初中數學教案簡單
初中數學教案簡單篇1
一、素質教育目標
(一)知識教學點
1.理解有理數乘方的意義.
2.掌握有理數乘方的運算.
(二)能力訓練點
1.培養學生觀察、分析、比較、歸納、概括的能力.
2.滲透轉化思想.
(三)德育滲透點:培養學生勤思、認真和勇于探索的精神.
(四)美育滲透點
把記成,顯示了乘方符號的簡潔美.
二、學法引導
1.教學方法:引導探索法,嘗試指導,充分體現學生主體地位.
2.學生學法:探索的性質→練習鞏固
三、重點、難點、疑點及解決辦法
1.重點:運算.
2.難點:運算的符號法則.
3.疑點:①乘方和冪的區別.
②與的區別.
四、課時安排
1課時
五、教具學具準備
投影儀、自制膠片.
六、師生互動活動設計
教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質,教師出示鞏固性練習,學生多種形式完成.
七、教學步驟
(一)創設情境,導入 新課
師:在小學我們已經學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?
生:可以記作,讀作的四次方.
師:呢?
生:可以記作,讀作的五次方.
師:(為正整數)呢?
生:可以記作,讀作的次方.
師:很好!把個相乘,記作,既簡單又明確.
【教法說明】教師給學生創設問題情境,鼓勵學生積極參與,大大調動了學生學習的積極性.同時,使學生認識到數學的發展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學生通過類推得到的.
師:在小學對底數,我們只能取正數.進入中學以后我們學習了有理數,那么還可取哪些數呢?請舉例說明.
生:還可取負數和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.
非常好!對于中的,不僅可以取正數,還可以取0和負數,也就是說可以取任意有理數,這就是我們今天研究的課題:(板書).
【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據初一學生的認知水平,分層逐步說明可以取正數,可以取零,可以取負數,最后總結出可以取任意有理數.
(二)探索新知,講授新課
1.求個相同因數的積的運算,叫做乘方.
乘方的結果叫做冪,相同的因數叫做底數,相同的因數的個數叫做指數.一般地,在中,取任意有理數,取正整數.
注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.
鞏固練習(出示投影1)
(1)在中,底數是__________,指數是___________,讀作__________或讀作___________;
(2)在中,-2是__________,4是__________,讀作__________或讀作__________;
(3)在中,底數是_________,指數是__________,讀作__________;
(4)5,底數是___________,指數是_____________.
【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區別表示底數是-2,指數是4的冪;而表示底數是2,指數是4的冪的相反數.為后面的計算做鋪墊.通過第(4)小題指出一個數可以看作這個數本身的一次方,如5就是,指數1通常省略不寫.
師:到目前為止,對有理數業說,我們已經學過幾種運算?分別是什么?其運算結果叫什么?
學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.
生:到目前為止,已經學習過五種運算,它們是:
運算:加、減、乘、除、乘方;
運算結果:和、差、積、商、冪;
教師對學生的回答給予評價并鼓勵.
【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養學生歸納、總結的能力.
師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.
學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.
【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數的乘法運算來進行有理數乘方的運算.向學生滲透轉化的思想.
2.練習:(出示投影2)
計算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.
師:請同學們觀察、分析、比較這三組題中,每組題中底數、指數和冪之間有什么聯系?
先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.
生:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數,零的任何次冪都是零.
師:請同學們繼續觀察與,與中,底數、指數和冪之間有何聯系?你能得出什么結論呢?
學生活動:學生積極思考,同桌之間、前后桌之間互相討論.
生:互為相反數的兩個數的奇次冪仍互為相反數,偶次冪相等.
師:請同學思考一個問題,任何一個數的偶次冪是什么數?
生:任何一個數的偶次冪是非負數.
師:你能把上述結論用數學符號表示嗎?
生:(1)當時,(為正整數);
(2)當
(3)當時,(為正整數);
(4)(為正整數);
(為正整數);
(為正整數,為有理數).
【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創造發揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.
初中數學教案簡單篇2
一、素質教育目標
(一)知識教學點
使學生知道當直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實.
(二)能力訓練點
逐步培養學生會觀察、比較、分析、概括等邏輯思維能力.
(三)德育滲透點
引導學生探索、發現,以培養學生獨立思考、勇于創新的精神和良好的學習習慣.
二、教學重點、難點
1.重點:使學生知道當銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實.
2.難點:學生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關鍵在于教師引導學生比較、分析,得出結論.
三、教學步驟
(一)明確目標
1.如圖6-1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?
2.長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?
3.若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?
4.若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?
前兩個問題學生很容易回答.這兩個問題的設計主要是引起學生的回憶,并使學生意識到,本章要用到這些知識.但后兩個問題的設計卻使學生感到疑惑,這對初三年級這些好奇、好勝的學生來說,起到激起學生的學習興趣的作用.同時使學生對本章所要學習的內容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關直角三角形的其他未知邊角就可用學過的知識全部求出來.
通過四個例子引出課題.
(二)整體感知
1.請每一位同學拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值.
學生很快便會回答結果:無論三角尺大小如何,其比值是一個固定的值.程度較好的學生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長.
2.請同學畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學生又高興地發現,不論三角形大小如何,所求的比值是固定的.大部分學生可能會想到,當銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?
這樣做,在培養學生動手能力的同時,也使學生對本節課要研究的知識有了整體感知,喚起學生的求知欲,大膽地探索新知.
(三)重點、難點的學習與目標完成過程
1.通過動手實驗,學生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個命題呢?學生這時的思維很活躍.對于這個問題,部分學生可能能解決它.因此教師此時應讓學生展開討論,獨立完成.
2.學生經過研究,也許能解決這個問題.若不能解決,教師可適當引導:
若一組直角三角形有一個銳角相等,可以把其
頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學們能解決這個問題嗎?引導學生獨立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值.
通過引導,使學生自己獨立掌握了重點,達到知識教學目標,同時培養學生能力,進行了德育滲透.
而前面導課中動手實驗的設計,實際上為突破難點而設計.這一設計同時起到培養學生思維能力的作用.
練習題為 作了孕伏同時使學生知道任意銳角的對邊與斜邊的比值都能求出來.
(四)總結與擴展
1.引導學生作知識總結:本節課在復習勾股定理及含30°角直角三角形的性質基礎上,通過動手實驗、證明,我們發現,只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的.
教師可適當補充:本節課經過同學們自己動手實驗,大膽猜測和積極思考,我們發現了一個新的結論,相信大家的邏輯思維能力又有所提高,希望大家發揚這種創新精神,變被動學知識為主動發現問題,培養自己的創新意識.
2.擴展:當銳角為30°時,它的對邊與斜邊比值我們知道.今天我們又發現,銳角任意時,它的對邊與斜邊的比值也是固定的.如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個比值很重要,下節課我們就著重研究這個“比值”,有興趣的同學可以提前預習一下.通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發了學生的興趣.
四、布置作業
本節課內容較少,而且是為正、余弦概念打基礎的,因此課后應要求學生預習正余弦概念.
五、板書設計
初中數學教案簡單篇3
一、教學目標:
1、知道一次函數與正比例函數的定義。
2、理解掌握一次函數的圖象的特征和相關的性質。
3、弄清一次函數與正比例函數的區別與聯系。
4、掌握直線的平移法則簡單應用。
5、能應用本章的基礎知識熟練地解決數學問題。
二、教學重、難點:
重點:初步構建比較系統的函數知識體系。
難點:對直線的平移法則的理解,體會數形結合思想。
三、教學過程:
1、一次函數與正比例函數的定義:
一次函數:一般地,若y=kx+b(其中k,b為常數且k≠0),那么y是一次函數。
正比例函數:對于y=kx+b,當b=0,k≠0時,有y=kx,此時稱y是x的正比例函數,k為正比例系數。
2、一次函數與正比例函數的區別與聯系:
(1)從解析式看:y=kx+b(k≠0,b是常數)是一次函數;而y=kx(k≠0,b=0)是正比例函數,顯然正比例函數是一次函數的特例,一次函數是正比例函數的推廣。
(2)從圖象看:正比例函數y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx
平行的一條直線。
基礎訓練:
1、寫出一個圖象經過點(1,—3)的函數解析式為:
2、直線y=—2X—2不經過第象限,y隨x的增大而。
3、如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:
4、已知正比例函數y=(3k—1)x,,若y隨x的增大而增大,則k是:
5、過點(0,2)且與直線y=3x平行的直線是:
6、若正比例函數y=(1—2m)x的圖像過點A(x1,y1)和點B(x2,y2)當x1<x2時,y1>y2,則m的取值范圍是:
7、若y—2與x—2成正比例,當x=—2時,y=4,則x=時,y=—4。
8、直線y=—5x+b與直線y=x—3都交y軸上同一點,則b的值為。
9、已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。
(1)求線段AB的長。
(2)求直線AC的解析式。
初中數學教案簡單篇4
教學目的
1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。
2. 熟識等邊三角形的性質及判定.
2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。
教學重點: 等腰三角形的性質及其應用。
教學難點: 簡潔的邏輯推理。
教學過程
一、復習鞏固
1.敘述等腰三角形的性質,它是怎么得到的?
等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以∠B=∠C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。
2.若等腰三角形的兩邊長為3和4,則其周長為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質呢?
1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。
2.你能否用已知的知識,通過推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。
3.上面的條件和結論如何敘述?
等邊三角形的各角都相等,并且每一個角都等于60°。
等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數。
分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?
問題2:求∠1是否還有其它方法?
三、練習鞏固
1.判斷下列命題,對的打“√”,錯的打“×”。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個角是60°的等腰三角形,其它兩個內角也為60°( )
2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數。
3.P54練習1、2。
四、小結
由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。
五、作業: 1.課本P57第7,9題。
2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數。
12.3.2 等邊三角形(二)
教學目標
1.掌握等邊三角形的性質和判定方法. 2.培養分析問題、解決問題的能力.
教學重點:等邊三角形的性質和判定方法.
教學難點:等邊三角形性質的應用
教學過程
I創設情境,提出問題
回顧上節課講過的等邊三角形的有關知識
1.等邊三角形是軸對稱圖形,它有三條對稱軸.
2.等邊三角形每一個角相等,都等于60°
3.三個角都相等的三角形是等邊三角形.
4.有一個角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質;3、4的等邊三角形的判斷方法.
II例題與練習
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
①在邊AB、AC上分別截取AD=AE.
②作∠ADE=60°,D、E分別在邊AB、AC上.
③過邊AB上D點作DE∥BC,交邊AC于E點.
2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.
3. P56頁練習1、2
III課堂小結:1.等腰三角形和性質;等腰三角形的條件
V布置作業: 1.P58頁習題12.3第ll題.
2.已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?
12.3.2 等邊三角形(三)
教學過程
一、 復習等腰三角形的判定與性質
二、 新授:
1.等邊三角形的性質:三邊相等;三角都是60°;三邊上的中線、高、角平分線相等
2.等邊三角形的判定:
三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;
在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半
注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關系.
3.由學生解答課本148頁的例子;
4.補充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,
∠ABC=120o, 求證: AB=2BC
分析 由已知條件可得∠ABD=30o, 如能構造有一個銳角是30o的直角三角形, 斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了.
初中數學教案簡單篇5
總體說明:
完全平方公式則是對多項式乘法中出現的較為特殊的算式的一種歸納、總結.同時,完全平方公式的推導是初中數學中運用推理方法進行代數式恒等變形的開端,通過完全平方公式的學習對簡化某些整式的運算、培養學生的求簡意識有較大好處.而且完全平方公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算、解一元二次方程以及二次函數的恒等變形的重要基礎,同時也具有培養學生逐漸養成嚴密的邏輯推理能力的作用.因此學好完全平方公式對于代數知識的后繼學習具有相當重要的意義.
本節是北師大版七年級數學下冊第一章《整式的運算》的第8小節,占兩個課時,這是第一課時,它主要讓學生經歷探索與推導完全平方公式的過程,培養學生的符號感與推理能力,讓學生進一步體會數形結合的思想在數學中的作用.
一、學生學情分析
學生的技能基礎:學生通過對本章前幾節課的學習,已經學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節課的學習奠定了基礎.
學生活動經驗基礎:在平方差公式一節的學習中,學生已經經歷了探索和應用的過程,獲得了一些數學活動的經驗,培養了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.
二、教學目標
知識與技能:
(1)讓學生會推導完全平方公式,并能進行簡單的應用.
(2)了解完全平方公式的幾何背景.
數學能力:
(1)由學生經歷探索完全平方公式的過程,進一步發展學生的符號感與推理能力.
(2)發展學生的數形結合的數學思想.
情感與態度:
將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”.
三、教學重難點
教學重點:1、完全平方公式的推導;
2、完全平方公式的應用;
教學難點:1、消除學生頭腦中的前概念,避免形成“相異構想”;
2、完全平方公式結構的認知及正確應用.
四、教學設計分析
本節課設計了十一個教學環節:學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數形結合——進一步拓廣——總結口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習.
第一環節:學生練習、暴露問題
活動內容:計算:(a+2)2
設想學生的做法有以下幾種可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正確做法;
針對這幾種結果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?
活動目的:在很多學生的頭腦中,認為兩數和的完全平方與兩數的平方和等同,即:
(a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個正確的概念;這一環節的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.
第二環節:驗證(a+2)2=a2–4a+22
活動內容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22
活動目的:在前一環節已經打破了學生的原有的思維定式的基礎上,給學生建立正確的思維方法,避免形成“相異構想”.
第三環節:推廣到一般情況,形成公式
活動內容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活動目的:讓學生經歷從特殊到一般的探究過程,體驗到發現的快樂.
第四環節:數形結合
活動內容:設問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?
展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.
學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)
活動目的:讓學生進一步認識到數與形都不是孤立存在的,數與形是可以有機地結合在一起,從而發展學生的數形結合的數學思想.
第五環節:進一步拓廣
活動內容:推導兩數差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活動目的:讓學生經歷由兩數和的完全平方公式拓廣到兩數差的完全平方公式的過程,體會到符號差異帶來的結果差異,由第二種推導方法體會到兩數差的完全平方公式是兩數和的完全平方公式的應用.
第六環節:總結口訣、認識特征
活動內容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;
②公式中的a、b可以是任意一個代數式(數、字母、單項式、多項式)
口訣:首平方,尾平方,首尾相乘的兩倍在中央.
活動目的:認識完全平方公式的特征,總結出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現錯誤.
第七環節:公式應用
活動內容:例:計算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9
②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+
活動目的:在前幾個環節中,學生對完全平方公式已經有了感性認識,通過本環節的講解以及下一環節的練習,使學生逐步經歷認識——模仿——再認識.從而上升到理性認識的階段.
第八環節:隨堂練習
活動內容:計算:①;②;③(n+1)2–n2
活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏.
第九環節:學生PK
活動內容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.
活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用.
第十環節:學生反思
活動內容:通過今天這堂課的學習,你有哪些收獲?
收獲1:認識了完全平方公式,并能簡單應用;
收獲2:了解了兩數和與兩數差的完全平方公式之間的差異;
收獲3:感受到數形結合的數學思想在數學中的作用.
活動目的:通過對一堂課的歸納與總結,鞏固學生對完全平方公式的認識,體會數學思想的精妙.
第十一環節:布置作業:
課本P43習題1.13
初中數學教案簡單篇6
一、教材分析
1、教材的地位和作用
本課位于人民教育出版社義務教育課程標準實驗教科書七年級下冊第五章第二節第一課時。主要內容是讓學生在充分感性認識的基礎上體會平行線的三種判定方法,它是空間與圖形領域的基礎知識,是《相交線與平行線》的重點,學習它會為后面的學行線性質、三角形、四邊形等知識打下堅實的“基石”。同時,本節學習將為加深“角與平行線”的認識,建立空間觀念,發展思維,并能讓學生在活動的過程中交流分享探索的成果,體驗成功的樂趣,提高運用數學的能力。
2、教學重難點
重 點 三種位置關系的角的特征;會根據三種位置關系的角來判斷兩直線平行的方法。
難 點 “轉化”的數學思想的培養。
由“說點兒理”到“用符號表示推理”的逐層加深。
二、教學目標
知識目標 了解同位角、內錯角、同旁內角等角的特征,認識“直線平行”的三個充分條件及在實際生活中的應用。
能力目標 ①通過觀察、思考探索等活動歸納出三種判定方法,培養學生轉化的數學思想,培養學生動手、分析、解決實際問題的能力。
②通過活動及實際問題的研究引導學生從數學角度發現和提出問題,并用數學方法探索、研究和解決問題。
情感目標 ①感受數學與生活的緊密聯系,體會數學的價值,激發學生學習數學的興趣,培養敢想、敢說、敢解決實際問題的學習習慣。
通過學生體驗、猜想并證明,讓學生體會數學充滿著探索和創造,培養學生團結協作,勇于創新的精神。
②通過“轉化”數學思想方法的運用,讓學生認識事物之間是普遍聯系,相互轉化的辯證唯物主義思想。
三、教學方法
1、采用指導探究法進行教學,主要通過二個師生雙邊活動:①動——師生互動,共同探索。②導——知識類比,合理引導等突出學生主體地位,讓教師成為學生學習的組織者、引導者、合作者,讓學生親自動手、動腦、動口參與數學活動,經歷問題的發生、發展和解決過程,在解決問題的過程中完成教學目標。
2、根據學生實際情況,整堂課圍繞“情景問題——學生體驗——合作交流”模式,鼓勵學生積極合作,充分交流,既滿足了學生對新知識的強烈探索欲望,又排除學生學習幾何方法的缺乏,和學無所用的思想顧慮。對學習有困難的學生及時給予幫助,讓他們在學習的過程中獲得愉快和進步。
3、利用課件輔助教學,突破教學重難點,擴大學生知識面,使每個學生穩步提高。
四、教學流程:
我的教學流程設計是:從創設情境,孕育新知開始,經歷探索新知,構建模式;解釋新知,落實新知;總結新知,布置作業等過程來完成教學。
創設情境,孕育新知:
①師生欣賞三幅圖片,讓學生觀察、思考從幾何圖形上看有什么共同點。
②從學生經歷過的事入手,讓學生比較兩張獎狀粘貼的好壞,并說明理由,讓學生留心實際生活,欣賞木工畫平行線的方法。
③落實到學生是否會畫平行線?本環節教師展示圖片,學生觀察思考,交流回答問題,了解實際生活中平行線的廣泛應用。
設計意圖:通過圖片和動畫展示,貼近學生生活,激發學生的學習興趣。從學生經歷過的事入手。讓學生知道數學知識無處不在,應用數學無時不有。符合“數學教學應從生活經驗出發”的新課程標準要求。
2、實驗操作,探索新知1
①由學生是否會畫平行線導入,用小學學過的方法過點P畫直線AB的平行線CD,學生動手畫并展示。
②學生思考三角尺起什么作用(教師點撥)?
③學生動手操作:用學具塑料條擺兩條平行線被第三條直線所截的模型,并探討圖中角的關系(同位角)。
④教師把學生畫平行線的過程和塑料條模型抽象成幾何圖形,指明同位角的位置關系是截線,被截線的同旁,
歸納:兩直線平行條件1
教師展示一組練習,學生獨立完成,鞏固新知。
在這一環節中,教師應關注:
①學生能否畫平行線,動手操作是否準確
②學生能否獨立探究、參與、合作、交流
設計意圖:復習提問,利用教具、學具讓學生動手,提高學生學習興趣,調動學生思考和積極性,提高學生合作交流的能力和質量,教師有的放矢,讓學生掌握重點,培養學生自主探究的學習習慣和能力。及時練習鞏固,,體現學以致用的觀念,消除學生學無所用的思想顧慮。
3、大膽猜想,探究新知
⑴學生分組討論:
①∠2和∠3是什么位置關系?
∠3和∠4是什么位置關系?
②直線CD繞O旋轉是否還保持上述位置關系?
③∠2與∠3,∠2與∠4一定相等嗎?猜想,展示討論成果。
⑵學生探究:
問題:①∠2=∠3能得到AB∥CD嗎?
②∠2+∠4=180可以判定AB∥CD嗎?
學生用語言表述推理過程,教師深入學生中并點撥將未知的轉化為已知,并規范推理過程。和學生一起歸納直線平行的條件2,3。
⑶學生獨立完成練習。
本環節教師關注:
①學生能否主動參與數學活動,敢于發表個人觀點。
②小組團結協作程度,創新意識。
③表揚優秀小組
設計意圖:猜想、交流、歸納,符合知識的形成過程,培養學生轉化的數學思想,學會將陌生的轉化為熟悉的,將未知的轉化為已知的。并用練習及時鞏固,落實新知與方法,增強學生運用數學的能力。
4、解釋運用,鞏固新知
本環節共有五個練習,第一題落實同位角、內錯角、同旁內角位置特征。第二、三題落實三種判定方法的應用。第四、五題是注重學生動手操作,解決實際問題的訓練。
本環節教師應關注:
①深入學生當中,對學習有困難學生進行鼓勵,幫助。
②學生的思維角度是否合理。
設計意圖:加強學生運用新知的意識,培養學生解決實際問題的能力和學習數學的興趣,讓學生鞏固所學內容,并進行自我評價,既面向全體學生,又照顧個別學有余力的學生,體現因材施教的原則。
5、總結新知,布置作業
通過設問回答補充的方式小結,學生自主回答三個問題,教師關注全體學生對本節課知識的程度,學生是否愿意表達自己的觀點,采用必做題和選做題的方式布置作業。
設計意圖:通過提問方式引導學生進行小結,養成學習——總結——再學習的良好習慣,發揮自我評價作用,同時可培養學生的語言表達能力。作業分層要求,做到面向全體學生,給基礎好的學生充分的空間,滿足他們的求知欲。
五、教學設計
初中數學教案簡單篇7
一、教學目標:
1、理解二元一次方程及二元一次方程的解的概念;
2、學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;
3、學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;
4、在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
二、教學重點、難點:
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。
三、教學方法與教學手段:
通過與一元一次方程的比較,加強學生的類比的思想方法;通過“合作學習”,使學生認識數學是根據實際的需要而產生發展的觀點。
四、教學過程:
1、情景導入:
新聞鏈接:x70歲以上老人可領取生活補助。
得到方程:80a+150b=902880、
2、新課教學:
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程。
做一做:
(1)根據題意列出方程:
①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價、設蘋果的單價x元/kg,梨的單價y元/kg;
②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程:
(2)課本P80練習2、判定哪些式子是二元一次方程方程。
合作學習:
活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動。
問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人、團支書擬安排8個勞動組,2個文藝組,單從人數上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學生檢驗得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的&39;一對未知數的值叫做二元一次方程的一個解。
并提出注意二元一次方程解的書寫方法。
3、合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換、(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法、提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?
出示例題:已知二元一次方程x+2y=8。
(1)用關于y的代數式表示x;
(2)用關于x的代數式表示y;
(3)求當x=2,0,—3時,對應的y的值,并寫出方程x+2y=8的三個解。
(當用含x的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)
4、課堂練習:
(1)已知:5xm—2yn=4是二元一次方程,則m+n=;
(2)二元一次方程2x—y=3中,方程可變形為y=當x=2時,y=;
5、你能解決嗎?
小紅到郵局給遠在農村的爺爺寄掛號信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案。
6、課堂小結:
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式。
7、布置作業: