數學總復習教案2023
數學總復習教案如何寫?數學的演變,可以看做是抽象的不斷發展,也可以看做是題材的延伸,而東西方文化采取了不同的角度。歐洲文明發展了幾何,中國發展了算術。下面是小編為大家帶來的數學總復習教案2023(七篇),希望大家能夠喜歡!
數學總復習教案2023【篇1】
一、教學目標
1.了解推理、證明的格式,理解判定定理的證法.
2.掌握平行線的第二個判定定理,會用判定公理及定理進行簡單的推理論證.
3.通過第二個判定定理的推導,培養學生分析問題、進行推理的能力.
4.使學生了解知識來源于實踐,又服務于實踐,只有學好文化知識,才有解決實際問題的本領,從而對學生進行學習目的的教育.
二、學法引導
1.教師教法:啟發式引導發現法.
2.學生學法:積極參與、主動發現、發展思維.
三、重點?難點及解決辦法
(一)重點
判定定理的推導和例題的解答.
(二)難點
使用符號語言進行推理.
(三)解決辦法
1.通過教師正確引導,學生積極思維,發現定理,解決重點.
2.通過教師指導,學生自行完成推理過程,解決難點及疑點.
四、課時安排
1課時
五、教具學具準備
三角板、投影儀、自制膠片.
六、師生互動活動設計
1.通過設計練習,復習基礎,創造情境,引入新課.
2.通過教師指導,學生探索新知,練習鞏固,完成新授.
3.通過學生自己總結完成小結.
七、教學步驟
(一)明確目標
掌握平行線的第二個定理的推理,并能運用其進行簡單的證明,培養學生的邏輯思維能力.
(二)整體感知
以情境創設,設計懸念,引出課題,以引導學生的思維,發現新知,以變式訓練鞏固新知.
(三)教學過程
創設情境,復習引入
師:上節課我們學習了平行線的判定公理和一種判定方法,根據所學看下面的問題(出示投影).
學生活動:學生口答第1、2題.
師:你能說出有什么條件,就可以判定兩條直線平行呢?
學生活動:由第l、2題,學生思考分析,只要有同位角相等或內錯角相等,就可以判定兩條直線平行.
教師將第3題圖形畫在黑板上.
學生活動:學生口答理由,同角的補角相等.
師:要求學生寫出符號推理過程,并板書.
【教法說明】本節課是前一節課的繼續,是在前一節課的基礎上進行學習的,所以通過第1、2兩題復習上節課所學平行線判定的兩個方法,使學生明確,只要有同位角相等或內錯角相等,就可以判定兩條直線平行.第3題是為推導本節到定定理做鋪墊,即如果同旁內角互補,則可以推出同位角相等,也可以推出內錯角相等,為定理的推理論證,分散了難點.
師:第4題是一個實際問題,題目中已知的兩個角是什么位置關系角?
學生活動:同分內角.
師:它們有什么關系.
學生活動:互補.
師:這個問題就是知道同分內角互補了,那么兩條直線是不是平行的呢?這就是這節課我們要研究的問題.
數學總復習教案2023【篇2】
一、教學目的:
1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關的論證和計算;
2.在菱形的判定方法的探索與綜合應用中,培養學生的觀察能力、動手能力及邏輯思維能力.
二、重點、難點
1.教學重點:菱形的兩個判定方法.
2.教學難點:判定方法的證明方法及運用.
三、例題的意圖分析
本節課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學生掌握菱形的判定方法,并會用這些判定方法進行有關的論證和計算.這些題目的推理都比較簡單,學生掌握起來不會有什么困難,可以讓學生自己去完成.程度好一些的班級,可以選講例3.
四、課堂引入
1.復習
(1)菱形的定義:一組鄰邊相等的平行四邊形;
(2)菱形的性質1菱形的四條邊都相等;
性質2菱形的對角線互相平分,并且每條對角線平分一組對角;
(3)運用菱形的定義進行菱形的判定,應具備幾個條件?(判定:2個條件)
2.【問題】要判定一個四邊形是菱形,除根據定義判定外,還有其它的判定方法嗎?
3.【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉動木條,這個四邊形什么時候變成菱形?
通過演示,容易得到:
菱形判定方法1對角線互相垂直的平行四邊形是菱形.
注意此方法包括兩個條件:(1)是一個平行四邊形;(2)兩條對角線互相垂直.
通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:
菱形判定方法2四邊都相等的四邊形是菱形.
五、例習題分析
例1(教材P109的例3)略
例2(補充)已知:如圖ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F.
求證:四邊形AFCE是菱形.
證明:∵四邊形ABCD是平行四邊形,
∴AE∥FC.
∴∠1=∠2.
又∠AOE=∠COF,AO=CO,
∴△AOE≌△COF.
∴EO=FO.
∴四邊形AFCE是平行四邊形.
又EF⊥AC,
∴AFCE是菱形(對角線互相垂直的平行四邊形是菱形).
※例3(選講)已知:如圖,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F.
求證:四邊形CEHF為菱形.
略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.
所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形.
六、隨堂練習
1.填空:
(1)對角線互相平分的四邊形是;
(2)對角線互相垂直平分的四邊形是________;
(3)對角線相等且互相平分的四邊形是________;
(4)兩組對邊分別平行,且對角線的四邊形是菱形.
2.畫一個菱形,使它的兩條對角線長分別為6cm、8cm.
3.如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。
七、課后練習
1.下列條件中,能判定四邊形是菱形的是()
(A)兩條對角線相等(B)兩條對角線互相垂直
(C)兩條對角線相等且互相垂直(D)兩條對角線互相垂直平分
2.已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形.
3.做一做:
設計一個由菱形組成的花邊圖案.花邊的長為15cm,寬為4cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點.畫出花邊圖形.
數學總復習教案2023【篇3】
一、素質教育目標
(一)知識教學點
使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系.
(二)能力訓練點
逐步培養學生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.
(三)德育滲透點
培養學生獨立思考、勇于創新的精神.
二、教學重點、難點
1.重點:使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系并會應用.
2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關系的應用.
三、教學步驟
(一)明確目標
1.復習提問
(1)、什么是∠A的正弦、什么是∠A的余弦,結合圖形請學生回答.因為正弦、余弦的概念是研究本課內容的知識基礎,請中下學生回答,從中可以了解教學班還有多少人不清楚的,可以采取適當的補救措施.
(2)請同學們回憶30°、45°、60°角的正、余弦值(教師板書).
(3)請同學們觀察,從中發現什么特征?學生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”.
2.導入新課
根據這一特征,學生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.
(二)、整體感知
關于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系,是通過30°、45°、60°角的正弦、余弦值之間的關系引入的,然后加以證明.引入這兩個關系式是為了便于查“正弦和余弦表”,關系式雖然用黑體字并加以文字語言的證明,但不標明是定理,其證明也不要求學生理解,更不應要求學生利用這兩個關系式去推證其他三角恒等式.在本章,這兩個關系式的用處僅僅限于查表和計算,而不是證明.
(三)重點、難點的學習和目標完成過程
1.通過復習特殊角的三角函數值,引導學生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發學生的學習熱情,使學生的思維積極活躍.
2.這時少數反應快的學生可能頭腦中已經“畫”出了圖形,并有了思路,但對部分學生來說仍思路凌亂.因此教師應進一步引導:sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學生結合正、余弦的概念,完全可以自己解決,教師要給學生足夠的研究解決問題的時間,以培養學生邏輯思維能力及獨立思考、勇于創新的精神.
3.教師板書:
任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.
sinA=cos(90°-A),cosA=sin(90°-A).
4.在學習了正、余弦概念的基礎上,學生了解以上內容并不困難,但是,由于學生初次接觸三角函數,還不熟練,而定理又涉及余角、余函數,使學生極易混淆.因此,定理的應用對學生來說是難點、在給出定理后,需加以鞏固.
已知∠A和∠B都是銳角,
(1)把cos(90°-A)寫成∠A的正弦.
(2)把sin(90°-A)寫成∠A的余弦.
這一練習只能起到鞏固定理的作用.為了運用定理,教材安排了例3.
(2)已知sin35°=0.5736,求cos55°;
(3)已知cos47°6′=0.6807,求sin42°54′.
(1)問比較簡單,對照定理,學生立即可以回答.(2)、(3)比(1)則更深一步,因為(1)明確指出∠B與∠A互余,(2)、(3)讓學生自己發現35°與55°的角,47°6′分42°54′的角互余,從而根據定理得出答案,因此(2)、(3)問在課堂上應該請基礎好一些的同學講清思維過程,便于全體學生掌握,在三個問題處理完之后,將題目變形:
(2)已知sin35°=0.5736,則cos______=0.5736.
(3)cos47°6′=0.6807,則sin______=0.6807,以培養學生思維能力.
為了配合例3的教學,教材中配備了練習題2.
(2)已知sin67°18′=0.9225,求cos22°42′;
(3)已知cos4°24′=0.9971,求sin85°36′.
學生獨立完成練習2,就說明定理的教學較成功,學生基本會運用.
教材中3的設置,實際上是對前二節課內容的綜合運用,既考察學生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習,因此例3的安排恰到好處.同時,做例3也為下一節查正余弦表做了準備.
(四)小結與擴展
1.請學生做知識小結,使學生對所學內容進行歸納總結,將所學內容變成自己知識的組成部分.
2.本節課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關系,以及正弦、余弦的概念得出的結論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值.
四、布置作業
數學總復習教案2023【篇4】
理解一元二次方程求根公式的推導過程,了解公式法的概念,會熟練應用公式法解一元二次方程.
復習具體數字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導,并應用公式法解一元二次方程.
重點
求根公式的推導和公式法的應用.
難點
一元二次方程求根公式的推導.
一、復習引入
1.前面我們學習過解一元二次方程的“直接開平方法”,比如,方程
(1)x2=4 (2)(x-2)2=7
提問1 這種解法的(理論)依據是什么?
提問2 這種解法的局限性是什么?(只對那種“平方式等于非負數”的特殊二次方程有效,不能實施于一般形式的二次方程.)
2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)
(學生活動)用配方法解方程 2x2+3=7x
(老師點評)略
總結用配方法解一元二次方程的步驟(學生總結,老師點評).
(1)先將已知方程化為一般形式;
(2)化二次項系數為1;
(3)常數項移到右邊;
(4)方程兩邊都加上一次項系數的一半的平方,使左邊配成一個完全平方式;
(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0 (2)ax2+bx+3=0
如果這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學獨立完成下面這個問題.
問題:已知ax2+bx+c=0(a≠0),試推導它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)
分析:因為前面具體數字已做得很多,我們現在不妨把a,b,c也當成一個具體數字,根據上面的解題步驟就可以一直推下去.
解:移項,得:ax2+bx=-c
二次項系數化為1,得x2+bax=-ca
配方,得:x2+bax+(b2a)2=-ca+(b2a)2
即(x+b2a)2=b2-4ac4a2
∵4a2>0,當b2-4ac≥0時,b2-4ac4a2≥0
∴(x+b2a)2=(b2-4ac2a)2
直接開平方,得:x+b2a=±b2-4ac2a
即x=-b±b2-4ac2a
∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a,b,c而定,因此:
(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.
(2)這個式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
公式的理解
(4)由求根公式可知,一元二次方程最多有兩個實數根.
例1 用公式法解下列方程:
(1)2x2-x-1=0 (2)x2+1.5=-3x
(3)x2-2x+12=0 (4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先應把它化為一般形式,然后代入公式即可.
補:(5)(x-2)(3x-5)=0
三、鞏固練習
教材第12頁 練習1.(1)(3)(5)或(2)(4)(6).
四、課堂小結
本節課應掌握:
(1)求根公式的概念及其推導過程;
(2)公式法的概念;
(3)應用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數a,b,c,注意各項的系數包括符號;3)計算b2-4ac,若結果為負數,方程無解;4)若結果為非負數,代入求根公式,算出結果.
(4)初步了解一元二次方程根的情況.
五、作業布置
教材第17頁 習題4
數學總復習教案2023【篇5】
掌握用因式分解法解一元二次方程.
通過復習用配方法、公式法解一元二次方程,體會和探尋用更簡單的方法——因式分解法解一元二次方程,并應用因式分解法解決一些具體問題.
重點
用因式分解法解一元二次方程.
難點
讓學生通過比較解一元二次方程的多種方法感悟用因式分解法使解題更簡便.
一、復習引入
(學生活動)解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老師點評:(1)配方法將方程兩邊同除以2后,x前面的系數應為12,12的一半應為14,因此,應加上(14)2,同時減去(14)2.(2)直接用公式求解.
二、探索新知
(學生活動)請同學們口答下面各題.
(老師提問)(1)上面兩個方程中有沒有常數項?
(2)等式左邊的各項有沒有共同因式?
(學生先答,老師解答)上面兩個方程中都沒有常數項;左邊都可以因式分解.
因此,上面兩個方程都可以寫成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因為兩個因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實現降次的?)
因此,我們可以發現,上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現降次,這種解法叫做因式分解法.
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的條件是什么?
解:略 (方程一邊為0,另一邊可分解為兩個一次因式乘積.)
練習:下面一元二次方程解法中,正確的是( )
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,兩邊同除以x,得x=1
三、鞏固練習
教材第14頁 練習1,2.
四、課堂小結
本節課要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用.
(2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.
五、作業布置
教材第17頁 習題6,8,10,11
數學總復習教案2023【篇6】
一、教學目標
【知識與技能】
了解數軸的概念,能用數軸上的點準確地表示有理數。
【過程與方法】
通過觀察與實際操作,理解有理數與數軸上的點的對應關系,體會數形結合的思想。
【情感、態度與價值觀】
在數與形結合的過程中,體會數學學習的樂趣。
二、教學重難點
【教學重點】
數軸的三要素,用數軸上的點表示有理數。
【教學難點】
數形結合的思想方法。
三、教學過程
(一)引入新課
提出問題:通過實例溫度計上數字的意義,引出數學中也有像溫度計一樣可以用來表示數的軸,它就是我們今天學習的數軸。
(二)探索新知
學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:
提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數和負數可以表示具有相反意義的量,那么,如何用數表示這些樹、電線桿與汽車站牌的相對位置呢?
學生活動:畫圖表示后提問。
提問2:“0”代表什么?數的符號的實際意義是什么?對照體溫計進行解答。
教師給出定義:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸,它滿足:任取一個點表示數0,代表原點;通常規定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。
提問3:你是如何理解數軸三要素的?
師生共同總結:“原點”是數軸的“基準”,表示0,是表示正數和負數的分界點,正方向是人為規定的,要依據實際問題選取合適的單位長度。
(三)課堂練習
如圖,寫出數軸上點A,B,C,D,E表示的數。
(四)小結作業
提問:今天有什么收獲?
引導學生回顧:數軸的三要素,用數軸表示數。
課后作業:
課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?
數學總復習教案2023【篇7】
一、教學內容分析
1.2有理數1.2.2數軸。這一節是初中數學中非常重要的內容,從知識上講,數軸是數學學習和研究的重要工具,它主要應用于絕對值概念的理解,有理數運算法則的推導,及不等式的求解。同時,也是學習直角坐標系的基礎,從思想方法上講,數軸是數形結合的起點,而數形結合是學生理解數學、學好數學的重要思想方法。日常生活中帶見的用溫度計度量溫度,已為學習數軸概念打下了一定的基礎。通過問題情境類比得到數軸的概念,是這節課的主要學習方法。同時,數軸又能將數的分類直觀的表現出來,是學生領悟分類思想的基礎。
二、學生學習情況分析
(1)知識掌握上,七年級的學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述;
(2)學生學習本節課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現象,所以教學中教師應予以簡單明白、深入淺出的分析;
(3)由于七年級學生的理解能力和思維特征和生理特征,學生的好動性,注意力容易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,一發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生的主動性。
三、設計思想
從學生已有知識、經驗出發研究新問題,是我們組織教學的一個重要原則。小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念。教學中,數軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識。直線、數軸都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的。例如,向學生提問:在數軸上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等。
四、教學目標
(一)知識與技能
1、掌握數軸的三要素,能正確畫出數軸。
2、能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數。
(二)過程與方法
1、使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意
識。
2、對學生滲透數形結合的思想方法。
(三)情感、態度與價值觀
1、使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主
義觀點。
2、通過畫數軸,給學生以圖形美的教育,同時由于數形的結合,學生會得
到和諧美的享受。
五、教學重點及難點
1、重點:正確掌握數軸畫法和用數軸上的點表示有理數。
2、難點:有理數和數軸上的點的對應關系。
六、教學建議
1、重點、難點分析
本節的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小.難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎。
2、知識結構
有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下:
定義規定了原點、正方向、單位長度的直線叫數軸
三要素原點正方向單位長度
應用數形結合
七、學法引導
1、教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發情趣—手腦并用—啟發誘導—反饋矯正”的教學方法。
2、學生學法:動手畫數軸,動腦概括數軸的三要素,動手、動腦做練習。
八、課時安排
1課時
九、教具學具準備
電腦、投影儀、三角板
十、師生互動活動設計
講授新課
(出示投影1)
問題1:三個溫度計.其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.(小組討論,交流合作,動手操作)
師:我們能否用類似的圖形表示有理數呢?
師:這種表示數的圖形就是今天我們要學的內容—數軸(板書課題).
師:與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀
數,用直線上的點表示正數、負數和零.具體方法如下
(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
師問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
讓學生觀察畫好的直線,思考以下問題:
(出示投影2)
(1)原點表示什么數?
(2)原點右方表示什么數?原點左方表示什么數?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的A點表示什么數?
原點向左1.5個單位長度的B點表示什么數?
根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出數軸的定義.
師:在此基礎上,給出數軸的定義,即規定了原點、正方向和單
位長度的直線叫做數軸.
進而提問學生:在數軸上,已知一點P表示數-5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可.
【教法說明】通過“觀察—類比—思考—概括—表達”展現知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力.
師生同步畫數軸,學生概括數軸三要素,師出示投影,生動手動腦練習
嘗試反饋,鞏固練習
(出示投影3).畫出數軸并表示下列有理數:
1、1.5,-2.2,-2.5,,,0.
2.寫出數軸上點A,B,C,D,E所表示的數:
請大家回答下列問題:
(出示投影4)
(1)有人說一條直線是一條數軸,對不對?為什么?
(2)下列所畫數軸對不對?如果不對,指出錯在哪里?
【教法說明】此組練習的目的是鞏固數軸的概念.
十一、小結
本節課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究.
十二、課后練習習題1.2第2題
十三、教學反思
1、數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。
2、教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。
3、注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。