七年級數學教案萬能模板
編寫教案可以幫助教師養成嚴謹的工作態度和認真的辦事習慣,同時可以使備課更加充分,上課有條不紊。優秀的七年級數學教案萬能模板是怎么寫的?小編給大家整理了七年級數學教案萬能模板,希望對大家有所幫助。
七年級數學教案萬能模板篇1
學習目標
1. 理解有序數對的應用意義,了解平面上確定點的常用方法
2. 培養用數學的意識,激發學習興趣.
學習重點: 理解有序數對的意義和作用
學習難點: 用有序數對表示點的位置
學習過程
一.問題導入
1.一位居民打電話給供電部門:"衛星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案.
2.地質部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經125.7°"。
3.某人買了一張8排6號的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數據找到位置的。
你能舉出生活中利用數據表示位置的例子嗎?
二.概念確定
有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的含義,我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)
利用有序數對,可以很準確地表示出一個位置。
1.在教室里,根據座位圖,確定數學課代表的位置
2.教材40頁練習
三.方法歸類
常見的確定平面上的點位置常用的方法
(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。
1.如圖,A點為原點(0,0),則B點記為(3,1)
2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。
例2 如圖是某次海戰中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
(1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么數據?
(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個數據?
[鞏固練習]
1. 如圖是某城市市區的一部分示意圖,對市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數據?火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?
結合實際問題歸納方法
學生嘗試描述位置
2. 如圖,馬所處的位置為(2,3).
(1) 你能表示出象的位置嗎?
(2) 寫出馬的下一步可以到達的位置。
[小結]
1. 為什么要用有序數對表示點的位置,沒有順序可以嗎?
2. 幾種常用的表示點位置的方法.
[作業]
必做題:教科書44頁:1題
七年級數學教案萬能模板篇2
教學目的:
1.了解計算器的性能,并會操作和使用;
2.會用計算器求數的平方根;
重點:
用計算器進行數的.加、減、乘、除、乘方和開方的計算;
難點:
乘方和開方運算;
教學過程:
1.計算器的使用介紹(科學計算器)
初一上冊數學一單元教案.png
2.用計算器進行加、減、乘、除、乘方、開方運算
例1用計算器求下列各式的值.
(1)(-3.75)+(-22.5)(2)51.7(-7.2)
解(1)
初一上冊數學一單元教案.png
(-3.75)+(-22.5)=-26.25
(2)
初一上冊數學一單元教案.png
51.7(-7.2)=-372.24
說明輸入數據時,按鍵順序與寫這個數據的順序完全相同,但輸入負數時,符號轉換鍵要放在數據之后鍵入.
隨堂練習
用計算器求值
1.9.23+10.22.(-2.35)×(-0.46)
答案1.37.82.1.081
七年級數學教案萬能模板篇3
一、目標
1.用它們拼成各種形狀不同的四邊形,并計算它們的周長。
(鼓勵學生把長方形和等腰三角形拼和成各種圖形,分別計算出它們的周長和面積)
2.教師揭示以上這些工作實際上是在進行整式的加減運算
3.回顧以上過程思考:整式的加減運算要進行哪些工作?
生1:“去括號”
生2:“合并同類項”
師生小結:整式的加減實際上是“去括號”和“合并同類項”法則的綜合應用
二、揭示如何進行整式的加減運算
1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。
2.教學例二例2求2a2-4a+1與-3a2+2a-5的差.
(本題首先帶領學生根據題意列出式子,強調要把兩個代數式看成整體,列式時應加上括號)
解:(2a2-4a+1)-(-3a2+2a-5)
=2a2-4a+1+3a2-2a+5
=5a2-6a+6
3.拓展練習
(1)求多項式2x-3+7與6x-5-2的和.
提問:你有哪些計算方法?(可引導學生進行豎式計算,并在練習中注意豎式計算過程中需要注意什么?)
(2)(-3x2–x+2)+(4x2+3x-5)(3)(4a2-3a)+(2a2+a-1)
(4)(x2+5x–2)-(x2+3x-22)(5)2(1-a+a2)-3(2-a–a2)
4.教學例3
先化簡下式,再求值:
(做此類題目應先與學生一起探討一般步驟:
(1)去括號。
(2)合并同類項。
(3)代值)
解:5(3a2b–ab2)-4(-ab2+3a2b),其中=-2,=3
=15a2b–5ab2+4ab2-12a2b)
=3a2b–ab2
三、小結
1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。
2.進行化簡求值計算時
(1)去括號。
(2)合并同類項。
(3)代值
3.通過本節課的學習你還有哪些疑問?
四、布置作業
習題4.52.(3);4.(2);5.。
五、課后反思
省略
七年級數學教案萬能模板篇4
教學目標:
1.知識與技能
結合具體實例,進一步認識三角形的概念,掌握三角形三條邊的關系.
2.過程與方法
通過觀察、操作、想象、推理、交流等活動,發展空間觀念,推理能力和有條理地表達能力.
3.情感、態度與價值觀
聯系學生的生活環境、創設情景,幫助學生樹立幾何知識源于實際、用于實際的觀念,激發學生的學習興趣.
教學重點難點:
1.重點
讓學生掌握三角形的概念及三角形的三邊關系,并能運用三邊關系解決生活中的實際問題.
2.難點
探究三角形的三邊關系應用三邊關系解決生活中的實際問題.
教學設計:
本節課件設計了以下幾個環節:回顧與思考、情境引入、三角形的概念、探索三角形三邊關系、練習應用、課堂小結、探究拓展思考、布置作業.
第一環節 回顧與思考
1、如何表示線段、射線和直線?
2、如何表示一個角?
第二環節 情境引入
活動內容:讓學生收集生活中有關三角形的圖片,課上讓學生舉例,并觀察圖片.
活動目的:讓學生能從生活中抽象出幾何圖形,感受到我們生活在幾何圖形的世界之中.培養學生善于觀察生活、樂于探索研究的學習品質,從而更大地激發學生學習數學的興趣
第三環節 三角形概念的講解
(1)你能從中找出四個不同的三角形嗎?
(2)與你的同伴交流各自找到的三角形.
(3)這些三角形有什么共同的特點?
通過上題的分析引出三角形的概念、三角形的表示方法及三角形的邊角的表示方法.并出兩道習題加以練習,從練習中歸納出三角形的三要素和注意事項.
第四環節 探索三角形三邊關系
七年級數學教案萬能模板篇5
教學內容:
教材19頁內容,能被3整除的數的特征。
教學要求
使學生初步掌握能被3整除的數的特征,能正確判斷一個數能被3整除的數的特征,培養學生抽象、概括的能力。
教學重點:能被3整除的數的特征。
教學難點:會判斷一個數能否被3整除
教學方法:
三疑三探教學模式
教具學具:
課件等。
教學過程
一、設疑自探(10分鐘)
(一)基本練習
1、能被2、5整除的數有什么特征?
2、能同時被2和5整除的數有什么特征?
(二)揭示課題
我們已經知道了能被2、5整除的數的特征,那么能被3整除的數有什么特征呢?這節課我們就來研究能被3整除的數的特征(板書課題)
(三)讓學生根據課題提問題。
教師:看到這個課題,你想提出什么問題?(教師對學生提出的問題進行評價、規范、整理后說明:老師根據同學們提出的問題,結合本節內容歸納、整理、補充成為下面的自探提示,只要同學們能根據自探提示認真探究,就能弄明白這些問題。)
(四)出示自探提示,組織學生自探。
自探提示:
自學課本19頁內容,思考以下問題:
1、觀察3的倍數,你發現能被3整除的數有什么特征?舉例驗證。
2、能被2、3整除的數有什么特征?
3、能被2、3、5整除的數有什么特征?
二、解疑合探(15分鐘)
1、檢查自探效果。
按照學困生回答,中等生補充,優等生評價的原則進行提問,遇到中等生解決不了的問題,組織學生合探解決。根據學生回答隨機板書主要內容。
2、著重強調;
一個數各個數位上的數字之和能被3整除,這個數就能被3整除。
三、質疑再探(4分鐘)
1、學生質疑。
教師:對于本節學習的知識,你還有什么不明白的地方,請說出來讓大家幫你解決?
2、解決學生提出的問題。(先由其他學生釋疑,學生解決不了的,可根據情況或組織學生討論或教師釋疑。)
四、運用拓展(11分鐘)
(一)學生自編習題。
1、讓學生根據本節所學知識,編一道習題。
2、展示學生高質量的自編習題,交流解答。
(二)根據學生自編題的練習情況,有選擇的出示下面習題供學生練習。
1、判斷下列各數能不能被3整除,為什么?
72567951890111120373
2、58115207210451008
有因數3的數:()
有因數2和3的數:()
有因數3和5的數:()
有因數2、3和5的數:()
讓學生說說怎么找的。
(三)全課總結。
1、學生談學習收獲。
教師:通過本節課的學習,你有什么收獲?請說出來與大家共同分享。
2、教師歸納總結。
學生充分發表意見后,教師對重點內容進行強調,并引導學生對本節內容進行歸納整理,形成系統的認識。
板書設計:
能被3整除的數的特征一個數各個數位上的數字之和能被3整除,
這個數就能被3整除。
七年級數學教案萬能模板篇6
一元一次不等式組
教學目標
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;
2、理解一元一次不等式組應用題的一般解題步驟,逐步形成分析問題和解決問題的能力;
3、體驗數學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。
教學難點
正確分析實際問題中的不等關系,列出不等式組。
知識重點
建立不等式組解實際問題的數學模型。
探究實際問題
出示教科書第145頁例2(略)
問:(1)你是怎樣理解“不能完成任務”的數量含義的?
(2)你是怎樣理解“提前完成任務”的數量含義的?
(3)解決這個問題,你打算怎樣設未知數?列出怎樣的不等式?
師生一起討論解決例2.
歸納小結
1、教科書146頁“歸納”(略).
2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?
在討論或議論的基礎上老師揭示:
步法一致(設、列、解、答);本質有區別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。
七年級數學教案萬能模板篇7
一、知識要點
本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。有理數的概念可以利用數軸來認識、理解,同時,利用數軸又可以把這些概念串在一起。有理數的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。
基礎知識:
1、大于0的數叫做正數。
2、在正數前面加上負號“-”的數叫做負數。
3、0既不是正數也不是負數。
4、有理數(rationalnumber):正整數、負整數、0、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數。
5、數軸(numbera_is):通常,用一條直線上的點表示數,這條直線叫做數軸。
數軸滿足以下要求:
(1)在直線上任取一個點表示數0,這個點叫做原點(origin);
(2)通常規定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;
(3)選取適當的長度為單位長度。
6、相反數(oppositenumber):絕對值相等,只有負號不同的兩個數叫做互為相反數。
7、絕對值(absolutevalue)一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。記做a。
由絕對值的定義可得:a-b表示數軸上a點到b點的距離。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.
正數大于0,0大于負數,正數大于負數;兩個負數,絕對值大的反而小。
8、有理數加法法則
(1)同號兩數相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0.
(3)一個數同0相加,仍得這個數。
加法交換律:有理數的加法中,兩個數相加,交換加數的位置,和不變。表達式:a+b=b+a。
加法結合律:有理數的加法中,三個數相加,先把前兩個數相加或者先把后兩個數相加,和不變。
表達式:(a+b)+c=a+(b+c)
9、有理數減法法則
減去一個數,等于加這個數的相反數。表達式:a-b=a+(-b)
10、有理數乘法法則
兩數相乘,同號得正,異號得負,并把絕對值相乘。
任何數同0相乘,都得0.
乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。表達式:ab=ba
乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。表達式:(ab)c=a(bc)
乘法分配律:一般地,一個數同兩個的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
表達式:a(b+c)=ab+ac
11、倒數
1除以一個數(零除外)的商,叫做這個數的倒數。如果兩個數互為倒數,那么這兩個數的積等于1。
12、有理數除法法則:兩數相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數,都得0.
13、有理數的乘方:求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(basenumber),n叫做指數(e_ponent)。
根據有理數的乘法法則可以得出:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。
14、有理數的混合運算順序
(1)“先乘方,再乘除,最后加減”的順序進行;
(2)同級運算,從左到右進行;
(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
15、科學技術法:把一個大于10的數表示成a﹡10n的形式(其中a是整數數位只有一位的數(即0
16、近似數(appro_imatenumber):
17、有理數可以寫成m/n(m、n是整數,n≠0)的形式。另一方面,形如m/n(m、n是整數,n≠0)的數都是有理數。所以有理數可以用m/n(m、n是整數,n≠0)表示。
拓展知識:
1、數集:把一些數放在一起,就組成一個數的集合,簡稱數集。
一、(1)所有有理數組成的數集叫做有理數集;
二、(2)所有的整數組成的數集叫做整數集。
2、任何有理數都可以用數軸上的一個點來表示,體現了數形結合的數學思想。
3、根據絕對值的幾何意義知道:a≥0,即對任何有理數a,它的絕對值是非負數。
4、比較兩個有理數大小的方法有:
(1)根據有理數在數軸上對應的點的位置直接比較;
(2)根據規定進行比較:兩個正數;正數與零;負數與零;正數與負數;兩個負數,體現了分類討論的&39;數學思想;
(3)做差法:a-b>0a>b;
(4)做商法:a/b>1,b>0a>b.
二、基礎訓練
選擇題
1、下列運算中正確的是().
A.a2a3=a6B.=2C.(3-π)=-π-3D.32=-9
2、下列各判斷句中錯誤的是()
A.數軸上原點的位置可以任意選定
B.數軸上與原點的距離等于個單位的點有兩個
C.與原點距離等于-2的點應當用原點左邊第2個單位的點來表示
D.數軸上無論怎樣靠近的兩個表示有理數的點之間,一定還存在著表示有理數的點。
3、、是有理數,若>且,下列說法正確的是()
A.一定是正數B.一定是負數C.一定是正數D.一定是負數
4、兩數相加,如果比每個加數都小,那么這兩個數是()
A.同為正數B.同為負數C.一個正數,一個負數D.0和一個負數
5、兩個非零有理數的和為零,則它們的商是()
A.0B.-1C.+1D.不能確定
6、一個數和它的倒數相等,則這個數是()
A.1B.-1C.±1D.±1和0
7、如果a=-a,下列成立的是()
A.a>0B.a<0c.a>0或a=0D.a<0或a=0
8、(-2)11+(-2)10的值是()
A.-2B.(-2)21C.0D.-210
9、已知4個礦泉水空瓶可以換礦泉水一瓶,現有16個礦泉水空瓶,若不交錢,最多可以喝礦泉水()
A.3瓶B.4瓶C.5瓶D.6瓶
10、在下列說法中,正確的個數是()
⑴任何一個有理數都可以用數軸上的一個點來表示
⑵數軸上的每一個點都表示一個有理數
⑶任何有理數的絕對值都不可能是負數
⑷每個有理數都有相反數
A、1B、2C、3D、4
11、如果一個數的相反數比它本身大,那么這個數為()
A、正數B、負數
C、整數D、不等于零的有理數
12、下列說法正確的是()
A、幾個有理數相乘,當因數有奇數個時,積為負;
B、幾個有理數相乘,當正因數有奇數個時,積為負;
C、幾個有理數相乘,當負因數有奇數個時,積為負;
D、幾個有理數相乘,當積為負數時,負因數有奇數個;
填空題
1、在有理數-7,,-(-1.43),,0,,-1.7321中,是整數的有_____________是負分數的有_______________。
2、一般地,設a是一個正數,則數軸上表示數a的點在原點的____邊,與原點的距離是____個單位長度;表示數-a的點在原點的____邊,與原點的距離是____個單位長度。
3、如果一個數是6位整數,用科學記數法表示它時,10的指數是_____;用科學記數法表示一個n位整數,其中10的指數是___________.
4、實數a、b、c在數軸上的位置如圖:化簡a-b+b-c-c-a.
5、絕對值大于1而小于4的整數有_____________________________________,其和為___________.
6、若a、b互為相反數,c、d互為倒數,則(a+b)3-3(cd)4=________.
7、1-2+3-4+5-6+……+20__-20__的值是____________.
8、若(a-1)2+b+2=0,那么a+b=_____________________.
9、平方等于它本身的有理數是___________,立方等于它本身的有理數是_____________.
10、用四舍五入法把3.1415926精確到千分位是,用科學記數法表示302400,應記為,近似數3.0×精確到位。
11、正數–a的絕對值為__________;負數–b的絕對值為________
12、甲乙兩數的和為-23.4,乙數為-8.1,甲比乙大
13、在數軸上表示兩個數,的數總比的大。(用“左邊”“右邊”填空)
14、數軸上原點右邊4.8厘米處的點表示的有理數是32,那么,數軸左邊18厘米處的點表示的有理數是____________。
三、強化訓練
1、計算:1+2+3+…+20__+20__=__________.
2、已知:若(a,b均為整數)則a+b=
3、觀察下列等式,你會發現什么規律:,,,。。。請將你發現的規律用只含一個字母n(n為正整數)的等式表示出來
4、已知,則___________
5、已知是整數,是一個偶數,則a是(奇,偶)
6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
7、在數1,2,3,…,50前添“+”或“-”,并求它們的和,所得結果的最小非負數是多少?請列出算式解答。
8、如果有理數a,b滿足∣ab-2∣+(1-b)2=0,試求+…+的值。
9、如果規定符號“_”的意義是a_b=ab/(a+b),求2_(-3)_4的值。
10、已知_+1=4,(y+2)2=4,求_+y的值。
11、投資股票是一種很重要的投資方式,但股市的風云變化又牽動了股民的心。
例:某股民在上星期五買進某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):
星期一二三四五
每股漲跌+4+4.5-1-2.5-6
第1章(1)星期三收盤時,每股是多少元?
第2章(2)本周內最高價是每股多少元?最低價是多少元?
第3章(3)已知買進股票是付了1.5‰的手續費,賣出時需付成交額1.5‰的手續費和1‰的交易費,如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?
第4章(4)以買進的股價為0點,用折線統計圖表示本周該股的股價情況。
四、競賽訓練:
1、最小的非負有理數與最大的非正有理數的和是
2、乘積=
3、比較大小:A=,B=,則AB
4、滿足不等式104≤A≤105的整數A的個數是_×104+1,則_的值是()
A、9B、8C、7D、6
5、最小的一位數的質數與最小的兩位數的質數的積是()
A、11B、22C、26D、33
6、比較
7、計算:
8、計算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)._kb1.com
9、計算:
10、計算
11、計算1+3+5+7+…+1997+1999的值
12、計算1+5+52+53+…+599+5100的值.
13、有理數均不為0,且設試求代數式20__之值。
14、已知a、b、c為實數,且,求的值。
15、已知:。
16、解方程組。
17、若a、b、c為整數,且,求的值。
1.2.1有理數
七年級上(1.1正數和負數,1.2有理數)
1.2有理數
七年級數學教案萬能模板篇8
一、教學內容:
人教版教材五年級上冊第五單元多邊形的面積整理與復習
二、教學目標:
1、使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
2、使學生感受數學方法和思想的重要性及其應用的廣泛性。體會數學的價值,培養對數學學習的熱愛
三、教學重、難點
重點:使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
難點:引導學生整理多邊形面積的推導過程,掌握轉化的數學思想方法,建構知識網絡。
四、教學準備
多媒體課件,多邊形紙模
五、教學步驟與過程
(一)導入復習
師:同學們,我們學過哪些平面圖形的面積計算公式?(正方形、長方形、平行四邊形、三角形、梯形)
師:這節課我們就來重點整理和復習有關這些多邊形的面積的知識。
板書課題:多邊形面積計算復習課
(二)回顧整理,建構網絡
1.復習了平行四邊形、三角形、梯形面積公式的推導過程。
⑴請大家回憶一下:平行四邊形、三角形、梯形面積的計算公式是怎樣經過平移、旋轉等方法轉化成我們已經學過的圖形,從而推導出它們的面積計算公式的。
⑵根據學生的回答,出示每個公式的推導過程。
六、課堂練習
學生獨立計算。指名學生板演,集體訂正七、說一說,你學會了什么?從整理圖中能看出各種圖形之間的關系嗎?
七、作業布置
練習十九
七年級數學教案萬能模板篇9
教學目標
1.理解有理數除法的意義,熟練
掌握有理數除法法則,會進行運算;
2.了解倒數概念,會求給定有理數的倒數;
3.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過運算,培養學生的運算能力。
教學建議
(一)重點、難點分析
本節教學的重點是熟練進行運算,教學難點是理解法則。
1.有理數除法有兩種法則。法則1:除以一個數等于乘以這個數的倒數。是把除法轉化為乘法來解決問題。法則2是把有理數除法納入有理數運算的統一程序:一確定符號;二計算絕對值。如:按法則1計算:原式;按法則2計算:原式。
2.對于除法的兩個法則,在計算時可根據具體的情況選用,一般在不能整除的情況下應用第一法則。如;在有整除的情況下,應用第二個法則比較方便,如;在能整除的情況下,應用第二個法則比較方便,如,如寫成就麻煩了。
(二)知識結構
(三)教法建議
1.學生實際運算時,老師要強調先確定商的符號,然后在根據不同情況采取適當的方法求商的絕對值,求商的絕對值時,可以直接除,也可以乘以除數的倒數。
2.關于0不能做除數的問題,讓學生結合小學的知識接受這一認識就可以了,不必具體講述0為什么不能做除數的理由。3.理解倒數的概念
(1)根據定義乘積為1的兩個數互為倒數,即:,則互為倒數。
如:,則2與,-2與互為倒數。
(2)由倒數的定義,我們可以得到求已知數倒數的一種基本方法:即用1除以已知數,所得商就是已知數的倒數。如:求的倒數:計算,-2就是的倒數。一般我們求已知數的倒數很少用這種方法,實際應用時我們常把已知數看作分數形式,然后把分子、分母顛倒位置,所得新數就是原數的倒數。如-2可以看作,分子、分母顛倒位置后為,就是的倒數。
(3)倒數與相反數這兩個概念很容易混淆。要注意區分。首先倒數是指乘積為1的兩個數,而相反數是指和為0的兩個數。如:,2與互為倒數,2與-2互為相反數。其次互為倒數的兩個數符號相同,而互為相反數符號相反。如:-2的倒數是,-2的相反數是+2;另外0沒有倒數,而0的相反數是0。
4.關于倒數的求法要注意:
(1)求分數的倒數,只要把這個分數的分子、分母顛倒位置即可.(2)正數的倒數是正數,負數的倒數仍是負數.
(3)負倒數的定義:乘積是-1的兩個數互為負倒數.
教學設計示例
一、素質教育目標
(一)知識教學點
1.了解有理數除法的定義.
2.理解倒數的意義.
3.掌握有理數除法法則,會進行運算.
(二)能力訓練點
1.通過有理數除法法則的導出及運算,讓學生體會轉化思想.2.培養學生運用數學思想指導思維活動的能力.
(三)德育滲透點
通過學習有理數除法運算、感知數學知識具有普遍聯系性、相互轉化性.
(四)美育滲透點
把小學算術里的乘法法則推廣到有理數范圍內,體現了知識體系的完整美.
二、學法引導
1.教學方法:遵循啟發式教學原則,注意創設問題情境,精心構思啟發導語并及時點撥,使學生主動發展思維和能力.
2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習
三、重點、難點、疑點及解決辦法
1.重點:除法法則的靈活運用和倒數的概念.
2.難點:有理數除法確定商的符號后,怎樣根據不同的情況來取適當的方法求商的絕對值.
3.疑點:對零不能作除數與零沒有倒數的理解.
四、課時安排
1課時
五、教具學具準備
投影儀、自制膠片、彩粉筆.
六、師生互動活動設計
教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.
七、教學步驟
(一)創設情境,復習導入
師:以上我們學習了有理數的乘法,這節我們應該學習,板書課題.
【教法說明】同小學算術中除法一樣—除以一個數等于乘以這個數的倒數,所以必須以學好求一個有理數的倒數為基礎學習.(二)探索新知,講授新課
1.倒數.
(出示投影1)
4×()=1;×()=1;0.5×()=1;
0×()=1;-4×()=1;×()=1.
學生活動:口答以上題目.
【教法說明】在有理數乘法的基礎上,學生很容易地做出這幾個題目,在題目的選擇上,注意了數的全面性,即有正數、0、負數,又有整數、分數,在數的變化中,讓學生回憶、體會出求各種數的倒數的方法.
師問:兩個數乘積是1,這兩個數有什么關系?
學生活動:乘積是1的兩個數互為倒數.(板書)
師問:0有倒數嗎?為什么?
學生活動:通過題目0×()=1得出0乘以任何數都不得1,0沒有倒數.
師:引入負數后,乘積是1的兩個負數也互為倒數,如-4與,與互為倒數,即的倒數是.
提出問題:根據以上題目,怎樣求整數、分數、小數的倒數?
【教法說明】教師注意創設問題情境,讓學生參與思考,循序漸進地引出,對于有理數也有倒數是.對于怎樣求整數、分數、小數的倒數,學生還很難總結出方法,提出這個問題是讓學生帶著問題來做下組練習.
(出示投影2)
求下列各數的倒數:
(1);(2);(3);
(4);(5)-5;(6)1.
學生活動:通過思考口答這6小題,討論后得出,求整數的倒數是用1除以它,求分數的倒數是分子分母顛倒位置;求小數的倒數必須先化成分數再求.
2.
計算:8÷(-4).
計算:8×()=?(-2)
∴8÷(-4)=8×().
再嘗試:-16÷(-2)=?-16×()=?
師:根據以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?
學生活動:同桌互相討論.(一個學生回答)
師強調后板書:
[板書]
【教法說明】通過學生親自演算和教師的引導,對有理數除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.
(三)嘗試反饋,鞏固練習
師在黑板上出示例題.
計算(1)(-36)÷9,(2)()÷().
學生嘗試做此題目.
(出示投影3)
1.計算:
(1)(-18)÷6;(2)(-63)÷(-7);(3)(-36)÷6;
(4)1÷(-9);(5)0÷(-8);(6)16÷(-3).
2.計算:
(1)()÷();(2)(-6.5)÷0.13;
(3)()÷();(4)÷(-1).
學生活動:1題讓學生搶答,教師用復合膠片顯示結果.2題在練習本上演示,兩個同學板演(教師訂正).
【教法說明】此組練習中兩個題目都是對的直接應用.1題是整數,利用口答形式訓練學生速算能力.2題是小數、分數略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數都化成分數再轉化成乘法來計算.
提出問題:(1)兩數相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數,0做被除數時商是多少?
學生活動:分組討論,1—2個同學回答.
[板書]
七年級數學教案萬能模板篇10
[教學目標]
1. 理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
2. 掌握點到直線的距離的概念,并會度量點到直線的距離。
3. 掌握垂線的性質,并會利用所學知識進行簡單的推理。
[教學重點與難點]
1.教學重點:垂線的定義及性質。
2.教學難點:垂線的畫法。
[教學過程設計]
一. 復習提問:
1、 敘述鄰補角及對頂角的定義。
2、 對頂角有怎樣的性質。
二.新課:
引言:
前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
(一)垂線的定義
當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
如圖,直線AB、CD互相垂直,記作 ,垂足為O。
請同學舉出日常生活中,兩條直線互相垂直的實例。
注意:
1、 如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)
反之,
(二)垂線的畫法
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經過直線l上一點A畫l的垂線,這樣的垂線能畫出幾條?
3、經過直線l外一點B畫l的垂線,這樣的垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質
經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質1 過一點有且只有一條直線與已知直線垂直。
練習:教材第7頁
探究:
如圖,連接直線l外一點P與直線l上各點O,
A,B,C,……,其中 (我們稱PO為點P到直線
l的垂線段)。比較線段PO、PA、PB、PC……的長短,這些線段中,哪一條最短?
性質2 連接直線外一點與直線上各點的所有線段中,垂線段最短。
簡單說成: 垂線段最短。
(四)點到直線的距離
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
如上圖,PO的長度叫做點 P到直線l的距離。
例1
(1)AB與AC互相垂直;
(2)AD與AC互相垂直;
(3)點C到AB的垂線段是線段AB;
(4)點A到BC的距離是線段AD;
(5)線段AB的長度是點B到AC的距離;
(6)線段AB是點B到AC的距離。
其中正確的有( )
A. 1個 B. 2個
C. 3個 D. 4個
解:A
例2 如圖,直線AB,CD相交于點O,
解:略
例3 如圖,一輛汽車在直線形公路AB上由A
向B行駛,M,N分別是位于公路兩側的村莊,
設汽車行駛到點P位置時,距離村莊M最近,
行駛到點Q位置時,距離村莊N最近,請在圖中公路AB上分別畫出P,Q兩點位置。
練習:
1.
2.教材第9頁3、4
教材第10頁9、10、11、12
小結:
1. 要掌握好垂線、垂線段、點到直線的距離這幾個概念;
2. 要清楚垂線是相交線的特殊情況,與上節知識聯系好,并能正確利用工具畫出標準圖形;
3. 垂線的性質為今后知識的學習奠定了基礎,應該熟練掌握。
作業:教材第9頁5、6.
七年級數學教案萬能模板篇11
教學目的
1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數學模型的作用。
2.使學生會列一元一次方程解決一些簡單的應用題。
3.會判斷一個數是不是某個方程的解。
重點、難點
1.重點:會列一元一次方程解決一些簡單的應用題。
2.難點:弄清題意,找出“相等關系”。
教學過程
一、復習提問
一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設小紅能買到工本筆記本,那么根據題意,得
1.2x=6
因為1.2×5=6,所以小紅能買到5本筆記本。
二、新授:
問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛? (讓學生思考后,回答,教師再作講評)
算術法:(328-64)÷44=264÷44=6(輛)
列方程:設需要租用x輛客車,可得。
44x+64=328 (1)
解這個方程,就能得到所求的結果。
問:你會解這個方程嗎?試試看?
問題2:在課外活動中,張老師發現同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
通過分析,列出方程:13+x=(45+x)
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發?
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發現了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?
三、鞏固練習
教科書第3頁練習1、2。
四、小結。本節課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。
五、作業 。教科書第3頁,習題6.1第1、3題。
七年級數學教案萬能模板篇12
一、學生情況分析
本班共有學生19人,其中男生人,女生人,學生的聽課習慣已初步養成,班上同學思想比較要求上進,有部分學生學習態度端正學習能力強,學習有方法,學習興趣濃厚;另一部分學生表現為學習目的不明確,成績提高較慢。從上學期的學習表現看,學生的計算的方法與質量有待進一步訓練與提高。班內優等生與后進生的差距明顯。
二、教材簡析
本冊教材內容分為“圓柱和圓錐”、“正比例和反比例”和“總復習”三部分。“總復習”包括4個單元。
(一)圓柱和圓錐:包括“面的旋轉”“圓柱的表面積”“圓柱的體積”“圓錐的體積”4個課題。
(二)正比例和反比例:包括“變化的量”“正比例”“畫一畫”“反比例”“觀察與探究”“圖形的放縮”“比例尺”7個課題。
(三)總復習:包括“數與代數”“空間與圖形”“統計與概率”“解決問題的策略”。
三、教學目的和要求
1、使學生認識圓柱和圓錐,掌握它們的特征,認識圓柱的底面、側面和高,認識圓錐的底面和高,會求圓柱的側面積和表面積,掌握圓柱圓錐的體積計算方法。
2、使學生理解、掌握正比例、反比例的意義,能正確判斷兩種量是否成正比例、反比例。學會使用數對確定點的位置,懂得將圖形按
一定比例進行放大和縮小。理解比例尺的意義,能正確計算平面圖的比例尺。提高學生利用已有知識、技能解決問題的能力,培養學生應用數學的意識和周密思考問題的良好習慣。
3、通過對生活中與體育相關問題的解決,使學生學會綜合運用包括算式與方程在內的相關知識和技能解決問題,發展抽象思維能力和解決問題的能力,進一步培養學生應用數學的意識。
4、通過對生活中與科技相關問題的解決,使學生擴展數學視野,培養實事求是的科學精神和態度,進一步發展學生的思維能力,提高解決問題的能力和增強應用數學的意識。
5、使學生比較系統地牢固地掌握有關整數和小數、分數和百分數、簡易方程、比和比例等基礎知識;具有進行整數、小數、分數四則運算的能力,會使用學過的簡便算法,合理、靈活地進行計算,進一步提高計算能力;會解簡易方程;養成檢查和驗算的習慣。
6、使學生鞏固已獲得的一些計量單位大小的表象,進一步明確各種計量單位的應用范圍,牢固地掌握所學的單位間的進率,能夠比較熟練地進行名數的簡單換算。
7、使學生牢固地掌握所學的幾何形體的特征,進一步掌握一些計算公式的推導過程和相互之間的聯系,能夠比較熟練地計算一些幾何形體的周長、面積和體積,鞏固所學的簡單畫圖、測量等技能,進一步發展學生的空間觀念。
8、使學生掌握所學的統計初步知識,能夠看懂和繪制簡單的統計圖表,能對統計數據作簡單的分析,并且能夠計算求平均數問題。
9、使學生牢固地掌握所學的一些常見的數量關系和應用題的解答方法,能夠比較靈活地運用所學知識獨立地解答所學的應用題和生活中一些簡單的實際問題,進一步培養學生的思維能力。
四、教學措施
1、進一步培養合理、靈活地進行計算的能力;
2、提高學生的分析、比較和綜合能力;
3、培養抽象、概括的能力和判斷、推理能力,以及遷移類推的能力;
4、培養思維的靈活性和敏捷性。
5、培養綜合運用知識解決實際問題的能力。
6、進一步發展學生的空間觀念。
7、加強口算練習,學會解答比較簡單的整數、分數、小數四則混合運算,逐步提高學生四則計算的能力。
8、能掌握一些常見的數量關系和應用題的解答方法,逐步提高解答應用題的能力。
9、增加動手操作的機會,使學生獲得正確的圖形表象,正確計算一些幾何形體的周長、面積和體積。
10、能掌握單位間的進率,能夠正確進行名數的換算。
七年級數學教案萬能模板篇13
教學目的
借助“線段圖”分析復雜的行程問題中的數量關系,從而建立方程解決實際問題,發展分析問題,解決問題的能力,進一步體會方程模型的作用。
重點、難點
1.重點:列一元一次方程解決有關行程問題。
2.難點:間接設未知數。
教學過程
一、復習
1.列一元一次方程解應用題的一般步驟和方法是什么?
2.行程問題中的基本數量關系是什么?
路程=速度×時間 速度=路程 / 時間
二、新授
例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉看望爺爺,在行駛了三分之一路程后,估計繼續乘公共汽車將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠?
畫“線段圖”分析, 若直接設元,設小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關系是什么?
如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。
可設公共汽車從小張家到火車站要x小時。
設未知數的方法不同,所列方程的復雜程度一般也不同,因此在設未知數時要有所選擇。
三、鞏固練習
教科書第17頁練習1、2。
四、小結
有關行程問題的應用題常見的一個數量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據這個等量關系確定怎樣設未知數。
四、作業
教科書習題6.3.2,第1至5題。
七年級數學教案萬能模板篇14
教學目標
知識與能力
從簡單的轉盤游戲開始,使學生在生活經驗和試驗的基礎上,進一步體驗不確定事件的特點及事件發生的可能性大小。
教學思考
能用實驗對數學猜想做出檢驗,從而增加猜想的可信度。解決問題
在轉盤游戲過程中,經歷猜測結果,實驗驗證,分析試驗結果等數學活動,增加數學活動經驗。
情感態度與價值觀
在合作與交流過程中,體驗小組合作更有利于探究數學知識,敢于發表自己觀點,提高個人認識。
教學重點難點:
在實驗中,體會不確定事件的特點及事件發生可能性大小;使每個學生都能積極認真參與課堂設計中的實驗,真正在實驗中獲得知識上的認識。
教學過程
創設情境,切入標題
同學們,商場經常利用轉盤游戲進行抽獎,你認為顧客們的中獎可能性有多大呢?這節課我們就來探究一下有關轉盤游戲的問題。新課探究
請同學們猜測,當我自由轉動轉盤時,指針會落在什么顏域呢?
請各小組分別派一名代表,看哪組能轉出紅色。
結果,8小組有6組轉出了紅色。
為什么會出現這樣的結果呢?
因為,在這個轉盤中,紅域的面積大,白域的面積小,因此,當轉盤停上轉動時,指針落到紅域的可能性大。
大家同意這種看法嗎?下面我們親自動手感受一下。
學生按照題目要求進行實驗。
請各組組長把你組的實驗數據匯報一下(教師把數據填寫在表格里)實驗結果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數分別如下9,6,10,5,8,12。共計50次。
請同學們對我們的`實驗結果進行分析交流,談談你在試驗中有哪些心得。
根據觀察,轉盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應該是一半。通過對我們全班的實驗結果分析,指針落在紅域的比例是50∶96,結果接近百分之五十。
在小組內實驗結果不明顯,實驗次數越多越能說明問題。
通過實驗,我們確定感受到,轉盤游戲中各區域的面積的可能性大小與指針落在什么區域的可能性大小有直接關系。以后在生活中再遇到轉盤游戲問題可要想想今天的實驗結論。
游戲與交流
下面我們利用轉盤做一下數學游戲(出示幻燈片),學生按教學設計中要求進行游戲,教師巡回指導。
每組每人游戲一次,全班共游戲48次。其游戲結果是,平均數增大1的,共35次,平均數減小1的,共13次。
請同學們對下列問題進行交流(幻燈片出示教材206頁4個問題)。這個轉盤轉到“平均數增大1”區域的可能性大,從面積大小就可以看出。
如果平均數增大1,我是在卡片上增加一個數,這個數等于卡片上數字的個數加1,如果是平均數減小1,我就在每個數上都減去1。
同學們說出很多種方法,不一一列舉。
“平均數增大1”的次數占總次數的百分之七十三,“平均數減小1”占百分之二十七。
如果將這個實驗繼續做下去,卡片上所有數的平均數會增大。
同學們說的都很好,課后能不能自己也利用轉盤設計一個新的游戲,感興趣的同學可以在課下與我交流。
以下過程同教學設計,略去。
隨堂練習
指導學生完成教材第206頁習題。
課時小結
學生可從各個方面加以小結。布置作業
仿照課堂游戲,自編一個新的游戲。能否利用撲克牌設計本節轉盤游戲。
七年級數學教案萬能模板篇15
正數和負數
教學目標:
1.了解正數與負數是實際生活的需要.
2.會判斷一個數是正數還是負數.
3.會用正負數表示互為相反意義的量.
教學重點:會判斷正數、負數,運用正負數表示具有相反意義的量,理解表示具有相反意義的量的意義.
教學難點:負數的引入.
教與學互動設計:
(一)創設情境,導入新課
課件展示珠穆朗瑪峰和吐魯番盆地,讓同學感受高于水平面和低于水平面的不同情況.
(二)合作交流,解讀探究
舉出一些生活中常遇到的具有相反意義的量,如溫度是零上7℃和零下5℃,買進90張課桌與賣出80張課桌,汽車向東行50米和向西行120米等.
想一想以上都是一些具有相反意義的量,你能用小學算術中的數來表示出每一對量嗎?你能再舉一些日常生活中具有相反意義的量嗎?該如何表示它們呢?
為了用數表示具有相反意義的量,我們把具有其中一種意義的量,如零上溫度、前進、收入、上升、高出等規定為正的,而把具有與它意義相反的量,如零下溫度、后退、支出、下降、低于等規定為負的,正的量用算術里學過的數表示,負的量用學過的數前面加上“-”(讀作負)號來表示(零除外).
活動每組同學之間相互合作交流,一同學說出有關相反意義的兩個量,由其他同學用正負數表示.
討論什么樣的數是負數?什么樣的數是正數?0是正數還是負數?自己列舉正數、負數.
總結正數是大于0的數,負數是在正數前面加“-”號的數,0既不是正數,也不是負數,是正數與負數的分界點.
(三)應用遷移,鞏固提高
【例1】舉出幾對具有相反意義的量,并分別用正、負數表示.
【提示】具有相反意義的量有“上升”與“下降”,“前”與“后”、“高于”與“低于”、“得到”與“失去”、“收入”與“支出”等.
【例2】在某次乒乓球檢測中,一只乒乓球超過標準質量0.02g,記作+0.02g,那么-0.03g表示什么?
【例3】某項科學研究以45分鐘為1個時間單位,并記為每天上午10時為0,10時以前記為負,10時以后記為正.例如,9:15記為-1,10:45記為1等等.依此類推,上午7:45應記為()
A.3B.-3C.-2.5D.-7.45
【點撥】讀懂題意是解決本題的關鍵.7:45與10:00相差135分鐘.
(四)總結反思,拓展升華
為了表示現實生活中具有相反意義的量引進了負數.正數就是我們過去學過(除零外)的數,在正數前加上“-”號就是負數,不能說“有正號的數是正數,有負號的數是負數”.另外,0既不是正數,也不是負數.
1.下表是小張同學一周中簡記儲蓄罐中錢的進出情況表(存入記為“+”):
星期日一二三四五六
(元)+16+5.0-1.2-2.1-0.9+10-2.6
(1)本周小張一共用掉了多少錢?存進了多少錢?
(2)儲蓄罐中的錢與原來相比是多了還是少了?
(3)如果不用正、負數的方法記賬,你還可以怎樣記賬?比較各種記賬的優劣.
2.數學游戲:4個同學站或蹲成一排,從左到右每個人編上號:1,2,3,4.用“+”表示“站”,“-”(負號)表示“蹲”.
(1)由一個同學大聲喊:+1,-2,-3,+4,則第1、第4個同學站,第2、第3個同學蹲,并保持這個姿勢,然后再大聲喊:-1,-2,+3,+4,如果第2、第4個同學中有改變姿勢的,則表示輸了,作小小的“懲罰”;
(2)增加游戲難度,把4個同學順序調整一下,但每個人記作自己原來的編號,再重復(1)中的游戲.
(五)課堂跟蹤反饋
夯實基礎
1.填空題:
(1)如果節約用水30噸記為+30噸,那么浪費20噸記為噸.
(2)如果4年后記作+4年,那么8年前記作年.
(3)如果運出貨物7噸記作-7噸,那么+100噸表示.
(4)一年內,小亮體重增加了3kg,記作+3kg;小陽體重減少了2kg,則小陽增加了.
2.中午12時,水位低于標準水位0.5米,記作-0.5米,下午1時,水位上漲了1米,下午5時,水位又上漲了0.5米.
(1)用正數或負數記錄下午1時和下午5時的水位;
(2)下午5時的水位比中午12時水位高多少?
提升能力
3.糧食每袋標準重量是50公斤,現測得甲、乙、丙三袋糧食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正數表示,請用正數和負數記錄甲、乙、丙三袋糧食的超重數和不足數.
(六)課時小結
1.與以前相比,0的意義又多了哪些內容?
2.怎樣用正數和負數表示具有相反意義的量?(用正數表示其中具有一種意義的
七年級數學教案萬能模板篇16
一、教學內容
人教版一年級數學下冊P43。
二、教學目標
1、通過具體的情境讓學生感知100以內數的多少,會用“多一些、少一些、多得多、少得多”描述兩個數之間的大小關系。
2、培養學生觀察、分析、比較等多種能力,培養數感。
3、能在具體情境中把握數的相對大小關系,用自己的語言描述數之間的相對大小關系。
4、使學生感受到數學與生活的聯系。
三、教學重難點
重點:結合生活實際,理解“多一些、少一些、多得多、少得多”等詞語的含義并能運用詞語表述。
難點:弄清“多一些、多得多”,“少一些、少得多”詞語間的差別。
四、教學過程
(一)游戲導入
老師在紙上寫一個數字,由一個學生當小老師點幾個學生的學號來回答老師問題,由學生與老師之間的回答來引入多一些、少一些、多得多、少得多表示數的大小程度的詞語。
(二)講授新課
1、說一說,對比感悟
師:同學們,你們喜歡寫字嗎?今天動物王國里面有幾個小動物也在寫字(分別是小青蛙、小老鼠),看看他們有什么問題要我們解決的。
小青蛙寫了14個字,小老鼠寫了12個字,誰寫的多?誰寫的少?你知道他們之間的數量關系是怎么樣的嗎?(在這里引出多一些、少一些的知識點)
小青蛇看見他們在寫字也加入他們的隊伍,它寫了72個字,那現在小青蛇和小青蛙、小老鼠他們之間的數量關系又是怎么樣的呢?
(在這里引出多得多、少得多的知識點)
2、通過引導學生分析、比較、交流,加深了解
動物王國里面的國王看見他們那么愛好學習,于是給他們頒發了獎品(彩筆),獎品設為一等獎、二等獎和三等獎,讓學生根據提示來說出答案,理解詞語(多一些、多得多,少一些、少得多)的意思。
(三)舉一反三,鞏固應用
1、出示課本43頁做一做
2、課本45頁第4題
(四)闖關(運用知識)
咱們班的小朋友真聰明,老師看見你們表現很棒,給你們設了兩個個難關,你們相信自己能闖關嗎?
第一關比較時間
第二關比較價格
(五)做一做課本45頁數學游戲
(六)這節課你學會了什么新知識?你能用今天的知識說一說身邊的事物嗎?
五、板書設計
()比()多一些()比()少一些
()比()多得多()比()少得多
七年級數學教案萬能模板篇17
教學目標
1.能解簡易方程,并能用簡易方程解簡單的應用題。
2.初步培養學生方程的思想及分析解決問題的能力。
教學重點和難點
重點:簡易方程的解法和根據實際問題列出方程。
難點:正確地列出方程。
課堂教學過程設計
一、從學生原有的認知結構提出問題
1.針對以往學過的一些知識,教師請學生回答下列問題:
(1)什么叫等式?等式的兩個性質是什么?
(2)下列等式中x取什么數值時,等式能夠成立?
2.在學生回答完上述問題的基礎上,引出課題
在小學學習方程時,學生們已知有關方程的三個重要概念,即方程、方程的解和解方程.現在學習了等式之后,我們就可以更深刻、更全面地理解這些概念,并同時板書課題:簡易方程.
二、講授新課
1.方程
在等式4+x=7中,我們將字母x稱為未知數,或者說是待定的數.像這樣含有未知數的等式,稱為方程.并板書方程定義.
例1(投影)判斷下列各式是否為方程,如果是,指出已知數和未知數;如果不是,說明為什么.
(1)5-2x=1;(2)y=4x-1;(3)x-2y=6;(4)2x2+5x+8.
分析:本題在解答時需注意兩點:一是已知數應包括它的符號在內;二是未知數的系數若是1,這個省寫的1也可看作已知數.
(本題的解答應由學生口述,教師利用投影片打出來完成)
2.簡易方程
簡易方程這一小節的前面主要是復習、歸納小學學過的有關方程的基本知識,提出了算術解法與代數解法的說法,以便以后逐步講述代數解法的優越性。
例2解下列方程:
(1)(2)
分析方程(1)的左邊需減去,根據等式的性質(2),必須兩邊同時減去,得,方程的左邊需要乘以3,使的系數化為1,根據等式的性質(3),必須兩邊同時乘以3,得,方程(2)的解題思路與(1)類似。
解(1)方程兩邊都減去,得
兩邊都乘以3,得。
(2)方程兩邊都加上6,得。
方程兩邊都乘以,得,即。
注意:(1)根據方程的解的概念,我們可以將所得結果代入原方程檢驗,如果左邊=右邊,說明結果是正確的,否則,左邊≠右邊,說明你求得的x的值,不是原方程的解,肯定計算有錯誤,這時,一定要細心檢查,或者再重解一遍.
(2)解簡易方程時,不要求寫出檢驗這一步.
例3甲隊有54人,乙隊有66人,問從甲隊調給乙隊幾人能使甲隊人數是乙隊人數的?
分析此題必須弄清:一、甲、乙兩隊原來各有多少人;二、變動后甲、乙兩隊各有多少人(注意:甲隊減少的人數正是乙隊增加的人數);三、題中的等量關系是:變動后甲隊人數是乙隊人數的,即變動后甲隊人數的3倍等于乙隊人數.
解設從甲隊調給乙隊x人,
則變動后甲隊有人,乙隊有人,根據題意,得:
答:從甲隊調給乙隊24人。
三、課堂練習(投影)
1.判斷下列各式是不是方程,如果是,指出已知數和未知數;如果不是,說明為什么.
(1)3y-1=2y;(2)3+4x+5x2;(3)7×8=8×7(4)6=0.
2.根據條件列出方程:
(l)某數的一半比某數的3倍大4;
(2)某數比它的平方小42.
3.檢驗下列各小題括號里的數是不是它前面的方程的解:
四、師生共同小結
1.請學生回答以下問題:
(1)本節課學習了哪些內容?
(2)方程與代數式,方程與等式的區別是什么?
(3)如何列方程?
2.教師在學生回答完上述問題的基礎上,應指出:
(1)方程、等式、代數式,這三者的定義是正確區分它們的標準;
(2)方程的解是一個數值(或幾個數值),它是使方程左、右兩邊的值相等的未知數的值它是根據未知數與已知數之間的相等關系確定的.而解方程是指確定方程的解的過程,是一個變形過程.
五、作業
1.根據所給條件列出方程:
(1)某數與6的和的3倍等于21;
(2)某數的7倍比某數大5;
(3)某數與3的和的平方等于這數的15倍減去5;
(4)矩形的周長是40,長比寬多10,求矩形的長與寬;
(5)三個連續整數之和為75,求這三個數.
2.檢驗下列各小題括號里的數是否是它前面的方程的解:
(3)x(x+1)=12,(x=3,x=4).
七年級數學教案萬能模板篇18
教學目標:
知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。
過程與方法:通過本節的學習,培養學生正確的分類討論觀點和分類能力。
情感、態度、價值觀:通過本節課的學習,體驗成功的喜悅,保持學好數學的信心。
教學重點:
掌握有理數的兩種分類方法
教學難點:
給定的數字將被填入它所屬的集合中
教學方法:
問題導向法
學習方法:
自主探究法
教學過程:
一、形勢歸納
小學我們學了整數和分數,上節課我們學了正數和負數。誰能快速提出以下問題?
1.有以下數字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?
(2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?
稱整數和分數為有理數。(指點題,板書)
二、自學指導
學生自學課本,根據課本尋找自學的機會
提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發動學生進行評價、補充、完善,教師根據每個題目的`展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。
五、總結與反思:通過本節課的學習,你有什么收獲?
六、作業:必做題:課本14頁:1、9題