七年級學生數學教案
七年級學生數學教案都有哪些?數學家也研究純數學,即數學本身,并不針對任何實際應用。雖然很多工作都是從數學的研究開始的,但是后面可能會找到合適的應用。下面是小編為大家帶來的七年級學生數學教案七篇,希望大家能夠喜歡!
七年級學生數學教案(精選篇1)
一、教學目標
1、知識目標:掌握數軸三要素,會畫數軸。
2、能力目標:能將已知數在數軸上表示,能說出數軸上的點表示的數,知道有理數都可以用數軸上的點表示;
3、情感目標:向學生滲透數形結合的思想。
二、教學重難點
教學重點:數軸的三要素和用數軸上的點表示有理數。
教學難點:有理數與數軸上點的對應關系。
三、教法
主要采用啟發式教學,引導學生自主探索去觀察、比較、交流。
四、教學過程
(一)創設情境激活思維
1.學生觀看鐘祥二中相關背景視頻
意圖:吸引學生注意力,激發學生自豪感。
2.聯系實際,提出問題。
問題1:鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
師生活動:學生思考解決問題的方法,學生代表畫圖演示。
學生畫圖后提問:
1.馬路用什么幾何圖形代表?(直線)
2.文中相關地點用什么代表?(直線上的點)
3.學校大門起什么作用?(基準點、參照物)
4.你是如何確定問題中各地點的位置的?(方向和距離)
設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數學抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數和負數可以表示兩種具有相反意義的量,我們能不能直接用數來表示這些地理位置和學校大門的相對位置關系呢?
師生活動:
學生思考后回答解決方法,學生代表畫圖。
學生畫圖后提問:
1.0代表什么?
2.數的符號的實際意義是什么?
3.-75表示什么?100表示什么?
設計意圖:繼續以三要素為定向,將點用數表示,實現第二次抽象,為定義數軸概念提供直觀基礎。
問題3:生活中常見的溫度計,你能描述一下它的結構嗎?
設計意圖:借助生活中的常用工具,說明正數和負數的作用,引導學生用三要素表達,為定義數軸的概念提供直觀基礎。
問題4:你能說說上述2個實例的共同點嗎?
設計意圖:進一步明確“三要素”的意義,體會“用點表示數”和“用數表示點的思想方法,為定義數軸概念提供又一個直觀基礎。
(二)自主學習探究新知
學生活動:帶著以下問題自學課本第8頁:
1.什么樣的直線叫數軸?它具備什么條件。
2.如何畫數軸?
3.根據上述實例的經驗,“原點”起什么作用?
4.你是怎么理解“選取適當的長度為單位長度”的?
師生活動:
學生自學完后,請代表上黑板畫一條數軸,講解畫數軸的一般步驟。
設計意圖:明確畫數軸的步驟,使數軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數軸的定義。
至此,學生已會畫數軸,師生共同歸納總結(板書)
①數軸的定義。
②數軸三要素。
練習:(媒體展示)
1.判斷下列圖形是否是數軸。
2.口答:數軸上各點表示的數。
3.在數軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小組合作交流展示
問題:觀察數軸上的點,你有什么發現?
數軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數,對表示a的點和-a的點進行同樣的討論。
設計意圖:通過從特殊到一般的方法歸納出數軸上不同位置點的特點,培養學生的抽象概括能力。
(四)歸納總結反思提高
師生共同回顧本節課所學主要內容,回答以下問題:
1.什么是數軸?
2.數軸的“三要素”各指什么?
3.數軸的畫法。
設計意圖:梳理本節課內容,掌握本節課的核心――數軸“三要素”。
(五)目標檢測設計
1.下列命題正確的是()
A.數軸上的點都表示整數。
B.數軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C.數軸包括原點與正方向兩個要素。
D.數軸上的點只能表示正數和零。
2.畫數軸,在數軸上標出-5和+5之間的所有整數,列舉到原點的距離小于3的所有整數。
3.畫數軸,表示下列有理數數的點中,觀察數軸,在原點左邊的點有______X個。4.在數軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數軸上點A表示的數是________。
五、板書
1.數軸的定義。
2.數軸的三要素(圖)。
3.數軸的畫法。
4.性質。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
思考:如何簡明地用數表示這些地理位置與學校大門的相對位置關系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1.什么樣的直線叫數軸?
2.畫數軸的步驟是什么?
3.“原點”起什么作用?
4.你是怎么理解“選取適當的長度為單位長度”的?
練習:
1.畫一條數軸
2.在你畫好的數軸上表示下列有理數:1.5,-2,-2.5,2,2.5,0,-1.5
七年級學生數學教案(精選篇2)
教學目標
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;
2、理解一元一次不等式組應用題的一般解題步驟,逐步形成分析問題和解決問題的能力;
3、體驗數學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。
教學難點
正確分析實際問題中的不等關系,列出不等式組。
知識重點
建立不等式組解實際問題的數學模型。
探究實際問題
出示教科書第145頁例2(略)
問:(1)你是怎樣理解“不能完成任務”的數量含義的?
(2)你是怎樣理解“提前完成任務”的數量含義的?
(3)解決這個問題,你打算怎樣設未知數?列出怎樣的不等式?
師生一起討論解決例2.
歸納小結
1、教科書146頁“歸納”(略).
2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?
在討論或議論的基礎上老師揭示:步法一致(設、列、解、答);本質有區別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。
七年級學生數學教案(精選篇3)
一、教學目標
【知識與技能】
了解數軸的概念,能用數軸上的點準確地表示有理數。
【過程與方法】
通過觀察與實際操作,理解有理數與數軸上的點的對應關系,體會數形結合的思想。
【情感、態度與價值觀】
在數與形結合的過程中,體會數學學習的樂趣。
二、教學重難點
【教學重點】
數軸的三要素,用數軸上的點表示有理數。
【教學難點】
數形結合的思想方法。
三、教學過程
(一)引入新課
提出問題:通過實例溫度計上數字的意義,引出數學中也有像溫度計一樣可以用來表示數的軸,它就是我們今天學習的數軸。
(二)探索新知
學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:
提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數和負數可以表示具有相反意義的量,那么,如何用數表示這些樹、電線桿與汽車站牌的相對位置呢?
學生活動:畫圖表示后提問。
提問2:“0”代表什么?數的符號的實際意義是什么?對照體溫計進行解答。
教師給出定義:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸,它滿足:任取一個點表示數0,代表原點;通常規定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。
提問3:你是如何理解數軸三要素的?
師生共同總結:“原點”是數軸的“基準”,表示0,是表示正數和負數的分界點,正方向是人為規定的,要依據實際問題選取合適的單位長度。
(三)課堂練習
如圖,寫出數軸上點A,B,C,D,E表示的數。
(四)小結作業
提問:今天有什么收獲?
引導學生回顧:數軸的三要素,用數軸表示數。
課后作業:
課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?
七年級學生數學教案(精選篇4)
教學目標
1.通過具體的活動,認識方向與距離對確定位置的作用。
2.能根據任意方向和距離確定物體的位置。
3.發展學生的空間觀念。
教學重點
用方向和距離描述物體的位置。
教學難點
對任意角度具體方向的準確描述。
教學過程
一、創設情境 生成問題
春季是運動的最好時節,我們同學們都很愛好運動,不久我校就會舉行一次越野比賽,現在老師將越野圖展現給大家。
二、探索交流 解決問題
1.出示越野圖的起點和終點位置。
2.如果你是一名運動員,你將從起點向什么方向行進?(方向標)加方向標有什么好處?為什么方向標畫在起點的位置?(以起點為觀測點)
3.自主探究,小組討論,合作交流
例1的學習是讓學生明確可以根據方向和距離兩個條件確定物體的位置。教學時,可以與主題圖的教學結合進行,通過情境使學生明確需要方向和距離兩個條件才能確定物體的位置。活動中確定方向的具體方法可以讓學生小組合作進行探索。
知道在出發點的東北方向就可以出發嗎?如果這樣會發生什么情況?這樣確定方向準確嗎?怎么樣走會更加的準確?
準確的可以說是東偏北30°,那可以用北偏東60°這樣表示嗎?在說具體位置時,一般先說與物體所在方向離得較近(夾角較小)的'方向。——靠近哪個方向就把那個方向放在前面。
(距離 1千米)如果沒有距離又會怎樣?
1號點在起點的東偏北30°的方向上,距離是 1千米。你學會表示了嗎?
三、鞏固練習 內化提高
做一做呈現了小明家附近幾處建筑物的位置示意圖,通過方向與距離的確定,使學生進一步明確確定方向的具體方法。
練習三第1、2題是相應的在地圖上確定方向的練習。
四、回顧整理 反思提升
我們可以根據題目提供的方向和距離這兩個條件來確定物體的位置。首先要確定方向標。
七年級學生數學教案(精選篇5)
單元教學內容
1、本單元結合學生的生活經驗,列舉了學生熟悉的用正、負數表示的實例,從擴充運算的角度引入負數,然后再指出可以用正、負數表示現實生活中具有相反意義的量,使學生感受到負數的引入是來自實際生活的需要,體會數學知識與現實世界的聯系
引入正、負數概念之后,接著給出正整數、負整數、正分數、負分數集合及整數、分數和有理數的概念
2、通過怎樣用數簡明地表示一條東西走向的馬路旁的樹、電線桿與汽車站的相對位置關系引入數軸、數軸是非常重要的數學工具,它可以把所有的有理數用數軸上的點形象地表示出來,使數與形結合為一體,揭示了數形之間的內在聯系,從而體現出以下4個方面的作用:
(1)數軸能反映出數形之間的對應關系
(2)數軸能反映數的性質、
(3)數軸能解釋數的某些概念,如相反數、絕對值、近似數
(4)數軸可使有理數大小的比較形象化
3、對于相反數的概念,從“數軸上表示互為相反數的兩點分別在原點的兩旁,且離開原點的距離相等”來說明相反數的幾何意義,同時補充“零的相反數是零”作為相反數意義的一部分
4、正確理解絕對值的概念是難點
根據有理數的絕對值的兩種意義,可以歸納出有理數的絕對值有如下性質:
(1)任何有理數都有唯一的絕對值
(2)有理數的絕對值是一個非負數,即最小的絕對值是零
(3)兩個互為相反數的絕對值相等,即│a│=│-a│
(4)任何有理數都不大于它的絕對值,即│a│≥a,│a│≥-a
(5)若│a│=│b│,則a=b,或a=-b或a=b=0
三維目標
1、知識與技能
(1)了解正數、負數的實際意義,會判斷一個數是正數還是負數
(2)掌握數軸的畫法,能將已知數在數軸上表示出來,能說出數軸上已知點所表示的解
(3)理解相反數、絕對值的幾何意義和代數意義,會求一個數的相反數和絕對值
(4)會利用數軸和絕對值比較有理數的大小
2、過程與方法
經過探索有理數運算法則和運算律的過程,體會“類比”、“轉化”、“數形結合”等數學方法
3、情感態度與價值觀
使學生感受數學知識與現實世界的聯系,鼓勵學生探索規律,并在合作交流中完善規范語言
重、難點與關鍵
1、重點:正確理解有理數、相反數、絕對值等概念;會用正、負數表示具有相反意義的量,會求一個數的相反數和絕對值
2、難點:準確理解負數、絕對值等概念
3、關鍵:正確理解負數的意義和絕對值的意義
三維目標
一、知識與技能
能判斷一個數是正數還是負數,能用正數或負數表示生活中具有相反意義的量
二、過程與方法
借助生活中的實例理解有理數的意義,體會負數引入的必要性和有理數應用的廣泛性
三、情感態度與價值觀
培養學生積極思考,合作交流的意識和能力
教學重、難點與關鍵
1、重點:正確理解負數的意義,掌握判斷一個數是正數還是負數的方法。
2、難點:正確理解負數的概念。
3、關鍵:創設情境,充分利用學生身邊熟悉的事物,加深對負數意義的理解。
教具準備
投影儀、
教學過程
四、課堂引入
我們知道,數是人們在實際生活和生活需要中產生,并不斷擴充的、人們由記數、排序、產生數1,2,3,…;為了表示“沒有物體”、“空位”引進了數“0”,測量和分配有時不能得到整數的結果,為此產生了分數和小數、
在生活、生產、科研中經常遇到數的表示與數的運算的問題,例如課本第2頁至第3頁中提到的四個問題,這里出現的新數:-3,-2,-2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%、
五、講授新課
(1)、像-3,-2,-2.7%這樣的數(即在以前學過的0以外的數前面加上負號“-”的數)叫做負數、而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,它們與負數具有相反的意義,我們把這樣的數(即以前學過的0以外的數)叫做正數,有時在正數前面也加上“+”(正)號,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一個數前面的“+”、“-”號叫做它的符號,這種符號叫做性質符號
(2)、中國古代用算籌(表示數的工具)進行計算,紅色算籌表示正數,黑色算籌表示負數
(3)、數0既不是正數,也不是負數,但0是正數與負數的分界數
(4) 、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0℃,是指一個確定的溫度;海拔0表示海平面的平均高度。
用正負數表示具有相反意義的量。
(5)、 把0以外的數分為正數和負數,起源于表示兩種相反意義的量、正數和負數在許多方面被廣泛地應用、在地形圖上表示某地高度時,需要以海平面為基準,通常用正數表示高于海平面的某地的海拔高度,負數表示低于海平面的某地的海拔高度、例如:珠穆朗瑪峰的海拔高度為8844,吐魯番盆地的海拔高度為-155、記錄賬目時,通常用正數表示收入款額,負數表示支出款額。
(6)、 請學生解釋課本中圖1、1-2,圖1、1-3中的正數和負數的含義。
(7)、 你能再舉一些用正負數表示數量的實際例子嗎?
(8)、例如,通常用正數表示汽車向東行駛的路程,用負數表示汽車向西行駛的路程;用正數表示水位升高的高度,用負數表示水位下降的高度;用正數表示買進東西的數量,用負數表示賣出東西的數量
六、鞏固練
課本第3頁,練習1、2、3、4題
七年級學生數學教案(精選篇6)
教學目標:
1, 掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;
2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;
3, 體驗分類是數學上的常用處理問題的方法。
教學難點:
正確理解分類的標準和按照一定的標準進行分類
知識重點:
正確理解有理數的概念
教學過程:
探索新知
在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數,并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5. 1不是整個的數,稱為“正分數,,.…(由于小數可化為分數,以后把小數和分數都稱為分數)
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,”。
按照書本的說法,得出“整數”“分數”和“有理數”的概念.
看書了解有理數名稱的由來.
“統稱”是指“合起來總的名稱”的意思.
試一試:
按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的) 分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與。
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會
練一練
1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.
2,教科書第10頁練習.
此練習中出現了集合的概念,可向學生作如下的說明.
把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;
數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號:。
思考:
問題1:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?
創新探究
問題2:有理數可分為正數和負數兩大類,對嗎?為什么?
教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等。
小結與作業
到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。
七年級學生數學教案(精選篇7)
【教學目標】
1、通過豐富的實例,學生進一步認識點、線、面、體的幾何特征,感受它們之間的關系。
2、培養學生操作、觀察、分析、猜測和概括等能力,同時滲透轉化、化歸、變換的思想。
3、養成學生積極主動的學習態度和自主學習的方式。
【重點難點】
重點:認識點、線、面、體的幾何特征,感受它們之間的關系。
難點:在實際背景中體會點的含義。
【教學準備】
圓柱、圓錐、正方體、長方體、球、棱柱、棱錐模型
【教學過程】
一、創設情境
多媒體演示西湖風光,垂柳、波瀾不起的湖面、音樂噴泉、雨天、亭子……隨著鏡頭的切換,學生在欣賞美麗風景的同時,教師引導學生注意觀察:垂柳像什么?平靜的湖面像什么?湖中的小船像什么?隨著音樂起伏的噴泉又像什么?在岸邊的亭子中我們尋找到了哪些幾何圖形?從中感受生活中的點、線、面、體.
設計意圖:從西湖風光引入新課,引導學生觀察生活中的美妙畫面,不僅能激發學生的學習興趣,而且讓學生對點、線、面、體有了初步的形象認識,感知知識來源于生活.如“點”是沒有大小的,學生難以真正理解,可以借助湖中的小船、地圖上用點表示城市的位里這些生活實例,讓學生體會到“點”的含義.
二、討論(動態研究)
課件演示:燦爛的星空,有流星劃過天際;汽車雨刷;長方形繞它的一邊快速轉動;問:這些圖形給我們什么樣的印象?
觀察、討論.讓學生共同體會“點動成線、線動成面、面動成體,’.
讓學生舉出更多的“點動成線、線動成面、面動成體”的例子。
小組合作學習,學生利用學具完成教科書第114頁練習(動手轉一轉)
設計意圖:教師利用多媒體動態演示,讓學生主動參與學習活動,觀察感受,經歷體驗圖形的變化過程,通過合作學習,感悟知識的生成、變化、發展,激發學生的'聯想與再創造能力。學生自己動手實踐操作,加深學生印象,化解難度。
三、討論(靜態研究)
教師展示圖片(建筑或生活的實物等),讓學生找找生活中的平面、曲面、直線、點等。
讓學生找出生活中更多的包含平面、曲面、直線、曲線、點的例子。
四、探索
1、課本112頁觀察,并回答它的問題。
引導學生觀察后得出結論:面與面相交得到線,線與線相交得到點。
2、113頁練習(提供實物,議一議,動手摸一摸),思考以下問題:
這些立體圖形是由幾個面圍成的,它們都是平的嗎?圓錐的側面與底面相交成幾條線,是直線還是曲線?正方體有幾個頂點?經過每個頂點有幾條邊?
讓學生自己體會并小組討論得出點、線、面、體之間的關系。
五、作業
1、“當你遠遠地去觀察霓虹燈組成的圖案時,圖案中的每個霓虹燈就是一個點;在交通圖上,點用來表示每個地方;電視屏幕上的畫面也是由一個個小點組成;運用點可以組成數字和字母,這正是點陣式打印機的原理.”說說你對上述這段敘述的理解和體會.
2、閱讀教科書第119頁的實驗與探究,并思考有關問題。