數學中考復習教案
數學中考復習教案都有哪些?在現實社會中,教學是重要的工作之一。所謂反思,就是能夠快速從一個場景和情境中走出來,看到自己在之前的場景和情境中的表現。下面是小編為大家帶來的數學中考復習教案七篇,希望大家能夠喜歡!
數學中考復習教案【篇1】
教學目標:
1、了解公式的意義,使學生能用公式解決簡單的實際問題;
2、初步培養學生觀察、分析及概括的能力;
3、通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
教學建議:
一、教學重點、難點
重點:通過具體例子了解公式、應用公式。
難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結構
本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1、對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2、在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
教學設計示例:
一、教學目標
(一)知識教學點
1、使學生能利用公式解決簡單的實際問題。
2、使學生理解公式與代數式的關系。
(二)能力訓練點
1、利用數學公式解決實際問題的能力。
2、利用已知的公式推導新公式的能力。
(三)德育滲透點
數學來源于生產實踐,又反過來服務于生產實踐。
(四)美育滲透點
數學公式是用簡潔的數學形式來闡明自然規定,解決實際問題,形成了色彩斑斕的多種數學方法,從而使學生感受到數學公式的簡潔美。
二、學法引導
1、數學方法:引導發現法,以復習提問小學里學過的公式為基礎、突破難點。
2、學生學法:觀察→分析→推導→計算。
三、重點、難點、疑點及解決辦法
1、重點:利用舊公式推導出新的圖形的計算公式。
2、難點:同重點。
3、疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差。
四、課時安排
1課時
五、教具學具準備
投影儀,自制膠片。
六、師生互動活動設計
教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發學生求圖形的面積,師生總結求圖形面積的公式。
七、教學步驟
(一)創設情景,復習引入
師:同學們已經知道,代數的一個重要特點就是用字母表示數,用字母表示數有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏。
在學生說出幾個公式后,師提出本節課我們應在小學學習的基礎上,研究如何運用公式解決實際問題。
板書:公式
師:小學里學過哪些面積公式?
板書:S=ah
(出示投影1)。解釋三角形,梯形面積公式
【教法說明】讓學生感知用割補法求圖形的面積。
數學中考復習教案【篇2】
一、內容簡介
本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。
關鍵信息:
1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。
2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。
二、學習者分析:
1、在學習本課之前應具備的基本知識和技能:
①同類項的定義。
②合并同類項法則
③多項式乘以多項式法則。
2、學習者對即將學習的內容已經具備的水平:
在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。
三、教學/學習目標及其對應的課程標準:
(一)教學目標:
1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。
2、會推導完全平方公式,并能運用公式進行簡單的計算。
(二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理數、實數、代數式、防城、不等式、函數;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、防城、不等式、函數等進行描述。
(四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。
(五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。
四、教育理念和教學方式:
1、教師是學生學習的組織者、促進者、合作者:學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經歷,用自己的心靈去親自感悟。
教學是師生交往、積極互動、共同發展的過程。當學生迷路的時候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學生登山畏懼了的時候,教師不是拖著他走,而是喚起他內在的精神動力,鼓勵他不斷向上攀登。
2、采用“問題情景—探究交流—得出結論—強化訓練”的模式展開教學。
3、教學評價方式:
(1)通過課堂觀察,關注學生在觀察、總結、訓練等活動中的主動參與程度與合作交流意識,及時給與鼓勵、強化、指導和矯正。
(2)通過判斷和舉例,給學生更多機會,在自然放松的狀態下,揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學情,調查教學。
(3)通過課后訪談和作業分析,及時查漏補缺,確保達到預期的教學效果。
五、課后反思
本節課雖然算不上課本中的難點,但在整式一章中是個重點。它是多項式乘法特殊形式下的一種簡便運算。學生需要熟練掌握公式兩種形式的使用方法,以提高運算速度。授課過程中,應注重讓學生總結公式的等號兩邊的特點,讓學生用語言表達公式的內容,讓學生說明運用公式過程中容易出現的問題和特別注意的細節。然后再通過逐層深入的練習,鞏固完全平方公式兩種形式的應用。為完全平方公式第二節課的實際應用和提高應用做好充分的準備
數學中考復習教案【篇3】
教材分析:
一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。
學情分析:
1.學生已學習用求根公式法解一元二次方程。
2.本課的教學對象是九年級學生,學生對事物的認識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。
3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現代化的教學模式和傳統的教學模式相結合的基礎上掌握一元二次方程根與系數的關系。
教學目標:
1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。
2、能力目標:通過韋達定理的教學過程,使學生經歷觀察、實驗、猜想、證明等數學活動過程,發展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養學生的創新意識和創新精神。
3、情感目標:通過情境教學過程,激發學生的求知欲望,培養學生積極學習數學的態度。體驗數學活動中充滿著探索與創造,體驗數學活動中的成功感,建立自信心。
教學重難點:
1、重點:一元二次方程根與系數的關系。
2、難點:讓學生從具體方程的根發現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
板書設計:
一元二次方程根與系數的關系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2=,x1x2=。
問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎?①二次項系數a是否為零,決定著方程是否為二次方程;②當a≠0時,b=0,a、c異號,方程兩根互為相反數;③當a≠0時,△=b-4ac可判定根的情況;④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。
學生學習活動評價設計:
本節課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。
教學反思:
1.一元二次方程根與系數的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數之間的關系,是我們今后繼續研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。
2.以一元二次方程根與系數的關系的探索與推導,向學生展示認識事物的一般規律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力。
3.一元二次方程的根與系數的關系,在中考中多以填空,選擇,解答題的形式出現,考查的頻率較高,也常與幾何、二次函數等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。
4.使學生體會解題方法的多樣性,開闊解題思路,優化解題方法,增強擇優能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數學活動經驗,教師應注意引導。
數學中考復習教案【篇4】
一、教材內容
人民教育出版社《義務教育課程標準實驗教科書數學》六年級下冊第2~4頁例1、例2。
二、教學目標
1.引導學生在熟悉的生活情境中初步認識負數,能正確地讀、寫正數和負數;知道0不是正數也不是負數。
2.使學生初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的聯系。
3.結合負數的歷史,對學生進行愛國主義教育;培養學生良好的數學情感和數學態度。
三、教學重、難點
認識負數的意義。
四、教學過程
(一)談話交流
談話:同學們,剛才一上課大家就做了一組相反的動作,是什么?(起立、坐下。)今天的數學課我們就從這個話題聊起。(板書:相反。)我們周圍有很多的自然和社會現象中都存在著相反的情況,請看屏幕:(課件播放圖片。)太陽每天從東方升起,西方落下;公交車的站點有人上車和下車;繁華的街市上有買也有賣;激烈的賽場上有輸也有贏……你能舉出一些這樣的現象嗎?
(二)教學新知
1.表示相反意義的量
(1)引入實例
談話:如果沿著剛才的話題繼續“聊”下去的話,就很自然地走進數學,我們一起來看幾個例子(課件出示)。
①六年級上學期轉來6人,本學期轉走6人。
②張阿姨做生意,二月份盈利1500元,三月份虧損200元。
③與標準體重比,小明重了2.5千克,小華輕了1.8千克。
④一個蓄水池夏季水位上升米,冬季水位下降米。
指出:這些相反的詞語和具體的數量結合起來,就成了一組組“相反意義的量”。(補充板書:相反意義的量。)
(2)嘗試
怎樣用數學方式來表示這些相反意義的量呢?
請同學們選擇一例,試著寫出表示方法。
(3)展示交流
2.認識正、負數
(1)引入正、負數
談話:剛才,有同學在6的前面寫上“+”表示轉來6人,添上“-”表示轉走6人(板書:+6-6),這種表示方法和數學上是完全一致的。
介紹:像“-6”這樣的數叫負數(板書:負數);這個數讀作:負六。
“-”,在這里有了新的意義和作用,叫“負號”。“+”是正號。
像“+6”是一個正數,讀作:正六。我們可以在6的前面加上“+”,也可以省略不寫(板書:6)。其實,過去我們認識的很多數都是正數。
(2)試一試
請你用正、負數來表示出其它幾組相反意義的量。
寫完后,交流、檢查。
3.聯系實際,加深認識
(1)說一說存折上的數各表示什么?(教學例2。)
(2)聯系生活實際舉出一組相反意義的量,并用正、負數來表示。
①同桌交流。
②全班交流。根據學生發言板書。
這樣的正、負數能寫完嗎?(板書:……)
強調指出:像過去我們熟悉的這些整數、小數、分數等都是正數,也叫正整數、正小數、正分數;在它們的前面添上負號,就成了負整數、負小數、負分數,統稱負數。
4.進一步認識“0”
(1)看一看、讀一讀
談話:接下來,我們一起來看屏幕:這是去年12月份某天,部分城市的氣溫情況(課件出示)。
哈爾濱:-18℃~-5℃
北京:-6℃~6℃
深圳:15℃~25℃
溫度中有正數也有負數,請把負數讀出來。
(2)找一找、說一說
我們來看首都北京當天的溫度,“-5℃”讀作:“負五攝氏度”或“負五度”,表示零下5度;5℃又表示什么?
你能在溫度計上找出這兩個溫度所在的刻度嗎?(課件出示溫度計,沒有刻度數)為什么?
現在你能很快找出來嗎?(給出溫度計的刻度數,生到前面指。)
說一說,你怎么這么快就找到了?
(課件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12℃、-3℃嗎?
(3)提升認識
請學生觀察溫度計,說一說有什么發現?
在學生發言的基礎上,強調:以0℃為分界點,零上溫度都用正數來表示,零下溫度都用負數來表示。(或負數都表示零下溫度,正數都表示零上溫度。)
“0”是正數,還是負數呢?
在學生發言的基礎上,強調:“0”作為正數和負數的分界點,它既不是正數也不是負數。
(4)總結歸納
如果過去我們所認識的數只分為正數和0的話,那么今天我們可以對“數”進行重新分類:
5.練一練
讀一讀,填一填。
6.出示課題
同學們,想一想,今天你學習了什么新知識?認識了哪位新朋友?你能為今天的數學課定一個課題嗎?
根據學生的回答總結本節課所學內容,并選擇板書課題:認識負數。
數學中考復習教案【篇5】
一、教學目標
知識與技能:使學生了解正數與負數是從實際需要中產生的;
過程與方法:使學生理解正數與負數的概念,并會判斷一個數是正數還是負數,初步會用正負數表示具有相反意義的量;
情感與態度:在負數概念的形成過程中,培養學生的觀察、歸納與概括的能力
二、教學重點和難點
負數的引入和意義
三、教學過程
創設情景,生活實例引入,觀察猜想,合作探究
(一)、從學生原有的認知結構提出問題
大家知道,數學與數是分不開的,它是一門研究數的學問現在我們一起來回憶一下,小學里已經學過哪些類型的數?
學生答后,教師指出:小學里學過的數可以分為三類:自然數(正整數)、分數和零(小數包括在分數之中),它們都是由于實際需要而產生的。
為了表示一個人、兩只手、……,我們用到整數1,2,……
為了表示半小時、四元八角七分、……,我們需用到分數1/2和小數4.87、……
為了表示“沒有人”、“沒有羊”、……我們要用到0。
但在實際生活中,還有許多量不能用上述所說的自然數,零或分數、小數表示。
(二)、師生共同研究形成正負數概念
某市某一天的最高溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學學過的數,都記作5℃,就不能把它們區別清楚。
它們是具有相反意義的兩個量。
現實生活中,像這樣的相反意義的量還有很多。
例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的。
又如,某倉庫昨天運進貨物噸,今天運出貨物噸,“運進”和“運出”,其意義是相反的。
同學們能舉例子嗎?
學生回答后,教師提出:怎樣區別相反意義的量才好呢?
現在,數學中采用符號來區分,規定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學里學過的數前面加上“+”或“—”號,就把兩個相反意義的量筒明地表示出來了。
讓學生用同樣的方法表示出前面例子中具有相反意義的量:
高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;
運進綱物噸,記作+;運出貨物噸,記作—。
教師講解:什么叫做正數?什么叫做負數。
強調,數0既不是正數,也不是負數,它是正、負數的界限,表示“基準”的數,零不是表示“沒有”,它表示一個實際存在的數量。并指出,正數,負數的“+”“—”的符號是表示性質相反的量,符號寫在數字前面,這種符號叫做性質符號
(三)、運用舉例變式練習
例1所有的正數組成正數集合,所有的負數組成負數集合把下列各數中的正數和負數分別填在表示正數集合和負數集合的圈里:
—11,4,8,+73,—2,7,,,—8,12,—;
正數集合負數集合
此例由學生口答,教師板書,注意加上省略號,說明這是因為正(負)數集合中包含所有正(負)數,而我們這里只填了其中一部分。然后,指出不僅可以用圈表示集合,也可以用大括號表示集合
課堂練習
任意寫出6個正數與6個負數,并分別把它們填入相應的大括號里:
正數集合:{…},
負數集合:{…}
四、課堂小結
由于實際生活中存著許多具有相反意義的量,因此產生了正數與負數正數是大于0的數,負數就是在正數前面加上“—”號的數0既不是正數,也不是負數,0可以表示沒有,也可以表示一個實際存在的數量,如0℃
五、作業布置
1、北京一月份的日平均氣溫大約是零下3℃,用負數表示這個溫度
2、在小學地理圖冊的世界地形圖上,可以看到亞洲西部地中海旁有一個死海湖,圖中標著—392,這表明死海的湖面與海平面相比的高度是怎樣的?
3、在下列各數中,哪些是正數?哪些是負數?
—16,0,004,+,—,,25,8,—3,6,—4,9651,—0,1。
4、如果—50元表示支出50元,那么+200元表示什么?
5、河道中的水位比正常水位低0。2米記作—0.2米,那么比正常水位溫0.1米記作什?
6、如果自行車車條的長度比標準長度長2毫米記作+2毫米,那么比標準長度短3毫米記作么?
7、一物體可以左右移動,設向右為正,問:
(1)向左移動12米應記作什么?
(2)“記作8米”表明什么?
數學中考復習教案【篇6】
教學目的
1、使學生了解無理數和實數的概念,掌握實數的分類,會準確判斷一個數是有理數還是無理數。
2、使學生能了解實數絕對值的意義。
3、使學生能了解數軸上的點具有一一對應關系。
4、由實數的分類,滲透數學分類的思想。
5、由實數與數軸的一一對應,滲透數形結合的思想。
教學分析
重點:無理數及實數的概念。
難點:有理數與無理數的區別,點與數的一一對應。
教學過程
一、復習
1、什么叫有理數?
2、有理數可以如何分類?
(按定義分與按大小分。)
二、新授
1、無理數定義:無限不循環小數叫做無理數。
判斷:無限小數都是無理數;無理數都是無限小數;帶根號的數都是無理數。
2、實數的定義:有理數與無理數統稱為實數。
3、按課本中列表,將各數間的聯系介紹一下。
除了按定義還能按大小寫出列表。
4、實數的相反數:
5、實數的絕對值:
6、實數的運算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
(1)任何實數的偶次冪是正實數。( )
(2)在實數范圍內,若| x|=|y|則x=y。( )
(3)0是最小的實數。( )
(4)0是絕對值最小的實數。( )
解:略
三、練習
P148 練習:3、4、5、6。
四、小結
1、今天我們學習了實數,請同學們首先要清楚,實數是如何定義的,它與有理數是怎樣的關系,二是對實數兩種不同的分類要清楚。
2、要對應有理數的相反數與絕對值定義及運算律和運算性質,來理解在實數中的運用。
五、作業
1、P150 習題A:3。
2、基礎訓練:同步練習1。
數學中考復習教案【篇7】
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數學思考
1.經歷探索具體問題中的數量關系過程,體會一元一次方程是刻畫實際問題的有效數學模型。進一步發展符號意識。
2.通過一元一次方程的學習,體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數學角度和方法解決問題,發展應用意識。
經歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。
情感態度
經歷觀察、實驗計算、交流等活動,激發求知欲,體驗探究發現的快樂。
教學重點
建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。
教學難點
分析實際問題中的相等關系,列出方程。
教學過程
活動一 知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據是什么?
學生獨立思考、回答交流。
本次活動中教師關注:
(1)學生能否準確理解運用等式性質和合并同列項求解方程。
(2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環節,引導學生回顧利用等式性質和合并同類項對方程進行變形,再現等式兩邊同時加上(或減去)同一個數、兩邊同時乘以(除以,不為0)同一個數、合并同類項等運算,為繼續學習做好鋪墊。
活動二 問題探究
問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據現有經驗你打算怎么做?
(學生嘗試提問)
學生:讀題,審題,獨立思考,討論交流。
1.找出問題中的已知數和已知條件。(獨立回答)
2.設未知數:設這個班有x名學生。
3.列代數式:x參與運算,探索運算關系,表示相關量。(討論、回答、交流)
4.找相等關系:
這批書的總數是一個定值,表示它的兩個等式相等.(學生回答,教師追問)
5.列方程:3x+20=4x-25(1)
總結提問:通過列方程解決實際問題分析時,要經歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學生討論后發現:方程的兩邊都有含x的項(3x與4x)和不含字母的常數項(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉化呢?
學生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數項,等號兩邊同減去20.
3x-4x=-25-20(2)
教師提問3:以上變形依據是什么?
學生回答:等式的性質1。
歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。
師生共同完成解答過程。
設問4:以上解方程中“移項”起了什么作用?
學生討論、回答,師生共同整理:
通過移項,含未知數的項與常數項分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經歷了那些步驟?列方程時找了怎樣的相等關系?
學生思考回答。
教師關注:
(1)學生對列方程解決實際問題的一般步驟:設未知數,列代數式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數學活動中,體驗探究發現成功的快樂。
活動三 解法運用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學生講解,獨立完成,板演。
提問:“移項”是注意什么?
學生:變號。
教師關注:學生“移項”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規范解題步驟。
活動四 鞏固提高
1.第91頁練習(1)(2)
2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?
3.小明步行由A地去B地,若每小時走6千米,則比規定時間遲到1小時;若每小時走8千米,則比規定時間早到0.5小時。求A、B兩地之間的距離。
教師按順序出示問題。
學生獨立完成,用實物投影展示部分學而生練習。
教師關注:
1.學生在計算中可能出現的錯誤。
2.x系數為分數時,可用乘的辦法,化系數為1。
3.用實物投影展示學困生的完成情況,進行評價、鼓勵。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學生對解方程步驟的掌握情況和可能出現的計算錯誤。
2、3題的重點是在新情境中引導學生利用已有經驗解決實際問題,達到鞏固提高的目的。
活動五
提問1:今天我們學習了解方程的那種變形?它有什么作用、應注意什么?
提問2:本節課重點利用了什么相等關系,來列的方程?
教師組織學生就本節課所學知識進行小結。
學生進行總結歸納、回答交流,相互完善補充。
教師關注:學生能否提煉出本節課的重點內容,如果不能,教師則提出具體問題,引導學生思考、交流。
引導學生對本節所學知識進行歸納、總結和梳理,以便于學生掌握和運用。
布置作業:
第93頁第3題