八年級下冊數學教案反思
八年級下冊數學教案反思篇1
一、教學目標:
1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量.
2、會求一組數據的極差.
二、重點、難點和難點的突破方法
1、重點:會求一組數據的極差.
2、難點:本節課內容較容易接受,不存在難點.
三、課堂引入:
下表顯示的是上海20__年2月下旬和20__年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.
經計算可以看出,對于2月下旬的這段時間而言,20__年和20__年上海地區的平均氣溫相等,都是12度.
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據兩段時間的氣溫情況可繪成的折線圖.
觀察一下,它們有區別嗎?說說你觀察得到的結果.
用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化范圍.用這種方法得到的差稱為極差(range).
四、例習題分析
本節課在教材中沒有相應的例題,教材P152習題分析
問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統計知識首先應回憶復習已學知識.問題3答案并不唯一,合理即可。
八年級下冊數學教案反思篇2
教學目標:
1.了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。
教學重點:
算術平方根的概念。
教學難點:
根據算術平方根的概念正確求出非負數的算術平方根。
教學過程
一、情境導入
請同學們欣賞本節導圖,并回答問題,學校要舉行金秋美術作品比賽,小歐很高興,他想裁出一塊面積為25的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應取多少?如果這塊畫布的面積是?這個問題實際上是已知一個正數的平方,求這個正數的問題?
這就要用到平方根的概念,也就是本章的主要學習內容.這節課我們先學習有關算術平方根的概念.
二、導入新課:
1、提出問題:(書P68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數x的值.
一般地,如果一個正數x的平方等于a,即=a,那么這個正數x叫做a的算術平方根.a的算術平方根記為,讀作根號a,a叫做被開方數.規定:0的算術平方根是0.
也就是,在等式=a(x0)中,規定x=.
2、試一試:你能根據等式:=144說出144的算術平方根是多少嗎?并用等式表示出來.
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如表示25的算術平方根。
4、例1求下列各數的算術平方根:
(1)100;(2)1;(3);(4)0.0001
三、練習
P69練習1、2
四、探究:(課本第69頁)
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
大正方形的邊長是,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?
建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究.
五、小結:
1、這節課學習了什么呢?
2、算術平方根的具體意義是怎么樣的?
3、怎樣求一個正數的算術平方根
六、課外作業:
P75習題13.1活動第1、2、3題
八年級下冊數學教案反思篇3
第二章一元一次不等式與一元一次不等式組
1、不等關系
2、不等式的基本性質
①不等式的基本性質一:不等式的兩邊都加(或減)同一個整式,不等號的方向不變
②不等式的基本性質二:不等式的兩邊都乘(或除以)同一個正數,不等號的方向不變
③不等式的基本性質三:不等式的兩邊都乘(除以)同一個負數,不等號的方向改變
3、不等式的解集
①能使不等式成立的未知數的值,叫做不等式的解
②一個含有不等式所有的解,組成這個不等式的解集
③求不等式解集的過程叫做解不等式
4、一元一次不等式
①含義:不等式的左右兩邊都是整式,只含有一個未知數,并且未知數的次數是1
5、一元一次不等式與一次函數
6、一元一次不等式組
①一般地,關于同一個未知數的幾個一元一次不等式合在一起,就組成一個一元一次不等式組
②一元一次不等式組中各個不相等的解集的公共部分,叫做這個一元一次不等式組的解集,求不等式組解集的過程,叫做解不等式組
八年級下冊數學教案反思篇4
不等關系
一、教學目標
1、知識與技能目標
①理解不等式的意義.
②能根據條件列出不等式.
2、過程與方法目標
通過認識實際問題中的不等式關系,訓練學生的分析判斷能力和邏輯推理能力。
3、情感與態度目標
通過用不等式解決實際問題,使學生認識數學與人類生活的密切聯系以及對人類歷史發展的作用,并激發學生學習數學的信心和興趣。
二、教學重點
通過探尋實際問題中的不等式關系,認識不等式。
三、教學難點
通過認識實際問題中的不等式關系,訓練學生的分析判斷能力和邏輯推理能力。
四、教學過程
第一環節:創設問題情景,引入新課
活動內容:尋找相等的量和不等的量
師:我們學過等式,知道利用等式可以解決許多問題,同時,我們也知道現實生活中還存在許多不等關系,利用不等關系同樣可以解決實際問題,本章我們就來了解不等式有關的內容。
師:既然不等式關系在實際生活中并不少見,大家肯定能舉出不少例子。
生:
師:還有其他例子嗎?
(同學們各抒己見)
師:我這里也有一些例子。拿出給同學們參考一下。
八年級下冊數學教案反思篇5
八年級下數學教案-變量與函數(2)
一、教學目的
1.使學生理解自變量的取值范圍和函數值的意義。
2.使學生理解求自變量的取值范圍的兩個依據。
3.使學生掌握關于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并會求其函數值。
4.通過求函數中自變量的取值范圍使學生進一步理解函數概念。
二、教學重點、難點
重點:函數自變量取值的求法。
難點:函靈敏處變量取值的確定。
三、教學過程
復習提問
1.函數的定義是什么?函數概念包含哪三個方面的內容?
2.什么叫分式?當x取什么數時,分式x+2/2x+3有意義?
(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的條件是什么?
(答:根指數是2的根式叫二次根式,使二次根式成立的條件是被開方數≥0。)
4.舉出一個函數的實例,并指出式中的變量與常量、自變量與函數。
新課
1.結合同學舉出的實例說明解析法的意義:用教學式子表示函數方法叫解析法。并指出,函數表示法除了解析法外,還有圖象法和列表法。
2.結合同學舉出的實例,說明函數的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據是:
(1)自變量取值范圍是使函數解析式(即是函數表達式)有意義。
(2)自變量取值范圍要使實際問題有意義。
3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。
推廣與聯想:請同學按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。
4.講解P93中例3。結合例3引出函數值的意義。并指出兩點:
(1)例3中的4個小題歸納起來仍是三類題型。
(2)求函數值的問題實際是求代數式值的問題。
補充例題
求下列函數當x=3時的函數值:
(1)y=6x-4;(2)y=--5x2;(3)y=3/7x-1;(4)。
(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小結
1.解析法的意義:用數學式子表示函數的方法叫解析法。
2.求函數自變量取值范圍的兩個方法(依據):
(1)要使函數的解析式有意義。
①函數的解析式是整式時,自變量可取全體實數;
②函數的解析式是分式時,自變量的取值應使分母≠0;
③函數的解析式是二次根式時,自變量的取值應使被開方數≥0。
(2)對于反映實際問題的函數關系,應使實際問題有意義。
3.求函數值的方法:把所給出的自變量的值代入函數解析式中,即可求出相慶原函數值。
練習:P94中1,2,3。
作業:P95~P96中A組3,4,5,6,7。B組1,2。
四、教學注意問題
1.注意滲透與訓練學生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結構仍是三類題型:整式、分式、二次根式。
2.注意訓練與培養學生的優質聯想能力。要求學生仿照例題自編題目是有效手段。
3.注意培養學生對于“具體問題要具體分析”的良好學習方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。
八年級下冊數學教案反思篇6
圖形的平移
知識與技能目標:
1.平移的定義;2.平移的基本性質
過程與方法目標:
1.通過具體實例認識平移,理解平移的基本內涵.
2.探索平移的基本性質,理解平移前后兩個圖形對應點連線平行且相等,對應線段和對應角分別相等的性質.
情感態度與價值觀目標:
經歷觀察、分析、操作、欣賞以及抽象、概括等過程,經歷探索圖形平移的基本性質的過程以及與他人合作交流的過程,進一步發展空間觀念,增強審美意識。
教學重點:平移的基本性質.
教學難點:平移的基本內涵的理解.
教學方法:探索、發現法.
教具準備
圖片:一些游樂園的圖片、轆轤、電梯等.
電腦演示:平移的過程,粒子運動及行星運轉等.
教學過程
Ⅰ.巧設情景問題,引入課題
同學們,還記得游樂園內的一些項目嗎?(或投影片放圖片,或在電腦上演示幻燈片):旋轉木馬、蕩秋千、小火車、滑梯……它們曾經使我們許多人樂而忘返.不過,你想過沒有:小火車在筆直的鐵軌上開動時,火車頭走了200米,那車尾走了多少米呢?
Ⅱ.講授新課
下面我們來看第一節:生活中的平移(電腦演示:P57的圖3—1,然后提出問題)
(1)圖3—1中,傳送帶上的電視機的形狀、大小在運動前后是否發生了變化?手扶電梯上的人呢?
好,(電腦出示問題,并演示四邊形ABCD移動到四邊形EFGH的位置的過程)
如果把移動前后的同一臺電視機的屏幕分別記為四邊形ABCD和四邊形EFGH(如下圖),那么四邊形ABCD與四邊形EFGH的形狀、大小是否相同?
八年級下冊數學教案反思篇7
教學目標:
知識目標:
1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。
2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數學問題。
能力目標:
1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。
2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。
情感目標:
1、經歷函數概念的抽象概括過程,體會函數的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。
教學重點:
掌握函數概念。
判斷兩個變量之間的關系是否可看作函數。
能把實際問題抽象概括為函數問題。
教學難點:
理解函數的概念。
能把實際問題抽象概括為函數問題。
教學過程設計:
一、創設問題情境,導入新課
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
『生』:摩天輪。
『師』:你們坐過嗎?
……
『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規律呢?
『生』:應該有規律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉動一圈高度就重復一次。
『師』:分析有道理。摩天輪上一點的高度h與旋轉時間t之間有一定的關系。請看下圖,反映了旋轉時間t(分)與摩天輪上一點的高度h(米)之間的關系。
大家從圖上可以看出,每過6分鐘摩天輪就轉一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的高度h。下面根據圖5-1進行填表:
t/分012345……h/米
t/分012345……h/米31137453711……
『師』:對于給定的時間t,相應的高度h確定嗎?
『生』:確定。
『師』:在這個問題中,我們研究的對象有幾個?分別是什么?
『生』:研究的對象有兩個,是時間t和高度h。
『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關系嗎?如:彈簧的長度與所掛物體的質量,路程的距離與所用時間……了解這些關系,可以幫助我們更好地認識世界。下面我們就去研究一些有關變量的問題。
二、新課學習
做一做
(1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數的增加,物體的總數是如何變化的?
填寫下表:
層數n12345…物體總數y1361015…『師』:在這個問題中的變量有幾個?分別師什么?
『生』:變量有兩個,是層數與圓圈總數。
(2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經驗公式,其中V表示剎車前汽車的速度(單位:千米/時)
①計算當fenbie為50,60,100時,相應的滑行距離S是多少?
②給定一個V值,你能求出相應的S值嗎?
解:略
議一議
『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?
『生』:相同點是:這三個問題中都研究了兩個變量。
不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關系;第二個問題中是以表格的形式表示兩個變量間的關系;第三個問題是以關系式來表示兩個變量間的關系的。
『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。
函數的概念
在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。
一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。
三、隨堂練習
書P152頁隨堂練習1、2、3
四、本課小結
初步掌握函數的概念,能判斷兩個變量間的關系是否可看作函數。
在一個函數關系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數的值。
函數的三種表達式:
圖象;(2)表格;(3)關系式。
五、探究活動
為了加強公民的節水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應交水費y元,請用方程的知識來求有關x和y的關系式,并判斷其中一個變量是否為另一個變量的函數?
(答案:Y=1.8x-6或)
六、課后作業
習題6.1
八年級下冊數學教案反思篇8
中位數和眾數
一、教學目標
1、認識中位數和眾數,并會求出一組數據中的眾數和中位數。
2、理解中位數和眾數的意義和作用。它們也是數據代表,可以反映一定的數據信息,幫助人們在實際問題中分析并做出決策。
3、會利用中位數、眾數分析數據信息做出決策。
二、重點、難點和難點的突破方法:
1、重點:認識中位數、眾數這兩種數據代表
2、難點:利用中位數、眾數分析數據信息做出決策。
3、難點的突破方法:
首先應交待清楚中位數和眾數意義和作用:
中位數僅與數據的排列位置有關,某些數據的變動對中位數沒有影響,中位數可能出現在所給的數據中,當一組數據中的個別數據變動較大時,可用中位數描述其趨勢。眾數是當一組數據中某一重復出現次數較多時,人們往往關心的一個量,眾數不受極端值的影響,這是它的一個優勢,中位數的計算很少不受極端值的影響。
教學過程中注重雙基,一定要使學生能夠很好的掌握中位數和眾數的求法,求中位數的步驟:⑴將數據由小到大(或由大到小)排列,⑵數清數據個數是奇數還是偶數,如果數據個數為奇數則取中間的數,如果數據個數為偶數,則取中間位置兩數的平均值作為中位數。求眾數的方法:找出頻數最多的那個數據,若幾個數據頻數都是最多且相同,此時眾數就是這多個數據。
在利用中位數、眾數分析實際問題時,應根據具體情況,課堂上教師應多舉實例,使同學在分析不同實例中有所體會。
三、例習題的意圖分析
1、教材P143的例4的意圖
(1)、這個問題的研究對象是一個樣本,主要是反映了統計學中常用到一種解決問題的方法:對于數據較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結論去估計總體的情況。
(2)、這個例題另一個意圖是交待了當數據個數為偶數時,中位數的求法和解題步驟。(因為在前面有介紹中位數求法,這里不再重述)
(3)、問題2顯然反映學習中位數的意義:它可以估計一個數據占總體的相對位置,說明中位數是統計學中的一個重要的數據代表。
(4)、這個例題再一次體現了統計學知識與實際生活是緊密聯系的,所以應鼓勵學生學好這部分知識。
2、教材P145例5的意圖
(1)、通過例5應使學生明白通常對待銷售問題我們要研究的是眾數,它代表該型號的產品銷售,以便給商家合理的建議。
(2)、例5也交待了眾數的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數是數據代表的一種。
四、課堂引入
嚴格的講教材本節課沒有引入的問題,而是在復習和延伸中位數的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經和同學們研究過了平均數的這個數據代表。它在分析數據過程中擔當了重要的角色,今天我們來共同研究和認識數據代表中的新成員——中位數和眾數,看看它們在分析數據過程中又起到怎樣的作用。
五、例習題的分析
教材P144例4,從所給的數據可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數據重新排列,通過觀察會發現共有12個數據,偶數個可以取中間的兩個數據146、148,求其平均值,便可得這組數據的中位數。
教材P145例5,由表中第二行可以查到23.5號鞋的頻數,因此這組數據的眾數可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。
六、隨堂練習
1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統計了這15個人的銷售量如下(單位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求這15個銷售員該月銷量的中位數和眾數。
假設銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規格的空調,銷售臺數如表所示:
1匹 1.2匹 1.5匹 2匹
3月 12臺 20臺 8臺 4臺
4月 16臺 30臺 14臺 8臺
根據表格回答問題:
商店出售的各種規格空調中,眾數是多少?
假如你是經理,現要進貨,6月份在有限的資金下進貨單位將如何決定?
答案:1. (1)210件、210件 (2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數據的平均數,卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數又是眾數,是大部分人能達到的額定。
2. (1)1.2匹 (2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調。
七、課后練習
1. 數據8、9、9、8、10、8、99、8、10、7、9、9、8的中位數是 ,眾數是
2. 一組數據23、27、20、18、X、12,它的中位數是21,則X的值是 .
3. 數據92、96、98、100、X的眾數是96,則其中位數和平均數分別是( )
A.97、96 B.96、96.4 C.96、97 D.98、97
4. 如果在一組數據中,23、25、28、22出現的次數依次為2、5、3、4次,并且沒有其他的數據,則這組數據的眾數和中位數分別是( )
A.24、25 B.23、24 C.25、25 D.23、25
5. 隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:
溫度(℃) -8 -1 7 15 21 24 30
天數 3 5 5 7 6 2 2
請你根據上述數據回答問題:
(1).該組數據的中位數是什么?
(2).若當氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?
答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天