備課教案模板七年級數學實數
每個七年級數學老師都應該提升學生的數學運用本事和合作創新本事,提高數學教學的有效性。七年級數學老師離不開七年級數學教案,七年級數學教案支持著七年級數學老師教學工作的順利進行。你是否在找正準備撰寫“備課教案模板七年級數學實數”,下面小編收集了相關的素材,供大家寫文參考!
備課教案模板七年級數學實數篇1
教學目標:
1.知識與技能
結合具體實例,進一步認識三角形的概念,掌握三角形三條邊的關系.
2.過程與方法
通過觀察、操作、想象、推理、交流等活動,發展空間觀念,推理能力和有條理地表達能力.
3.情感、態度與價值觀
聯系學生的生活環境、創設情景,幫助學生樹立幾何知識源于實際、用于實際的觀念,激發學生的學習興趣.
教學重點難點:
1.重點
讓學生掌握三角形的概念及三角形的三邊關系,并能運用三邊關系解決生活中的實際問題.
2.難點
探究三角形的三邊關系應用三邊關系解決生活中的實際問題.
教學設計:
本節課件設計了以下幾個環節:回顧與思考、情境引入、三角形的概念、探索三角形三邊關系、練習應用、課堂小結、探究拓展思考、布置作業.
第一環節 回顧與思考
1、如何表示線段、射線和直線?
2、如何表示一個角?
第二環節 情境引入
活動內容:讓學生收集生活中有關三角形的圖片,課上讓學生舉例,并觀察圖片.
活動目的:讓學生能從生活中抽象出幾何圖形,感受到我們生活在幾何圖形的世界之中.培養學生善于觀察生活、樂于探索研究的學習品質,從而更大地激發學生學習數學的興趣
第三環節 三角形概念的講解
(1)你能從中找出四個不同的三角形嗎?
(2)與你的同伴交流各自找到的三角形.
(3)這些三角形有什么共同的特點?
通過上題的分析引出三角形的概念、三角形的表示方法及三角形的邊角的表示方法.并出兩道習題加以練習,從練習中歸納出三角形的三要素和注意事項.
第四環節 探索三角形三邊關系
備課教案模板七年級數學實數篇2
教學目標:
1、使學生在現實情境中理解有理數加法的意義
2、經歷探索有理數加法法則的過程,掌握有理數加法法則,并能準確地進行加法運算。
3、在教學中適當滲透分類討論思想。
重點:有理數的加法法則
重點:異號兩數相加的法則
教學過程:
二、講授新課
1、同號兩數相加的法則
問題:一個物體作左右方向的運動,我們規定向左為負,向右為正。向右運動5m記作5m,向左運動5m記作-5m。如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結果是多少?
學生回答:兩次運動后物體從起點向右運動了8m。寫成算式就是5+3=8(m)
教師:如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少?
學生回答:兩次運動后物體從起點向左運動了8m。寫成算式就是(-5)+(-3)=-8(m)
師生共同歸納法則:同號兩數相加,取與加數相同的符號,并把絕對值相加。
2、異號兩數相加的法則
教師:如果物體先向右運動5m,再向左運動3m,那么兩次運動后物體從起點向哪個方向運動了多少米?
學生回答:兩次運動后物體從起點向右運動了2m。寫成算式就是5+(-3)=2(m)
師生借此結論引導學生歸納異號兩數相加的法則:異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。
3、互為相反數的兩個數相加得零。
教師:如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少?
學生回答:經過兩次運動后,物體又回到了原點。也就是物體運動了0m。
師生共同歸納出:互為相反數的兩個數相加得零
教師:你能用加法法則來解釋這個法則嗎?
學生回答:可用異號兩數相加的法則來解釋。
一般地,還有一個數同0相加,仍得這個數。
三、鞏固知識
課本P18 例1,例2、課本P118 練習1、2題
四、總結
運算的關鍵:先分類,再按法則運算;
運算的步驟:先確定符號,再計算絕對值。
注意:要借用數軸來進一步驗證有理數的加法法則;異號兩數相加,首先要確定符號,再把絕對值相加。
五、布置作業
課本P24習題1.3第1、7題。
備課教案模板七年級數學實數篇3
一、知識導航
1、主要概念:變量是 ;自變量是 ;因變量是 。
2、變量之間關系的三種表示方法: 。
其特點是:列表:對于表中自變量的每一個值,可以不通過計算,直接把 的值找到,查詢方便;但是欠 ,不能反映變化的全貌,不易看出變量間的對應規律。
關系式:簡明扼要、規范準確;但有些變量之間的關系很難或不能用關系式表示。圖像:形象直觀??梢孕蜗蟮胤从吵鍪挛镒兓倪^程、變化的趨勢和某些特征;但圖像是近似的、局部的,由圖像確定因變量的值欠準確。
3、主要數學思想方法:類比和比較的方法(舉例說明);數形結合和數學建模思想(舉例說明)。
二、學習導航
1、有關概念應用
例1下列各題中,那些量在發生變化?其中自變量和因變量各是什么?
① 用總長為60的籬笆圍成一邊長為L(m),面積為S(m2)的矩形場地;
②正方形邊長是3,若邊長增加x,則面積增加為y.
2、利用表格尋找變化規律
例2 研究表明,固定鉀肥和磷肥的施用量,土豆的產量與氮肥的施用量有如下關系:
施肥量
(千克/公頃) 0 34 67 101 135 202 259 336 404 471
土豆產量
(噸/公頃) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75
上表中反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?根據表格中的數據,你認為氮肥的使用量是多少時比較適宜?
變式(湖南)一輛小汽車在高速公路上從靜止到起動10秒后的速度經測量如下表:
時間/秒 0 1 2 3 4 5 6 7 8 9 10
速度/米/秒 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9
①上表反映了哪兩個變量之間的關系?哪個是因變量?
②如果用t表示時間,v表示速度,那么隨著t的變化,v的變化趨勢是什么?
③當t每增加1秒時,v的變化情況相同嗎?在哪1秒中,v的增加?
④若高速公路上小汽車行駛的速度的上限為120千米/時,試估計大約還需要幾秒小汽車速度就將達到這個上限?
3、用關系式表示兩變量的關系
例3.、①設一長方體盒子高為10,底面積為正方形,求這個長方形的體積v與底面邊長a的關系。②設地面氣溫是20℃,如果每升高1km,氣溫下降6℃,求氣溫與t高度h的關系。
變式(江西)如圖,一個矩形推拉窗,窗高1.5米,則活動窗扇的通風面積A(平方米)與拉開長度b(米)的關系式是:
4、用圖像表示兩變量的關系
例4、(桂林)今年,在我國內地發生了“非典型肺炎”疫情,在黨和政府的正確領導下,目前疫情已得到有效控制.下圖是今年5月1日至5月14日的內地新增確診病例數據走勢圖(數據來源:衛生部每日疫情通報).從圖中,可知道:
(1)5月6日新增確診病例人數為 人;
(2)在5月9日至5月11日三天中,共新增確診病例人數為 人;
(3)從圖上可看出,5月上半月新增確診病例總體呈 趨勢.
例5、(陜西) 星期天晚飯后,小紅從家里出去散步,下圖描述了她散步過程中離家的距離s(米)與散步所用時間t(分)之間的函數關系.依據圖象,下面描述符合小紅散步情景的是( ).
A.從家出發,到了一個公共閱報欄,看了一會兒報,就回家了
B.從家出發,到了一個公共閱報欄,看了一會兒報后,繼續向前走了一段,然后回家了
C.從家出發,一直散步(沒有停留),然后回家了
D.從家出發,散了一會兒步,就找同學去了,18分鐘后才開始返變式 (成都)右圖表示甲騎電動自行車和乙駕駛汽車沿相同路線行駛45千米,由A地到B地時,行駛的路程y(千米)與經過的時間x(小時)之間的關系.請根據這個行駛過程中的圖象填空:汽車出發 小時與電動自行車相遇;電動自行車的速度為 千米/時;汽車的速度為 千米/時;汽車比電動自行車早 小時到達B地.
三、一試身手
1、(貴陽)小明根據鄰居家的故事寫了一首小詩:“兒子學成今日返,老父早早到車站,兒子到后細端詳,父子高興把家還.”如果用縱軸y表示父親與兒子行進中離家的距離,用橫軸 表示父親離家的時間,那么下面的圖象與上述詩的含義大致吻合的是( )
2、在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)
之間的關系如圖所示.
請根據圖象所提供的信息解答下列問題:
(1)甲、乙兩根蠟燭燃燒前的高度分別是______,
從點燃到燃盡所用的時間分別是_______;
(2)燃燒多長時間時,甲、乙兩根蠟燭的高度相等(不考慮都燃盡時的情況)?在什么時間段內,甲蠟燭比乙蠟燭高?在什么時間段內,甲蠟燭比乙蠟燭低?
3、(2006宿遷課改)小明從家騎車上學,先上坡到達A地后再下坡到達學校,所用的時間與路程如圖所示.如果返回時,上、下坡速度仍然保持不變,那么他從學校回到家需要的時間是( )
A.8.6分鐘 B.9分鐘
C.12分鐘 D.16分鐘
4、某機動車出發前油箱內有油42l,行駛若干小時后,途中在加油站加油若干升.油箱中余油量Q(L)與行駛時間t(L)之間的關系如圖8 所示.
回答問題:(1)機動車行駛幾小時后加油?
(2)中途中加油_________L;
(3)已知加油站距目的地還有 ,車速為 ,
若要達到目的地,油箱中的油是否夠用?并說明原因.
5、在一次實驗中,小明把一根彈簧的上端固定.在其下端懸掛物體,下面是測得的彈簧的長度y與所掛物體質量x的一組對應值.
所掛質量
0 1 2 3 4 5
彈簧長度
18 20 22 24 26 28
(1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?
(2)當所掛物體重量為 時,彈簧多長?不掛重物時呢?
(3)若所掛重物為 時(在允許范圍內),你能說出此時的彈簧長度嗎?
6、小明在暑期社會實距活動中,以每千克0.8元的價格從批發市場購進若干千克瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數之間的關系如圖9所示.請你根據圖象提供的信息完成以下問題:
(1)求降價前銷售金額y(元)與售出西瓜 (千克)之間的關系式;
(2)小明從批發市場共購進多少千克西瓜?
(3)小明這次賣瓜賺子多少錢?
7、如圖中的折線ABC是甲地向乙地打長途電話所需要付的電話費y(元)與通話時間t(分鐘)之間的關系的圖象.
(1)通話1分鐘,要付電話費多少元?通話5分鐘要付多少電話費?
(2)通話多少分鐘內,所支付的電話費不變?
(3)如果通話3分鐘以上,電話費y(元)與時間t(分鐘)的關系式是 ,那么通話4分鐘的電話費是多少元?
8、如圖是某水庫的蓄水量v(萬米3)與干旱持續時間t(天)之間的關系圖,回答下列問題:
(1)該水庫原蓄水量為多少萬米3?持干旱持續時間10天后,水庫蓄水量為多少萬米3?
(2)若水庫的蓄水量小于400萬米3時,將發生嚴重干旱警報,請問:持續干旱多少天后,將發生嚴重干旱警報?
(3)按此規律,持續干旱多少天時,水庫將干涸?
9、(成都市)某移動通信公司開設了兩種通信業務,“全球通”:使用時首先繳50元月租費,然后每通話1分鐘,自付話費0.4元;“動感地帶”:不繳月租費,每通話1分鐘,付話費0.6元(本題的通話均指市內通話),若一個月通話x分鐘,兩種方式的費用分別為 元和 元.
(1)寫出 、 與x之間的關系式;
(2)一個月內通話多少分鐘,兩種移動通訊費用相同?
(3)某人估計一個月內通話300分鐘,應選擇哪種移動通信合算些?