角線相等的性質(zhì);能推出直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)。
2.能運(yùn)用以上性質(zhì)進(jìn)行簡(jiǎn)單的證明和計(jì)算。
此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會(huì)特殊與一般的關(guān)系,滲透集合的思想,培養(yǎng)學(xué)生辨證唯物主義觀點(diǎn)。
引導(dǎo)性材料
想一想:一般四邊形與平行四邊形之間的相互關(guān)系?在圖4.5-l的圓圈中填上四邊形和平行四邊形的字樣來(lái)說(shuō)明這種關(guān)系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質(zhì);具有一些特殊的性質(zhì)。
小學(xué)里已學(xué)過(guò)長(zhǎng)方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個(gè)角都是直角(小學(xué)里已學(xué)過(guò))等特殊性質(zhì),那么,如果在圖4.5-1中再畫(huà)一個(gè)圈表示矩形,這個(gè)圈應(yīng)畫(huà)在哪里?
(讓學(xué)生初步感知矩形與平行四邊形的從屬關(guān)系。)
演示:用四根木條制作一個(gè)平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當(dāng)平行四邊形的一個(gè)內(nèi)角由銳角變?yōu)殁g角的過(guò)程中,會(huì)發(fā)生怎樣的特殊情況,這時(shí)的圖形是什么圖形(矩形)。
問(wèn)題1:從上面的演示過(guò)程,可以發(fā)現(xiàn):平行四邊形具備什么條件時(shí),就成了矩形?
說(shuō)明與建議:教師的演示應(yīng)充分展現(xiàn)變化過(guò)程,從而讓學(xué)生深切地感受到短形是無(wú)數(shù)個(gè)平行四邊形中的一個(gè)特例,同時(shí),又使學(xué)生能正確地給出矩形的定義。
問(wèn)題2:矩形是特殊的平行四邊形,它除了有一個(gè)角是直角以外,還可能具有哪些平行四邊形所沒(méi)有的特殊性質(zhì)呢?
說(shuō)明與建議:讓學(xué)生分組探索,有必要時(shí),教師可引導(dǎo)學(xué)生,根據(jù)研究平行四邊形獲得的經(jīng)驗(yàn),分別從邊、角、對(duì)角線三個(gè)方面探索矩形的特性,還可提醒學(xué)生,這種探索的基礎(chǔ)是矩形有一個(gè)角是直角矩形的四個(gè)角都相等(矩形性質(zhì)定理1),要學(xué)生給以證明(即課本例1后練習(xí)第1題)。
學(xué)生能探索得出矩形的鄰邊互相垂直的特性,教師可作說(shuō)明:這與矩形的四個(gè)角是直角本質(zhì)上是一致的,所以不必另列為一個(gè)性質(zhì)。
學(xué)生探索矩形的四條對(duì)角線的大小關(guān)系時(shí),如有困難,可引導(dǎo)學(xué)生測(cè)量并比較矩形兩條對(duì)角線的長(zhǎng)度,然后加以證明,得出性質(zhì)定理2。
問(wèn)題3:矩形的一條對(duì)角線把矩形分成兩個(gè)直角三角形,矩形的對(duì)角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?
說(shuō)明與建議:(1)讓學(xué)生先觀察圖4.5-3,并議論猜想,如學(xué)生有困難,教師可引導(dǎo)學(xué)生觀察圖中的一個(gè)直角三角形(如Rt△ABC),讓學(xué)生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關(guān)系,然后讓學(xué)生自己給出如下證明:
證明:在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AC=BD(矩形的對(duì)角線相等)。
,AO=CO
在Rt△ABC中,BO是斜邊AC上的中線,且 。
直角三角形斜邊上的中線等于斜邊的一半。
例題解析
例1:(即課本例1)
說(shuō)明:本題難度不大,又有助于學(xué)生加深對(duì)性質(zhì)定理的理解,教學(xué)中應(yīng)引導(dǎo)學(xué)生探索解法:
如圖4.5-4,欲求對(duì)角線BD的長(zhǎng),由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長(zhǎng),或一個(gè)銳角的度數(shù),再?gòu)囊阎獥l件AOD=120出發(fā),應(yīng)用矩形的性質(zhì)可知,ADB=30,另外,還可以引導(dǎo)學(xué)生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計(jì)算題書(shū)寫(xiě)格式的示范;第二種解法如下:
∵四邊形ABCD是矩形,
AC=BD(矩形的對(duì)角線相等)。
又 。
OA=BO,△AOB是等腰三角形,
∵AOD=120,AOB=180- 120= 60
AOB是等邊三角形。
BO=AB=4cm,
BD=2BO=244cm=8cm。
例2:(補(bǔ)充例題)
已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點(diǎn),EF平分BED交BD于點(diǎn)F。
(l)猜想:EF與BD具有怎樣的關(guān)系?
(2)試證明你的猜想。
解:(l)EF垂直平分BD。
(2)證明:∵ABC=90,點(diǎn)E是AC的中點(diǎn)。
(直角三角形的斜邊上的中線等于斜邊的一半)。
同理: 。
BE=DE。
又∵EF平分BED。
EFBD,BF=DF。
說(shuō)明:本例是一道不給出結(jié)論,需要學(xué)生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學(xué)生的推理(包括合情推理和邏輯推理)能力。如果學(xué)生不適應(yīng),或有困難,教師可根據(jù)實(shí)際情況加以引導(dǎo),這種訓(xùn)練,重要的不是猜對(duì)了沒(méi)有?證明了沒(méi)有?而是讓學(xué)生經(jīng)歷這樣一種自己研究圖形性質(zhì)的過(guò)程,順便指出:求解本題的重要基礎(chǔ)是識(shí)圖技能----能從復(fù)雜圖形中分解出如圖4.5-6所示的三個(gè)基本圖形。
課堂練習(xí)
1.課本例1后練習(xí)題第2題。
2.課本例1后練習(xí)題第4題。
小結(jié)
1.矩形的定義:
2.歸納總結(jié)矩形的性質(zhì):
對(duì)邊平行且相等
四個(gè)角都是直角
對(duì)角線平行且相等
3.直角三角形斜邊上的中線等于斜邊的一半。
4.矩形的一條對(duì)角線把矩形分成兩個(gè)全等的直角三角形;矩形的兩條對(duì)角線把矩形分成四個(gè)全等的等腰三角形。因此,有關(guān)矩形的問(wèn)題往往可化為直角三角形或等腰三角形的問(wèn)題來(lái)解決。
作業(yè)
l.課本習(xí)題4.3A組第2題。
2.課本復(fù)習(xí)題四A組第6、7題。