小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高考數(shù)學(xué)課堂教案

時(shí)間: 沐欽 數(shù)學(xué)教案

高考數(shù)學(xué)課堂教案都有哪些?數(shù)量的學(xué)習(xí)起于數(shù),一開(kāi)始為熟悉的自然數(shù)及整數(shù)與被描述在算術(shù)內(nèi)的有理數(shù)和無(wú)理數(shù)。下面是小編為大家?guī)?lái)的高考數(shù)學(xué)課堂教案七篇,希望大家能夠喜歡!

高考數(shù)學(xué)課堂教案

高考數(shù)學(xué)課堂教案【篇1】

一、教學(xué)目標(biāo)

知識(shí)與技能:

理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。

過(guò)程與方法:

會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

情感態(tài)度與價(jià)值觀:

1、提高學(xué)生的推理能力;

2、培養(yǎng)學(xué)生應(yīng)用意識(shí)。

二、教學(xué)重點(diǎn)、難點(diǎn):

教學(xué)重點(diǎn):

任意角概念的理解;區(qū)間角的集合的書寫。

教學(xué)難點(diǎn):

終邊相同角的集合的表示;區(qū)間角的集合的書寫。

三、教學(xué)過(guò)程

(一)導(dǎo)入新課

1、回顧角的定義

①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。

②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

(二)教學(xué)新課

1、角的有關(guān)概念:

①角的定義:

角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

②角的名稱:

注意:

⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;

⑵零角的終邊與始邊重合,如果α是零角α =0°;

⑶角的概念經(jīng)過(guò)推廣后,已包括正角、負(fù)角和零角。

⑤練習(xí):請(qǐng)說(shuō)出角α、β、γ各是多少度?

2、象限角的概念:

①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角。

例1、如圖⑴⑵中的角分別屬于第幾象限角?

高考數(shù)學(xué)課堂教案【篇2】

1.教學(xué)目標(biāo)

(1)知識(shí)目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程;

2.會(huì)由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

(2)能力目標(biāo): 1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問(wèn)題的能力;

2.使學(xué)生加深對(duì)數(shù)形結(jié)合思想和待定系數(shù)法的理解;

3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

(3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

2.教學(xué)重點(diǎn).難點(diǎn)

(1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

(2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰

當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題.

3.教學(xué)過(guò)程

(一)創(chuàng)設(shè)情境(啟迪思維)

問(wèn)題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

[引導(dǎo)] 畫圖建系

[學(xué)生活動(dòng)]:嘗試寫出曲線的方程(對(duì)求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))

解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)

將x=2.7代入,得 .

即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個(gè)隧道。

(二)深入探究(獲得新知)

問(wèn)題二:1.根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?

答:x2 y2=r2

2.如果圓心在 ,半徑為 時(shí)又如何呢?

[學(xué)生活動(dòng)] 探究圓的方程。

[教師預(yù)設(shè)] 方法一:坐標(biāo)法

如圖,設(shè)m(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為 ①

把①式兩邊平方,得(x―a)2 (y―b)2=r2

方法二:圖形變換法

方法三:向量平移法

(三)應(yīng)用舉例(鞏固提高)

i.直接應(yīng)用(內(nèi)化新知)

問(wèn)題三:1.寫出下列各圓的方程(課本p77練習(xí)1)

(1)圓心在原點(diǎn),半徑為3;

(2)圓心在 ,半徑為 ;

(3)經(jīng)過(guò)點(diǎn) ,圓心在點(diǎn) .

2.根據(jù)圓的方程寫出圓心和半徑

(1) ; (2) .

ii.靈活應(yīng)用(提升能力)

問(wèn)題四:1.求以 為圓心,并且和直線 相切的圓的方程.

[教師引導(dǎo)]由問(wèn)題三知:圓心與半徑可以確定圓.

2.已知圓的方程為 ,求過(guò)圓上一點(diǎn) 的切線方程.

[學(xué)生活動(dòng)]探究方法

[教師預(yù)設(shè)]

方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

方法四:軌跡法(利用向量垂直列關(guān)系式)

3.你能歸納出具有一般性的結(jié)論嗎?

已知圓的方程是 ,經(jīng)過(guò)圓上一點(diǎn) 的切線的方程是: .

iii.實(shí)際應(yīng)用(回歸自然)

問(wèn)題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長(zhǎng)度(精確到0.01m).

[多媒體課件演示創(chuàng)設(shè)實(shí)際問(wèn)題情境]

(四)反饋訓(xùn)練(形成方法)

問(wèn)題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

3.求圓x2 y2=13過(guò)點(diǎn)(-2,3)的切線方程.

4.已知圓的方程為 ,求過(guò)點(diǎn) 的切線方程.

高考數(shù)學(xué)課堂教案【篇3】

教學(xué)目標(biāo):

(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

(2)理解直線與二元一次方程的關(guān)系及其證明

(3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn).

教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明.

教學(xué)用具:計(jì)算機(jī)

教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法

教學(xué)過(guò)程:

下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:

教學(xué)設(shè)計(jì)思路:

(一)引入的設(shè)計(jì)

前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題:

問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題:

問(wèn):求出過(guò)點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”.

啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論.

學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:

【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?”

(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路.

學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).

經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

思路一:…

思路二:…

……

教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:

按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

綜合兩種情況,我們得出如下結(jié)論:

在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程.

至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”.

同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.

這樣上邊的結(jié)論可以表述如下:

在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程.

啟發(fā):任何一條直線都有這種形式的方程.你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?

【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎?

不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?

師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):

回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即

(1)當(dāng) 時(shí),方程可化為

這是表示斜率為 、在 軸上的截距為 的直線.

(2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為

這表示一條與 軸垂直的直線.

因此,得到結(jié)論:

在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線.

為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的.

【動(dòng)畫演示】

演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線.

至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系.

(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)

高考數(shù)學(xué)課堂教案【篇4】

一、課程性質(zhì)與任務(wù)

數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識(shí),具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識(shí)、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。二、課程教學(xué)目標(biāo)

1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問(wèn)題能力和數(shù)學(xué)思維能力。

3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識(shí)、創(chuàng)新意識(shí)和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。三、教學(xué)內(nèi)容結(jié)構(gòu)

本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。

1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。

3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。四、教學(xué)內(nèi)容與要求

(一)本大綱教學(xué)要求用語(yǔ)的表述1.認(rèn)知要求(分為三個(gè)層次)

了解:初步知道知識(shí)的含義及其簡(jiǎn)單應(yīng)用。

理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問(wèn)題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)

計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對(duì)數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢(shì),數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語(yǔ)言描述,或較簡(jiǎn)單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。

分析與解決問(wèn)題能力:能對(duì)工作和生活中的簡(jiǎn)單數(shù)學(xué)相關(guān)問(wèn)題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。

數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對(duì)數(shù)學(xué)及其應(yīng)用問(wèn)題能進(jìn)行有條理的思考、判斷、推理和求解;針對(duì)不同的問(wèn)題(或需求),會(huì)選擇合適的模型(模式)。

(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))

第2單元不等式(8學(xué)時(shí))

第3單元函數(shù)(12學(xué)時(shí))

第4單元指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(12學(xué)時(shí))

第5單元三角函數(shù)(18學(xué)時(shí))

第6單元數(shù)列(10學(xué)時(shí))

第7單元平面向量(矢量)(10學(xué)時(shí))

第8單元直線和圓的方程(18學(xué)時(shí))

第9單元立體幾何(14學(xué)時(shí))

第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))

2.職業(yè)模塊

第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))

第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))

第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))

高考數(shù)學(xué)課堂教案【篇5】

教學(xué)目標(biāo)

1.了解映射的概念,象與原象的概念,和一一映射的概念.

(1)明確映射是特殊的對(duì)應(yīng)即由集合 ,集合 和對(duì)應(yīng)法則f三者構(gòu)成的一個(gè)整體,知道映射的特殊之處在于必須是多對(duì)一和一對(duì)一的對(duì)應(yīng);

(2)能準(zhǔn)確使用數(shù)學(xué)符號(hào)表示映射, 把握映射與一一映射的區(qū)別;

(3)會(huì)求給定映射的指定元素的象與原象,了解求象與原象的方法.

2.在概念形成過(guò)程中,培養(yǎng)學(xué)生的觀察,比較和歸納的能力.

3.通過(guò)映射概念的學(xué)習(xí),逐步提高學(xué)生對(duì)知識(shí)的探究能力.

教學(xué)建議

教材分析

(1)知識(shí)結(jié)構(gòu)

映射是一種特殊的對(duì)應(yīng),一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過(guò)下圖表示出來(lái),如圖:

由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.

(2)重點(diǎn),難點(diǎn)分析

本節(jié)的教學(xué)重點(diǎn)和難點(diǎn)是映射和一一映射概念的形成與認(rèn)識(shí).

①映射的概念是比較抽象的概念,它是在初中所學(xué)對(duì)應(yīng)的基礎(chǔ)上發(fā)展而來(lái).教學(xué)中應(yīng)特別強(qiáng)調(diào)對(duì)應(yīng)集合 B中的唯一這點(diǎn)要求的理解;

映射是學(xué)生在初中所學(xué)的對(duì)應(yīng)的基礎(chǔ)上學(xué)習(xí)的,對(duì)應(yīng)本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對(duì)應(yīng)法則f,由于法則的不同,對(duì)應(yīng)可分為一對(duì)一,多對(duì)一,一對(duì)多和多對(duì)多. 其中只有一對(duì)一和多對(duì)一的能構(gòu)成映射,由此可以看到映射必是“對(duì)B中之唯一”,而只要是對(duì)應(yīng)就必須保證讓A中之任一與B中元素相對(duì)應(yīng),所以滿足一對(duì)一和多對(duì)一的對(duì)應(yīng)就能體現(xiàn)出“任一對(duì)唯一”.

②而一一映射又在映射的基礎(chǔ)上增加新的要求,決定了它在學(xué)習(xí)中是比較困難的.

教法建議

(1)在映射概念引入時(shí),可先從學(xué)生熟悉的對(duì)應(yīng)入手, 選擇一些具體的生活例子,然后再舉一些數(shù)學(xué)例子,分為一對(duì)多、多對(duì)一、多對(duì)一、一對(duì)一四種情況,讓學(xué)生認(rèn)真觀察,比較,再引導(dǎo)學(xué)生發(fā)現(xiàn)其中一對(duì)一和多對(duì)一的對(duì)應(yīng)是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認(rèn)識(shí)從感性認(rèn)識(shí)到理性認(rèn)識(shí).

(2)在剛開(kāi)始學(xué)習(xí)映射時(shí),為了能讓學(xué)生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語(yǔ)言描述,這樣的表示方法讓學(xué)生可以比較直觀的認(rèn)識(shí)映射,而后再選擇用抽象的數(shù)學(xué)符號(hào)表示映射,比如:

(3)對(duì)于學(xué)生層次較高的學(xué)校可以在給出定義后讓學(xué)生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現(xiàn)映射的特點(diǎn),并用自己的語(yǔ)言描述出來(lái),最后教師加以概括,再?gòu)闹幸鲆灰挥成涓拍?對(duì)于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀察,教師引導(dǎo)學(xué)生發(fā)現(xiàn)映射的特點(diǎn),一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.

(4)關(guān)于求象和原象的問(wèn)題,應(yīng)在計(jì)算的過(guò)程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過(guò)方程組解的不同情況(有唯一解,無(wú)解或有無(wú)數(shù)解)加深對(duì)映射的認(rèn)識(shí).

(5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實(shí)例中去觀察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點(diǎn),共同舉例,計(jì)算,最后進(jìn)行小結(jié),教師要起到點(diǎn)撥和深化的作用.

教學(xué)設(shè)計(jì)方案

2.1映射

教學(xué)目標(biāo)(1)了解映射的概念,象與原象及一一映射的概念.

(2)在概念形成過(guò)程中,培養(yǎng)學(xué)生的觀察,分析對(duì)比,歸納的能力.

(3)通過(guò)映射概念的學(xué)習(xí),逐步提高學(xué)生的探究能力.

教學(xué)重點(diǎn)難點(diǎn)::映射概念的形成與認(rèn)識(shí).

教學(xué)用具:實(shí)物投影儀

教學(xué)方法:?jiǎn)l(fā)討論式

教學(xué)過(guò)程:

一、引入

在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類簡(jiǎn)單的常見(jiàn)函數(shù).在高中,將利用前面集合有關(guān)知識(shí),利用映射的觀點(diǎn)給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細(xì)的概念.

二、新課

在前一章集合的初步知識(shí)中,我們學(xué)習(xí)了元素與集合及集合與集合之間的關(guān)系,而映射是重點(diǎn)研究?jī)蓚€(gè)集合的元素與元素之間的對(duì)應(yīng)關(guān)系.這要先從我們熟悉的對(duì)應(yīng)說(shuō)起(用投影儀打出一些對(duì)應(yīng)關(guān)系,共6個(gè))

我們今天要研究的是一類特殊的對(duì)應(yīng),特殊在什么地方呢?

提問(wèn)1:在這些對(duì)應(yīng)中有哪些是讓A中元素就對(duì)應(yīng)B中唯一一個(gè)元素?

讓學(xué)生仔細(xì)觀察后由學(xué)生回答,對(duì)有爭(zhēng)議的,或漏選,多選的可詳細(xì)說(shuō)明理由進(jìn)行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個(gè)集中在一起)

提問(wèn)2:能用自己的語(yǔ)言描述一下這幾個(gè)對(duì)應(yīng)的共性嗎?

經(jīng)過(guò)師生共同推敲,將映射的定義引出.(主體內(nèi)容由學(xué)生完成,教師做必要的補(bǔ)充)

高考數(shù)學(xué)課堂教案【篇6】

教學(xué)目標(biāo):

(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題。

(2)進(jìn)一步理解曲線的方程和方程的曲線。

(3)初步掌握求曲線方程的方法。

(4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力。

教學(xué)重點(diǎn)、難點(diǎn):

求曲線的方程。

教學(xué)用具:

計(jì)算機(jī)。

教學(xué)方法:

啟發(fā)引導(dǎo)法,討論法。

教學(xué)過(guò)程:

【引入】

1、提問(wèn):什么是曲線的方程和方程的曲線。

學(xué)生思考并回答。教師強(qiáng)調(diào)。

2、坐標(biāo)法和解析幾何的意義、基本問(wèn)題。

對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何。解析幾何的兩大基本問(wèn)題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程。

(2)通過(guò)方程,研究平面曲線的性質(zhì)。

事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問(wèn)題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。

【問(wèn)題】

如何根據(jù)已知條件,求出曲線的方程。

【實(shí)例分析】

例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程。

首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決。

解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決??墒?,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線的方程?根據(jù)是什么,有證明嗎?

(通過(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。

證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解。

設(shè)是線段的垂直平分線上任意一點(diǎn),則

將上式兩邊平方,整理得

這說(shuō)明點(diǎn)的坐標(biāo)是方程的解。

(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。

設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

到、的距離分別為

所以,即點(diǎn)在直線上。

綜合(1)、(2),①是所求直線的方程。

至此,證明完畢?;仡櫳鲜鰞?nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:

解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足。顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想。因此是個(gè)好方法。

讓我們用這個(gè)方法試解如下問(wèn)題:

例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程。

分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進(jìn)行求解。

求解過(guò)程略。

【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):

分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正。說(shuō)得更準(zhǔn)確一點(diǎn)就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

(2)寫出適合條件的點(diǎn)的集合

;

(3)用坐標(biāo)表示條件,列出方程;

(4)化方程為最簡(jiǎn)形式;

(5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。

一般情況下,求解過(guò)程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明。

上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡(jiǎn);修正。

下面再看一個(gè)問(wèn)題:

例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程。

【動(dòng)畫演示】用幾何畫板演示曲線生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系。

解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

由距離公式,點(diǎn)適合的條件可表示為

將①式移項(xiàng)后再兩邊平方,得化簡(jiǎn)得

由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示。

【練習(xí)鞏固】

題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、、,且有,求點(diǎn)軌跡方程。

分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。

根據(jù)條件,代入坐標(biāo)可得

化簡(jiǎn)得

由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問(wèn)題的方法是什么?

(2)如何求曲線的方程?

(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià)。各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;

高考數(shù)學(xué)課堂教案【篇7】

教學(xué)目標(biāo)

(1)了解算法的含義,體會(huì)算法思想。

(2)會(huì)用自然語(yǔ)言和數(shù)學(xué)語(yǔ)言描述簡(jiǎn)單具體問(wèn)題的算法;

(3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問(wèn)題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力。

教學(xué)重難點(diǎn)

重點(diǎn):算法的含義、解二元一次方程組的算法設(shè)計(jì)。

難點(diǎn):把自然語(yǔ)言轉(zhuǎn)化為算法語(yǔ)言。

情境導(dǎo)入

電影《神槍手》中描述的凌靖是一個(gè)天生的狙擊手,他百發(fā)百中,最難打的位置對(duì)他來(lái)說(shuō)也是輕而易舉,是香港警察狙擊手隊(duì)伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:

第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);

第二步:瞄準(zhǔn)目標(biāo);

第三步:計(jì)算(或估測(cè))風(fēng)速、距離、空氣濕度、空氣密度;

第四步:根據(jù)第三步的結(jié)果修正彈著點(diǎn);

第五步:開(kāi)槍;

第六步:迅速轉(zhuǎn)移(或隱蔽)

以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。

課堂探究

預(yù)習(xí)提升

1、定義:算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列能夠解決一類問(wèn)題。

2、描述方式

自然語(yǔ)言、數(shù)學(xué)語(yǔ)言、形式語(yǔ)言(算法語(yǔ)言)、框圖。

3、算法的要求

(1)寫出的算法,必須能解決一類問(wèn)題,且能重復(fù)使用;

(2)算法過(guò)程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過(guò)有限步后能得出結(jié)果。

4、算法的特征

(1)有限性:一個(gè)算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。

(2)確定性:算法的計(jì)算規(guī)則及相應(yīng)的計(jì)算步驟必須是唯一確定的。

(3)可行性:算法中的每一個(gè)步驟都是可以在有限的時(shí)間內(nèi)完成的基本操作,并能得到確定的結(jié)果。

(4)順序性:算法從初始步驟開(kāi)始,分為若干個(gè)明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個(gè)步驟只有一個(gè)確定的后續(xù)。

(5)不唯一性:解決同一問(wèn)題的算法可以是不唯一的

課堂典例講練

命題方向1對(duì)算法意義的理解

例1、下列敘述中,

①植樹需要運(yùn)苗、挖坑、栽苗、澆水這些步驟;

②按順序進(jìn)行下列運(yùn)算:1+1=2,2+1=3,3+1=4,…99+1=100;

③從青島乘動(dòng)車到濟(jì)南,再?gòu)臐?jì)南乘飛機(jī)到倫敦觀看奧運(yùn)會(huì)開(kāi)幕式;

④3x>x+1;

⑤求所有能被3整除的正數(shù),即3,6,9,12。

能稱為算法的個(gè)數(shù)為(  )

A、2

B、3

C、4

D、5

【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個(gè)明確的步驟,不符合明確性;⑤的步驟是無(wú)窮的,與算法的有限性矛盾。

【答案】B

[規(guī)律總結(jié)]

1、正確理解算法的概念及其特點(diǎn)是解決問(wèn)題的關(guān)鍵、

2、針對(duì)判斷語(yǔ)句是否是算法的問(wèn)題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問(wèn)題、

【變式訓(xùn)練】下列對(duì)算法的理解不正確的是________

①一個(gè)算法應(yīng)包含有限的步驟,而不能是無(wú)限的

②算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序構(gòu)成的完整的解題步驟

③算法中的每一步都應(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果

④一個(gè)問(wèn)題只能設(shè)計(jì)出一個(gè)算法

【解析】由算法的有限性指包含的步驟是有限的故①正確;

由算法的明確性是指每一步都是確定的故②正確;

由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;

由對(duì)于同一個(gè)問(wèn)題可以有不同的算法故④不正確。

【答案】④

命題方向2解方程(組)的算法

例2、給出求解方程組的一個(gè)算法。

[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒(méi)有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計(jì)算機(jī)上實(shí)現(xiàn),我們用高斯消元法(即先將方程組化為一個(gè)三角形方程組,再通過(guò)回代方程求出方程組的解)解線性方程組、

[規(guī)范解答]方法一:算法如下:

第一步,①×(-2)+②,得(-2+5)y=-14+11

即方程組可化為

第二步,解方程③,可得y=-1,④

第三步,將④代入①,可得2x-1=7,x=4

第四步,輸出4,-1

方法二:算法如下:

第一步,由①式可以得到y(tǒng)=7-2x,⑤

第二步,把y=7-2x代入②,得x=4

第三步,把x=4代入⑤,得y=-1

第四步,輸出4,-1

[規(guī)律總結(jié)]1、本題用了2種方法求解,對(duì)于問(wèn)題的求解過(guò)程,我們既要強(qiáng)調(diào)對(duì)“通法、通解”的理解,又要強(qiáng)調(diào)對(duì)所學(xué)知識(shí)的靈活運(yùn)用。

2、設(shè)計(jì)算法時(shí),經(jīng)常遇到解方程(組)的問(wèn)題,一般是按照數(shù)學(xué)上解方程(組)的方法進(jìn)行設(shè)計(jì),但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時(shí)有幾個(gè)解,然后根據(jù)求解步驟設(shè)計(jì)算法步驟。

【變式訓(xùn)練】

【解】算法如下:S1,①+2×②得5x=1;③

S2,解③得x=;

S3,②-①×2得5y=3;④

S4,解④得y=;

命題方向3篩選問(wèn)題的算法設(shè)計(jì)

例3、設(shè)計(jì)一個(gè)算法,對(duì)任意3個(gè)整數(shù)a、b、c,求出其中的最小值、

[思路分析]比較a,b比較m與c―→最小數(shù)

[規(guī)范解答]算法步驟如下:

1、比較a與b的大小,若a

2、比較m與c的大小,若m

[規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個(gè),篩選過(guò)程中的每一步都是比較兩個(gè)數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個(gè)不同數(shù)中篩選出滿足要求的一個(gè)。

【變式訓(xùn)練】在下列數(shù)字序列中,寫出搜索89的算法:

21,3,0,9,15,72,89,91,93

[解析]1、先找到序列中的第一個(gè)數(shù)m,m=21;

2、將m與89比較,是否相等,如果相等,則搜索到89;

3、如果m與89不相等,則往下執(zhí)行;

4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。

命題方向4非數(shù)值性問(wèn)題的算法

例4、一個(gè)人帶三只狼和三只羚羊過(guò)河,只有一條船,同船可以容一個(gè)人和兩只動(dòng)物,沒(méi)有人在的時(shí)候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會(huì)吃掉羚羊。

(1)設(shè)計(jì)安全渡河的算法;

(2)思考每一步算法所遵循的共同原則是什么?

34554 主站蜘蛛池模板: 股指期货-期货开户-交易手续费佣金加1分-保证金低-期货公司排名靠前-万利信息开户 | 模型公司_模型制作_沙盘模型报价-中国模型网 | 食品无尘净化车间,食品罐装净化车间,净化车间配套风淋室-青岛旭恒洁净技术有限公司 | RV减速机-蜗轮蜗杆减速机-洗车机减速机-减速机厂家-艾思捷 | 自动化改造_智虎机器人_灌装机_贴标机-上海圣起包装机械 | 粉末包装机-给袋式包装机-全自动包装机-颗粒-液体-食品-酱腌菜包装机生产线【润立机械】 | 沈阳庭院景观设计_私家花园_别墅庭院设计_阳台楼顶花园设计施工公司-【沈阳现代时园艺景观工程有限公司】 | 青岛美佳乐清洁工程有限公司|青岛油烟管道清洗|酒店|企事业单位|学校工厂厨房|青岛油烟管道清洗 插针变压器-家用电器变压器-工业空调变压器-CD型电抗器-余姚市中驰电器有限公司 | 硅胶制品-硅橡胶制品-东莞硅胶制品厂家-广东帝博科技有限公司 | 礼仪庆典公司,礼仪策划公司,庆典公司,演出公司,演艺公司,年会酒会,生日寿宴,动工仪式,开工仪式,奠基典礼,商务会议,竣工落成,乔迁揭牌,签约启动-东莞市开门红文化传媒有限公司 | 空气净化器租赁,空气净化器出租,全国直租_奥司汀净化器租赁 | 招商帮-一站式网络营销服务|互联网整合营销|网络推广代运营|信息流推广|招商帮企业招商好帮手|搜索营销推广|短视视频营销推广 | 合肥地磅_合肥数控切割机_安徽地磅厂家_合肥世佳电工设备有限公司 | 诚暄电子公司首页-线路板打样,pcb线路板打样加工制作厂家 | 【黄页88网】-B2B电子商务平台,b2b平台免费发布信息网 | 钢木实验台-全钢实验台-化验室通风柜-实验室装修厂家-杭州博扬实验设备 | 东莞办公家具厂家直销-美鑫【免费3D效果图】全国办公桌/会议桌定制 | 南溪在线-南溪招聘找工作、找房子、找对象,南溪综合生活信息门户! | 【孔氏陶粒】建筑回填陶粒-南京/合肥/武汉/郑州/重庆/成都/杭州陶粒厂家 | 液氮罐(生物液氮罐)百科-无锡爱思科 | 苏州教学设备-化工教学设备-环境工程教学模型|同科教仪 | 阿尔法-MDR2000无转子硫化仪-STM566 SATRA拉力试验机-青岛阿尔法仪器有限公司 | 辐射仪|辐射检测仪|辐射巡测仪|个人剂量报警仪|表面污染检测仪|辐射报警仪|辐射防护网 | 碳钢法兰厂家,非标法兰,定制异型,法兰生产厂家-河北九瑞管道 | 外贸网站建设-外贸网站设计制作开发公司-外贸独立站建设【企术】 | 碳刷_刷握_集电环_恒压簧_电刷厂家-上海丹臻机电科技有限公司 | 陕西安闸机-伸缩门-车牌识别-广告道闸——捷申达门业科技 | 中药超微粉碎机(中药细胞级微粉碎)-百科| 智能风向风速仪,风速告警仪,数字温湿仪,综合气象仪(气象五要素)-上海风云气象仪器有限公司 | 超高频感应加热设备_高频感应电源厂家_CCD视觉检测设备_振动盘视觉检测设备_深圳雨滴科技-深圳市雨滴科技有限公司 | 智能风向风速仪,风速告警仪,数字温湿仪,综合气象仪(气象五要素)-上海风云气象仪器有限公司 | 超声波清洗机_超声波清洗机设备_超声波清洗机厂家_鼎泰恒胜 | 三氯异氰尿酸-二氯-三氯-二氯异氰尿酸钠-优氯净-强氯精-消毒片-济南中北_优氯净厂家 | 连续油炸机,全自动油炸机,花生米油炸机-烟台茂源食品机械制造有限公司 | 西子馋火锅鸡加盟-太原市龙城酉鼎餐饮管理有限公司 | 福尔卡(北京)新型材料技术股份有限公司| 粉末包装机,拆包机厂家,价格-上海强牛包装机械设备有限公司 | 橡胶膜片,夹布膜片,橡胶隔膜密封,泵阀设备密封膜片-衡水汉丰橡塑科技公司网站 | 衬氟旋塞阀-卡套旋塞阀-中升阀门首页| 仓储笼_仓储货架_南京货架_仓储货架厂家_南京货架价格低-南京一品仓储设备制造公司 | 重庆网站建设,重庆网站设计,重庆网站制作,重庆seo,重庆做网站,重庆seo,重庆公众号运营,重庆小程序开发 |