七年級數學課堂的優質教案
初中數學教師在教學過程中應當重視師生關系的維系,建立一個和諧、平等、民主的教學環境,讓學生愿意學習數學,這是培養學生自主學習能力的基礎。今天小編在這給大家整理了一些七年級數學課堂的優質教案,我們一起來看看吧!
七年級數學課堂的優質教案1
[教學目標]
1.理解平行線的意義,了解同一平面內兩條直線的位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
4.了解“三線八角”并能在具體圖形中找出同位角、內錯角與同旁內角;
4.了解平行線在實際生活中的應用,能舉例加以說明.
[教學重點與難點]
1.教學重點:平行線的概念與平行公理;
2.教學難點:對平行公理的理解.
[教學過程]
一、復習提問
相交線是如何定義的?
二、新課引入
平面內兩條直線的位置關系除平行外,還有哪些呢?
制作教具,通過演示,得出平面內兩條直線的位置關系及平行線的概念.
三、同一平面內兩條直線的位置關系
1.平行線概念:在同一平面內,不相交的兩條直線叫做平行線.直線a與b平行,記作a∥b.
(畫出圖形)
2.同一平面內兩條直線的位置關系有兩種:(1)相交;(2)平行.
3.對平行線概念的理解:
兩個關鍵:一是“在同一個平面內”(舉例說明);二是“不相交”.
一個前提:對兩條直線而言.
4.平行線的畫法
平行線的畫法是幾何畫圖的基本技能之一,在以后的學習中,會經常遇到畫平行線的問題.方法為:一“落”(三角板的一邊落在已知直線上),二“靠”(用直尺緊靠三角板的另一邊),三“移”(沿直尺移動三角板,直至落在已知直線上的三角板的一邊經過已知點),四“畫”(沿三角板過已知點的邊畫直線).
四、平行公理
1.利用前面的教具,說明“過直線外一點有且只有一條直線與已知直線平行”.
2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行.
提問垂線的性質,并進行比較.
3.平行公理推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.即:如果b∥a,c∥a,那么b∥c.
五、三線八角
由前面的教具演示引出.
如圖,直線a,b被直線c所截,形成的8個角中,其中同位角有4對,內錯角有2對,同旁內角有2對.
六、課堂練習
1.在同一平面內,兩條直線可能的位置關系是 .
2.在同一平面內,三條直線的交點個數可能是 .
3.下列說法正確的是( )
A.經過一點有且只有一條直線與已知直線平行
B.經過一點有無數條直線與已知直線平行
C.經過一點有一條直線與已知直線平行
D.經過直線外一點有且只有一條直線與已知直線平行
4.若∠ 與∠ 是同旁內角,且∠ =50°,則∠ 的度數是( )
A.50° B.130° C.50°或130° D.不能確定
5.下列命題:(1)長方形的對邊所在的直線平行;(2)經過一點可作一條直線與已知直線平行;(3)在同一平面內,如果兩條直線不平行,那么這兩條直線相交;(4)經過一點可作一條直線與已知直線垂直.其中正確的個數是( )
A.1 B.2 C.3 D.4
6.如圖,直線AB,CD被DE所截,則∠1和 是同位角,∠1和 是內錯角,∠1和 是同旁內角.如果∠5=∠1,那么∠1 ∠3.
七、小結
讓學生獨立總結本節內容,敘述本節的概念和結論.
八、課后作業
1.教材P19第7題;
2.畫圖說明在同一平面內三條直線的位置關系及交點情況.
[補充內容]
1.試說明,如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.
2.在同一平面內,兩條直線的位置關系僅有兩種:相交或平行.但現實空間是立體的,
試想一想在空間中,兩條直線會有哪些位置關系呢?(用長方體來說明)
七年級數學課堂的優質教案2
一.教學目標
(1) 使學生進一步理解并掌握判定兩條直線平行的方法;
(2) 了解簡單的邏輯推理過程.
二.教學重點與難點
重點:判定兩條直線平行方法的應用;
難點:簡單的邏輯推理過程.
三.教學過程
復習提問:
1.判定兩條直線平行的方法有哪些?
2.如圖(1)
(1) 如果∠1=∠4,根據_________________,可得AB∥CD;
(2) 如果∠1=∠2,根據_________________,可得AB∥CD;
(3) 如果∠1+∠3=1800,根據______________,可得AB∥CD .
3.如圖(2)
(1) 如果∠1=∠D,那么______∥________;
(2) 如果∠1=∠B,那么______∥________;
(3) 如果∠A+∠B=1800,那么______∥________;
(4) 如果∠A+∠D=1800,那么______∥________;
新課:
例1 在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行嗎?為什么?
分析:垂直總與直角聯系在一起,我們學過哪些判斷兩條直線平行的方法?
答:這兩條直線平行.
如圖所示
理由如下: ∵b⊥a,c⊥a
∴∠1=∠2=900(垂直定義)
∴b∥c(同位角相等,兩直線平行)
思考:
這是小明同學自己制作的英語抄寫紙的一部分,其中的橫格線互相平行嗎?你有多少種判別方法?
例2 如圖所示,∠1=∠2,∠BAC=200,∠ACF=800.
(1) 求∠2的度數;
(2) FC與AD平行嗎?為什么?
鞏固練習
1. 教科書19頁練習
2. 如圖所示,如果∠1=470,∠2=1330,∠D=470,那么BC與DE平行嗎?AB與CD平行嗎?
3. 如圖所示,已知∠D=∠A,∠B=∠FCB,試問ED與CF平行嗎?
4. 如圖,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出圖中互相平行的直線.
作業:教科書19頁習題5.2第7、8題
七年級數學課堂的優質教案3
教學目標:
1.掌握數軸三要素,能正確畫出數軸.
2.能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數.
教學重點:數軸的概念.
教學難點:從直觀認識到理性認識,從而建立數軸概念.
教與學互動設計:
(一)創設情境,導入新課
課件展示 課本P7的“問題”(學生畫圖)
(二)合作交流,解讀探究
師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數分別用正數和負數來表示,即用一直線上的點把正數、負數、0都表示出來,也就是本節要學的內容——數軸.
【點撥】(1)引導學生學會畫數軸.
第一步:畫直線,定原點.
第二步:規定從原點向右的方向為正(左邊為負方向).
第三步:選擇適當的長度為單位長度(據情況而定).
第四步:拿出教學溫度計,由學生觀察溫度計的結構和數軸的結構是否有共同之處.
對比思考 原點相當于什么;正方向與什么一致;單位長度又是什么?
(2)有了以上基礎,我們可以來試著定義數軸:
規定了原點、正方向和單位長度的直線叫數軸.
做一做 學生自己練習畫出數軸.
試一試 你能利用你自己畫的數軸上的點來表示數4,1.5,-3,-2,0嗎?
討論 若a是一個正數,則數軸上表示數a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?
小結 整數在數軸上都能找到點表示嗎?分數呢?
可見,所有的_______都可以用數軸上的點表示;_______都在原點的左邊,_______都在原點的右邊.
(三)應用遷移,鞏固提高
【例1】 下列所畫數軸對不對?如果不對,指出錯在哪里?
【例2】試一試:用你畫的數軸上的點表示4,1.5,-3,-,0.
【例3】下列語句:
①數軸上的點只能表示整數;②數軸是一條直線;③數軸上的一個點只能表示一個數;④數軸上找不到既不表示正數,又不表示負數的點;⑤數軸上的點所表示的數都是有理數.正確的說法有( )
A.1個 B.2個 C.3個 D.4個
【例4】在數軸上表示-2 和1,并根據數軸指出所有大于-2 而小于1 的整數.
【例5】數軸上表示整數的點稱為整點,某數軸的單位長度是1cm,若在這個數軸上隨意畫出一條長為2000cm的線段AB,則線段AB蓋住的整點有( )
A.1998個或1999個 B.1999個或2000個
C.2000個或2001個 D.2001個或2002個
(四)總結反思,拓展升華
數軸是非常重要的工具,它使數和直線上的點建立了一一對應的關系.它揭示了數和形的內在聯系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數軸的三要素,正確畫出數軸.提醒大家,所有的有理數都可以用數軸上的相關點來表示,但反過來并不成立,即數軸上的點并不都表示有理數.
(五)課堂跟蹤反饋
夯實基礎
1.規定了_______ 、_______、_______的直線叫做數軸,所有的有理數都可從用_______上的點來表示.
2.P從數軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的數是_______.
3.把數軸上表示2的點移動5個單位長度后,所得的對應點表示的數是( )
A.7 B.-3
C.7或-3 D.不能確定
4.在數軸上,原點及原點左邊的點所表示的數是( )
A.正數 B.負數
C.不是負數 D.不是正數
5.數軸上表示5和-5的點離開原點的距離是_______,但它們分別表示_______.
提升能力
6.與原點距離為3.5個單位長度的點有2個,它們分別是_______和_______.
7.畫出一條數軸,并把下列數表示在數軸上:
+2,-3,0.5,0,-4.5,4,3.
開放探究
8.在數軸上與-1相距3個單位長度的點有_______個,為_______;長為3個單位長度的木條放在數軸上,最多能覆蓋_______個整數點.
9.下列四個數中,在-2到0之間的數是( )
A.-1 B.1 C.-3 D.3
七年級數學課堂的優質教案4
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發展推理能力和有條理表達能力.
2.掌握直線平行的條件,領悟歸納和轉化的數學思想
學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.
一、探索直線平行的條件
平行線的判定方法1:
二、練一練1、判斷題
1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )
2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.
五、作業課本15頁-16頁練習的1、2、3、
七年級數學課堂的優質教案5
學習目標:
1、了解一元一次不等式組的概念,理解一元一次不等式組的解集的意義。
2、會解由兩個一元一次不等式組成的一元一次不等式組,能借助數軸正確的表示一元一次不等式組的解集。
3、通過探討一元一次不等式組的解法以及解集的確定,滲透轉化思想,進一步感受數形結合在解決問題中的作用。
4、體驗不等式在實際問題中的作用,感受數學的應用價值。
學習重點:一元一次不等式組的解法
學習難點:一元一次不等式組解集的確定。
一、學前準備
【回顧】
1.解不等式 ,并把解集在數軸上表示出來。
【預習】
1、 認真閱讀教材34-35頁內容
2、____________ _ 叫做一元一次不等式組。
______ _______叫做一元一次不等式組的解集。
叫做解不等式組。
4、求下列兩個不等式的解集,并在同一條數軸上表示出來
二、探究活動
【例題分析】
例1. (問題1)題中的“買5筒錢不夠,買4筒錢又多”的含義是什么?
例2. (問題2)題中的相等關系是什么?不等關系又是什么?
例3. 解不等式組
【小結】
不等式組解集口訣
“同大取大,同小取小,大小小大中間找,大大小小解不了”
一元一次不等式組解集四種類型如下表:
不等式組(a<b) p="" 記憶口訣
(1)x>ax>b
x>b 同大取大
(2)x<ax<b< p="">
x<a p="" 同小取小
<a p="" 同小取小 (3)x>ax<b< p="">
<a p="" 同小取小 a<x<b p="" 大小取中
<a p="" 同小取小 (4)xb
<a p="" 同小取小
無解 大大小小解不了
【課堂檢測】
1、不等式組 的解集是( )
A. B. C. D.無解
2、不等式組 的解集為( )
A.-1<x<2 p="" d.x≥2<="" c.x<-1 ="" b.-1
3、不等式組 的解集在數軸上表示正確的是( )
A B C D
4、寫出下列不等式組的解集:(教材P35練習1)
三、自我測試
1.填空
(1)不等式組x>2x≥-1 的解集是_ __;
(2)不等式組x<-1x<-2 的解集 ;
(3)不等式組x<4x>1 的解集是__ __;
(4)不等式組x>5x<-4 解集是___ ___。
2、解下列不等式組,并在數軸上表示出來
(1)
四、應用與拓展
1、若不等式組 無解,則m的取值范圍是 ____ _____.
五、數學日記