數學教案七年級大全
數學教案七年級都有哪些?教學設計,激發求知欲和學習興趣,鍛煉積極探索、發現新知識、總結規律的能力,解題時養成歸納總結的良好習慣。下面是小編為大家帶來的數學教案七年級大全七篇,希望大家能夠喜歡!
數學教案七年級大全篇1
教學目標:
1.通過對“零”的意義的探討,進一步理解正數和負數的概念,能利用正負數正確表示具有相反意義的量(規定了向指定方向變化的量);
2.進一步體驗正負數在生產生活中的廣泛應用,提高解決實際問題的能力.
教學重點:深化對正負數概念的理解.
教學難點:正確理解和表示向指定方向變化的量.
教與學互動設計:
(一)知識回顧和理解
通過對上節課的學習,我們知道在實際生產和生活中存在著具有兩種不同意義的量,為了區分它們,我們用正數和負數來分別表示它們.
[問題1]:“零”為什么既不是正數也不是負數呢?
學生思考討論,借助舉例說明.
參考例子:用正數、負數和零表示零上溫度、零下溫度和零度.
思考 “0”在實際問題中有什么意義?
歸納 “0”在實際問題中不僅表示“沒有”的意思,它還具有一定的實際意義.
如:水位不升不降時的水位變化,記作:0 m.
[問題2]:引入負數后,數按照“具有兩種相反意義的量”來分,可以分成幾類?分別是什么?
(二)深化理解,解決問題
[問題3]:(課本P3例題)
【例1】(1)一個月內,小明體重增加2 kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;
【例2】(2)某年,下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家這一年商品進出口總額的增長率.
解后語:在同一個問題中,分別用正數和負數表示的量具有相反的意義.寫出體重的增長值和進出口的增長率就暗示著用正數來表示增長的量.類似的還有水位上升、收入上漲等等.我們要在解決問題時注意體會這些指明方向的量,正確地用正負數表示它們.
鞏固練習
1.通過例題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.
2.讓學生再舉出一些常見的具有相反意義的量.
3.1990~1995年下列國家年平均森林面積(單位:千米2)的變化情況是:
中國減少866,印度增長72,
韓國減少130,新西蘭增長434,
泰國減少3247, 孟加拉減少88.
(1)用正數和負數表示這六國1990~1995年平均森林面積的增長量;
(2)如何表示森林面積減少量,所得結果與增長量有什么關系?
(3)哪個國家森林面積減少最多?
(4)通過對這些數據的分析,你想到了什么?
閱讀與思考
(課本P6)用正數和負數表示加工允許誤差.
問題:1.直徑為30.032 mm和直徑為29.97 mm的零件是否合格?
2.你知道還有哪些事件可以用正負數表示允許誤差嗎?請舉例.
(三)應用遷移,鞏固提高
1.甲冷庫的溫度是-12℃,乙冷庫的溫度比甲冷庫低5 ℃,則乙冷庫的溫度是 .
2.一種零件的內徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9 mm,加工要求不超過標準尺寸多少?最小不小于標準尺寸多少?
3.摩托車廠本周計劃每天生產250輛摩托車,由于工人實行輪休,每天上班的人數不一定相等,實際每天生產量(與計劃量相比)的增減值如下表:
星期 一 二 三 四
增減 -5 +7 -3 +4
根據上面的記錄,問:哪幾天生產的摩托車比計劃量多?星期幾生產的摩托車最多,是多少輛?星期幾生產的摩托車最少,是多少輛?
類比例題,要求學生注意書寫格式,體會正負數的應用.
(四)課時小結(師生共同完成)
數學教案七年級大全篇2
教學目標:
1.理解有理數的意義.
2.能把給出的有理數按要求分類.
3.了解0在有理數分類中的作用.
教學重點:會把所給的各數填入它所在的數集圖里.
教學難點:掌握有理數的兩種分類.
教與學互動設計:
(一)創設情境,導入新課
討論交流 現在,同學們都已經知道除了我們小學里所學的數之外,還有另一種形式的數,即負數.大家討論一下,到目前為止,你已經認識了哪些類型的數.
(二)合作交流,解讀探究
3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…
議一議 你能說說這些數的特點嗎?
學生回答,并相互補充:有小學學過的正整數、0、分數,也有負整數、負分數.
說明 我們把所有的這些數統稱為有理數.
試一試 你能對以上各種類型的數作出一張分類表嗎?
有理數
做一做 以上按整數和分數來分,那可不可以按性質(正數、負數)來分呢,試一試.
有理數
數的集合
把所有正數組成的集合,叫做正數集合.
試一試 試著歸納總結,什么是負數集合、整數集合、分數集合、有理數集合.
(三)應用遷移,鞏固提高
【例1】 把下列各數填入相應的集合內:
,3.1416,0,20__,- ,-0.23456,10%,10.1,0.67,-89
【例2】以下是兩位同學的分類方法,你認為他們分類的結果正確嗎?為什么?
有理數 有理數
(四)總結反思,拓展升華
提問:今天你獲得了哪些知識?
由學生自己小結,然后教師總結:今天我們學習了有理數的定義和兩種分類的方法.我們要能正確地判斷一個數屬于哪一類,要特別注意“0”的正確說法.
下面兩個圈分別表示負數集合和分數集合,你能說出兩個圖的重疊部分表示什么數的集合嗎?
(五)課堂跟蹤反饋
夯實基礎
1.把下列各數填入相應的大括號內:
-7,0.125, ,-3 ,3,0,50%,-0.3
(1)整數集合{};
(2)分數集合{};
(3)負分數集合{ };
(4)非負數集合{ };
(5)有理數集合{ }.
2.下列說法中正確的是( )
A.整數就是自然數
B. 0不是自然數
C.正數和負數統稱為有理數
D. 0是整數,而不是正數
提升能力
3.字母a可以表示數,在我們現在所學的范圍內,你能否試著說明a可以表示什么樣的數?
數學教案七年級大全篇3
教學目標:
1.掌握數軸三要素,能正確畫出數軸.
2.能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數.
教學重點:數軸的概念.
教學難點:從直觀認識到理性認識,從而建立數軸概念.
教與學互動設計:
(一)創設情境,導入新課
課件展示 課本P7的“問題”(學生畫圖)
(二)合作交流,解讀探究
師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數分別用正數和負數來表示,即用一直線上的點把正數、負數、0都表示出來,也就是本節要學的內容——數軸.
【點撥】(1)引導學生學會畫數軸.
第一步:畫直線,定原點.
第二步:規定從原點向右的方向為正(左邊為負方向).
第三步:選擇適當的長度為單位長度(據情況而定).
第四步:拿出教學溫度計,由學生觀察溫度計的結構和數軸的結構是否有共同之處.
對比思考 原點相當于什么;正方向與什么一致;單位長度又是什么?
(2)有了以上基礎,我們可以來試著定義數軸:
規定了原點、正方向和單位長度的直線叫數軸.
做一做 學生自己練習畫出數軸.
試一試 你能利用你自己畫的數軸上的點來表示數4,1.5,-3,-2,0嗎?
討論 若a是一個正數,則數軸上表示數a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?
小結 整數在數軸上都能找到點表示嗎?分數呢?
可見,所有的 都可以用數軸上的點表示; 都在原點的左邊, 都在原點的右邊.
(三)應用遷移,鞏固提高
【例1】 下列所畫數軸對不對?如果不對,指出錯在哪里?
【例2】試一試:用你畫的數軸上的點表示4,1.5,-3,-,0.
【例3】下列語句:
①數軸上的點只能表示整數;②數軸是一條直線;③數軸上的一個點只能表示一個數;④數軸上找不到既不表示正數,又不表示負數的點;⑤數軸上的點所表示的數都是有理數.正確的說法有( )
A.1個 B.2個 C.3個 D.4個
【例4】在數軸上表示-2 和1,并根據數軸指出所有大于-2 而小于1 的整數.
【例5】數軸上表示整數的點稱為整點,某數軸的單位長度是1cm,若在這個數軸上隨意畫出一條長為2000cm的線段AB,則線段AB蓋住的整點有( )
A.1998個或1999個 B.1999個或2000個
C.2000個或20__個 D.20__個或20__個
(四)總結反思,拓展升華
數軸是非常重要的工具,它使數和直線上的點建立了一一對應的關系.它揭示了數和形的內在聯系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數軸的三要素,正確畫出數軸.提醒大家,所有的有理數都可以用數軸上的相關點來表示,但反過來并不成立,即數軸上的點并不都表示有理數.
(五)課堂跟蹤反饋
夯實基礎
1.規定了 、 、 的直線叫做數軸,所有的有理數都可從用 上的點來表示.
2.P從數軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的數是 .
3.把數軸上表示2的點移動5個單位長度后,所得的對應點表示的數是( )
A.7 B.-3
C.7或-3 D.不能確定
4.在數軸上,原點及原點左邊的點所表示的數是( )
A.正數 B.負數
C.不是負數 D.不是正數
5.數軸上表示5和-5的點離開原點的距離是 ,但它們分別表示 .
提升能力
6.與原點距離為3.5個單位長度的點有2個,它們分別是 和 .
7.畫出一條數軸,并把下列數表示在數軸上:
+2,-3,0.5,0,-4.5,4,3.
開放探究
8.在數軸上與-1相距3個單位長度的點有 個,為 ;長為3個單位長度的木條放在數軸上,最多能覆蓋 個整數點.
9.下列四個數中,在-2到0之間的數是( )
A.-1 B.1 C.-3 D.3
數學教案七年級大全篇4
教學目標:
1.借助數軸了解相反數的概念,知道互為相反數的位置關系.
2.給一個數,能求出它的相反數.
教學重點:理解相反數的意義.
教學難點:理解和掌握雙重符號簡化的規律.
教與學互動設計:
(一)創設情境,導入新課
活動 請一個學生到講臺前面對大家,向前走5步,向后走5步.
交流 如果向前走為正,那向前走5步與向后走5步分別記作什么?
(二)合作交流,解讀探究
1.觀察下列數:6和-6,2 和-2 ,7和-7, 和- ,并把它們在數軸上標出.
想一想 (1)上述各對數有什么特點?
(2)表示這四對數的點在數軸上有什么特點?
(3)你能夠寫出具有上述特點的n組數嗎?
觀察 像這樣只有符號不同的兩個數叫相反數.
互為相反數的兩個數在數軸上的對應點(0除外)是在原點兩旁,并且與原點距離相等的兩個點.即:我們把a的相反數記為-a,并且規定0的相反數就是零.
總結 在正數前面添上一個“-”號,就得到這個正數的相反數,是一個負數;把負數前的“-”號去掉,就得到這個負數的相反數,是一個正數.
2.在任意一個數前面添上“-”號,新的數就是原數的相反數.如-(+5)=-5,表示+5的相反數為-5;-(-5)=5,表示-5的相反數是5;-0=0,表示0的相反數是0.
(三)應用遷移,鞏固提高
【例1】填空
(1)-5.8是 的相反數, 的相反數是-(+3),a的相反數是 ;a-b的相反數是 ,0的相反數是 .
(2)正數的相反數是 ,負數的相反數是 , 的相反數是它本身.
【例2】 下列判斷不正確的有( )
①互為相反數的兩個數一定不相等;②互為相反數的數在數軸上的點一定在原點的兩邊;③所有的有理數都有相反數;④相反數是符號相反的兩個點.
A.1個 B.2個 C.3個 D.4個
【例3】 化簡下列各符號:
(1)-[-(-2)]; (2)+{-[-(+5)]};
(3)-{-{-…-(-6)}…}(共n個負號).
【歸納】 化簡的規律是:有偶數個負號,結果為正;有奇數個負號,結果為負.
【例4】 數軸上A點表示+4,B、C兩點所表示的數是互為相反數,且C到A的距離為2,則點B和點C各對應什么數?
(四)總結反思,拓展升華
【歸納】 (1)相反數的概念及表示方法.
(2)相反數的代數意義和幾何意義.
(3)符號的化簡.
(五)課堂跟蹤反饋
夯實基礎
1.判斷題
(1)-3是相反數.( )
(2)-7和7是相反數.( )
(3)-a的相反數是a,它們互為相反數.( )
(4)符號不同的兩個數互為相反數.( )
2.分別寫出下列各數的相反數,并把它們在數軸上表示出來.
1,-2,0,4.5,-2.5,3
3.若一個數的相反數不是正數,則這個數一定是( )
A.正數 B.正數或0
C.負數 D.負數或0
4.一個數比它的相反數小,這個數是( )
A.正數 B.負數
C.非負數 D.非正數
5.數軸上表示互為相反數的兩個點之間的距離為4,則這兩個數是 .
提升能力
6.若a與a-2互為相反數,則a的相反數是 .
7.已知有理數m、-3、n在數軸上位置如圖所示,將m、-3、n的相反數在數軸上表示出來,并將這6個數用“<”連接起來.
數學教案七年級大全篇5
第五章 相交線與平行線
一、 知識結構
鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
對頂角:有一個公共端點一個角的兩邊是另一個角兩邊的反向延長線線。
對頂角性質:對頂角相等。
垂線:1.當兩直線相交,有一個夾角為90°時這兩條直線垂直. a⊥b 讀做a垂直于b 垂足為O
2.兩直線相交構成四個夾角相等,兩直線互相垂直。其中一條直線叫做另一條直線的垂線。 垂直性質1: 過一點有且僅有一條直線,與以已知直線垂直。
垂直性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
平行線定義:在同一平面內永不相交的兩條直線。 記作a∥b 讀作:a平行于b
平行線公理:
1.經過直線外一點,有且只有一條直線于已知直線平行。
2.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行
平行判定方法:
1.同位角相等,兩直線平行。 如果 ∠1=∠2 那么a∥b
2.內錯角相等,兩直線平行 如果∠2=∠3那么a∥b
3.同旁內角互補,兩直線平行。 ∠ A+∠B=180° 那么兩直線平行。
平行線的性質:
1.兩直線平行,同位角相等。 ∵a∥b ∴∠1=∠2
2.兩直線平行,內錯角相等。 ∵a∥b ∴∠3=∠4
3.兩直線平行,同位角互補 ∵a∥b ∴∠3+∠4=180°
命題:判斷一件事情的語句。
1.命題的結構,命題由題設(已知事項或條件)推出的結論(由已知事項推出的事項)
2.任何命題都可以改寫成如果那么的形式,如果后面引導題設,那么后面引導結論。
真命題:題設成立,結論成立
假命題:題設成立,結論不成立
兩點之間的距離:連接兩點的線段的長度叫做兩點間的距離。
兩條平行線間的距離:同時垂直于兩條平行線,并且夾在這兩條平行線間的垂線段,叫做這兩條平行線的距離。平行線間的距離,處處相等。
平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
1.平移不改變物體的大小○2.平移前后對應點的直線相等:且互相平行。 ○
對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
數學教案七年級大全篇6
5.1相交線
[教學目標]
1. 通過動手、操作、推斷、交流等活動,進一步發展空間觀念,培養識圖能力,推理能力和有條理表達能力
2. 在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題
[教學重點與難點]
重點:鄰補角與對頂角的概念.對頂角性質與應用
難點:理解對頂角相等的性質的探索
[教學設計]
一.創設情境 激發好奇 觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發生了什么變化?剪刀張開的口又怎么變化?
教師點評:如果把剪刀的構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的問題,
二.認識鄰補角和對頂角,探索對頂角性質
1.學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用
幾何語言準確表達
;
有公共的頂點O,而且 的兩邊分別是 兩邊的反向延長線
2.學生用量角器分別量一量各角的度數,發現各類角的度數有什么關系?
(學生得出結論:相鄰關系的兩個角互補,對頂的兩個角相等)
3學生根據觀察和度量完成下表:
兩條直線相交 所形成的角 分類 位置關系 數量關系
教師提問:如果改變 的大小,會改變它與其它角的位置關系和數量關系嗎?
4.概括形成鄰補角、對頂角概念和對頂角的性質
三.初步應用
練習:
下列說法對不對
(1) 鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角
(2) 鄰補角是互補的兩個角,互補的兩個角是鄰補角
(3) 對頂角相等,相等的兩個角是對頂角
學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現象
四.鞏固運用例題:如圖,直線a,b相交, ,求 的度數。
[鞏固練習](教科書5頁練習)已知,如圖, ,求: 的度數
[小結]
鄰補角、對頂角.
[作業]課本P9-1,2P10-7,8
[備選題]
一判斷題:
如果兩個角有公共頂點和一條公共過,而且這兩個角互為補角,那么它們互為鄰補角( )
兩條直線相交,如果它們所成的鄰補角相等,那么一對對頂角就互補( )
二填空題
1如圖,直線AB、CD、EF相交于點O, 的對頂角是 , 的鄰補角是
若 : =2:3, ,則 =
2如圖,直線AB、CD相交于點O
則
5.1.2 垂線
[教學目標]
1. 理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
2. 掌握點到直線的距離的概念,并會度量點到直線的距離。
3. 掌握垂線的性質,并會利用所學知識進行簡單的推理。
[教學重點與難點]
1.教學重點:垂線的定義及性質。
2.教學難點:垂線的畫法。
[教學過程設計]
一. 復習提問:
1、 敘述鄰補角及對頂角的定義。
2、 對頂角有怎樣的性質。
二.新課:
引言:
前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
(一)垂線的定義
當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
如圖,直線AB、CD互相垂直,記作 ,垂足為O。
請同學舉出日常生活中,兩條直線互相垂直的實例。
注意:
1、 如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)
反之,
(二)垂線的畫法
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經過直線l上一點A畫l的垂線,這樣的垂線能畫出幾條?
3、經過直線l外一點B畫l的垂線,這樣的垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質
經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質1 過一點有且只有一條直線與已知直線垂直。
練習:教材第7頁
探究:
如圖,連接直線l外一點P與直線l上各點O,
A,B,C,……,其中 (我們稱PO為點P到直線
l的垂線段)。比較線段PO、PA、PB、PC……的長短,這些線段中,哪一條最短?
性質2 連接直線外一點與直線上各點的所有線段中,垂線段最短。
簡單說成: 垂線段最短。
(四)點到直線的距離
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
如上圖,PO的長度叫做點 P到直線l的距離。
例1
(1)AB與AC互相垂直;
(2)AD與AC互相垂直;
(3)點C到AB的垂線段是線段AB;
(4)點A到BC的距離是線段AD;
(5)線段AB的長度是點B到AC的距離;
(6)線段AB是點B到AC的距離。
其中正確的有( )
A. 1個 B. 2個
C. 3個 D. 4個
解:A
例2 如圖,直線AB,CD相交于點O,
解:略
例3 如圖,一輛汽車在直線形公路AB上由A
向B行駛,M,N分別是位于公路兩側的村莊,
設汽車行駛到點P位置時,距離村莊M最近,
行駛到點Q位置時,距離村莊N最近,請在圖中公路AB上分別畫出P,Q兩點位置。
練習:
1.
2.教材第9頁3、4
教材第10頁9、10、11、12
小結:
1. 要掌握好垂線、垂線段、點到直線的距離這幾個概念;
2. 要清楚垂線是相交線的特殊情況,與上節知識聯系好,并能正確利用工具畫出標準圖形;
3. 垂線的性質為今后知識的學習奠定了基礎,應該熟練掌握。
作業:教材第9頁5、6.
數學教案七年級大全篇7
教學設計思路
以小組討論的形式在教師的指導下通過回顧與反思前三章所學內容,領悟新舊知識之間的內在聯系,總結知識結構及主要知識點,側重對重點知識內容、數學思想和方法、思維策略的總結與反思,再通過練習鞏固這些知識點。
教學目標
知識與技能
對前三章所學知識作一次系統整理,系統地把握這三章的知識要點;
通過回顧與反思這三章所學內容,領悟新舊知識之間的內在聯系;
通過練習,對所學知識的認識深化一步,以有利于掌握;
發展觀察問題、分析問題、解決問題的能力;
提高對所學知識的概括整理能力;
進一步發展有條理地思考和表達的能力。
過程與方法
在老師的引導下逐張復習每張的知識要點,通過練習來鞏固這些知識點。
情感態度價值觀
進一步體會知識點之間的聯系;
進一步感受數形結合的思想。
教學重點和難點
重點是這三章的重點內容;
難點是能靈活利用這三章的知識來解決問題。
教學方法
引導、小組討論
課時安排
3課時
教具學具準備
多媒體
教學過程設計
通過每一章的知識結構及一些相關問題引導學生總結出每一章的知識點。