數學教案八年級
數學教案八年級篇1
初中數學分層教學的理論與實踐
天山六中裴煥民
一、分層教學的含義
分層教學是指教師在學生知識基礎、智力因素存在明顯差異的情況下,有區別地設計教學環節進行教學,遵循因材施教的原則,有針對性地實施對不同類別學生的學習指導,不僅根據學生的`不同選擇不同的教法、布置作業,還因材施“助”、因材施“改”、因材施“教”,使每個學生都能在原有的基礎上得以發展,從而達到不同類別的教學目標的一種教學方法。
分層教學是“著眼于與學生的可持續性的、良性的發展”的教育觀念下的一種教學實施策略。所謂分層教學(同班、同年級分層次教學)就是教師在教授同一教學內容時,對同一個班內不同知識水平和接受能力的優、中、差生以相應的三個層次的教學深度和廣度進行合講分練,做到課堂教學有的放矢,區別對待,使每個學生都在自己原來的基礎上學有所得,思有所進,在不同程度上有所提高,同步發展。教師的教學方法應從最低點起步,分類指導,逐步推進,做到“分合”有序,動靜結合,并分層設計練習,分層設計課堂,分層布置作業,引導學生全員參與,各得進步。
二、分層教學必要性分析
1、教學現狀呼喚分層教學的實施
義務教育的實施使小學畢業生全部升入初中學習,這樣,在同一班里,學生的知識、能力參差不齊。但是,應試教育留下的種種弊端抑制了各層次的學生的學習積極性和興趣,整齊劃一的教學要求,忽視了學生之間的差異。為了使教育面向全體學生,減輕部分學生過重的負擔,使他們在原有的基礎上有所提高,全面提高教學質量,又要使有特長的學生得到更進一步的發展。因此必須實施因材施教,根據不同的學生的具體情況,確立不同的教學目標,采取不同的教學方法,使其個性得到充分發展,為社會培養各種層次的有用之人。
2、新課程改革呼喚分層教學的實施
數學課程改革的核心是課程的實施,而教學是課程實施的基本途徑。課程改革歸根到底是要轉變教師的傳統教學觀念:包括教學方式的轉變——從“教”到
“引”;知識技能掌握理念的轉變——從“滿堂灌”、“書山題海”到“在親身經歷中體會、理解、掌握知識技能”,強調自我的情感體驗;教材觀的轉變——從“教教材”到“用教材”,教材變成我們引導學生探究知識的工具之一;評價機制的轉變——從“唯分數論”到“適合學生自身特點的發展”,這是實施分層教學的原動力,但也是現今新課程改革的一個難點。
在新課改中實施分層教學法的目的是逐步樹立學困生學習的信心,激發中等生的學習潛力,擴大優生的學習面。為了適應當前素質教育的需要,我們要采用針對性的矯正和幫助,進行分層教學,分類指導,及時反饋,從中探索出一條教學改革的新路子。
3、學生個體差異的客觀存在
心理學的研究結果表明:學生的學習能力差異是存在的,特別是學生在數學學習能力方面存在著較大的差異這已是一個不爭的事實。造成差異的原因有很多,學生的先天遺傳因素及環境、教育條件都有所不同,還有社會因素(即環境、教育條件、科學訓練),這些原因是對學生學習能力的形成起著決定性作用,所以學生所表現出的數學能力有明顯差異也是正常的。
學生作為一個群體,存在著個體差異
(1)智力差異。每個學生因為遺傳基因的不同,智力的差異是不可避免的。有的人聰明;有的人愚鈍,有的人形象思維強;有的邏輯思維強;有的人記憶力超人,但推理能力較差;有的人記憶力較差,卻推理能力過人。
(2)學習基礎差異。不同的學生在小學的數學狀況不一樣:有的學生數學十分優秀,有的學生數學學習基本還沒入門,兩極分化相當嚴重。
(3)學習品質差異。有的學生學習數學十分認真,有一套自己的數學學習方法,學得輕松愉快;而有的學生因為沒有入門,數學學得十分艱難,部分學生甚至對數學學習喪失了信心。
4、分層次教學符合因材施教的原則
目前我國大部分省市的數學教學采用的是統一教材、統一課時、統一教參,在學生學習能力存在差異的情況下,在教學過程中往往容易產全“顧中間、丟兩頭”。如不因材施教,就使部分學生就成了陪讀、陪考。數學能力強的學生潛能得不到充分發揮,能力稍差的學生就可能變成了后進生。有研究結果表明:教師、
家庭、社會、學生、學校等方面的因素都有可能是形成后進生的原因,其中有50%的原因是來自教師在教學中的失誤。我們的基礎教育既要注意確保學生的共性需求,又要顧及學生的個性發展,所以進行分層教育確有必要。
5、分層次教學能夠有效推動教學過程的展開
按照教育家達尼洛夫關于教學過程的動力理論之說,認為只有學生學習的可能性與對他們的要求是一致的,才可能推動教學過程的展開,從而加快學習成績的提高,而這兩者的統一關系若被破壞,就會造成學業的不良后果。學生的學習可能是由他們生理和心理的一般發展水平與對某項學習的具體準備狀態所決定的,學生學習可能性的構成因素中既有相對穩定的因素,又有易變的因素。相對穩定的因素,決定了學生在一段時間內可能達到的學習水平的范圍,決定了學業不良學生要取得學業進步只能是一個漸進的過程;易變的因素,使學生能在:一定的主客觀條件下提高或降低自己的實際可能性水平,從而促進或阻礙學習可能性與教學要求之間矛盾的轉化,加快學習成績提高或降低的速度。由此可見,分層次教學是著眼于協調教學要求與學生學習可能性的關系的一種極好的手段,使它們之間能相適應,從而推動教學過程的展開。
三、分層教學研究的目的意義
捷克教育家夸美紐斯在十七世紀提出來的班級授課制以其大大提高教學效率、加強學校工作的計劃性和實際社會效益風行了三百多年后,其固有的不利于學生創造能力的培養和因材施教等種種弊端與社會發展對教育的要求的矛盾越來越尖銳起來。隨著科學技術的發展,社會日益進步,教育資源和教育需求的增長和變化,班級授課制在我國做出輝煌的貢獻后逐步顯現出其先天的嚴重不足。教師在班級授課制下對能力強的學生“吃不飽”,能力欠佳的學生“吃不消”普遍感到力不從心。分層教學在這種情況下應運而生,成為優化單一班級授課制的有利途徑。
1.有利于所有學生的提高:分層教學法的實施,避免了部分學生在課堂上完成作業后無所事事,同時,所有學生都體驗到學有所成,增強了學習信心。
2.有利于課堂效率的提高:首先,教師事先針對各層學生設計了不同的教學目標與練習,使得處于不同層的學生都能“摘到桃子”,獲得成功的喜悅,這極大地優化了教師與學生的關系,從而提高師生合作、交流的效率;其次,教師在
備課時事先估計了在各層中可能出現的問題,并做了充分的準備,使得實際施教更有的放矢、目標明確、針對性強,增大了課堂教學的容量。總之,通過這一教學法,有利于提高課堂教學的質量和效率。
3.有利于教師全面能力的提升:通過有效地組織好對各層學生的教學,靈活地安排不同的層次策略,極大地鍛煉了教師的組織調控與隨機應變能力。分層教學本身引出的思考和學生在分層教學中提出來的挑戰都有利于教師能力的全面提升。
四、分層教學的理論基礎
1、掌握學習理論
布魯姆提出的“掌握學習理論”主張:“給學生足夠的學習時間,同時使他們獲得科學的學習方法,通過他們自己的努力,應該都可以掌握學習內容”。“不同學生需要用不同的方法去教,不同學生對不同的教學內容能持久地集中注意力”。為了實現這個目標,就應該采取分層教學的方法。
2、教學最優化理論
巴班斯基的“教學最優化理論”的核心是:教學過程的最優化是選擇一種能使教師和學生在花費最少的必要時間和精力的情況下獲得最好的教學效果的教學方案并加以實施。分層教學是實現這一目標的有效方式之一。
3、新課標的基本理念
《數學課程標準》提出了一種全新的數學課程理念:“人人學有價值的數學;人人都能獲得必需的數學;不同的人在數學上得到不同的發展”。面向全體學生,體現了義務教育的基礎性、普及性和發展性。不僅為數學教學內容的設定指出方向,而且考慮到學生的可持續發展對數學的需求,并為學生學習數學可能產生的差異性留有充分的余地。
五、分層教學實施的指導思想及原則
首先,分層次教學的主體是班級教學為主,按層次教學為輔,層次分得好壞直接影響到“分層次教學”的成功與否。其指導思想是變傳統的應試教育為素質教育,是成績差異的分層,而不是人格的分層。為了不給差生增加心理負擔,必須做好分層前的思想工作,了解學生的心理特點,講情道理:學習成績的差異是客觀存在的,分層次教學的目的不是人為地制造等級,而是采用不同的方法幫助
他們提高學習成績,讓不同成績的學生最大限度地發揮他們的潛力,以逐步縮小差距,達到班級整體優化。
在對學生進行分層要堅持尊重學生,師生磋商,動態分層的原則。應該向學生宣布分層方案的設計,講清分層的目的和意義,以統一師生認識;指導每位學生實事求是地估計自己,通過學生自我評估,完全由學生自己自愿選擇適應自己的層次;最后,教師根據學生自愿選擇的情況進行合理性分析,若有必要,在征得學生同意的基礎上作個別調整之后,公布分層結果。這樣使部分學生既分到了合適的層次上,又保留了“臉面”,自尊心也不至于受到傷害,也提高了學生學習數學的興趣。
其次,在分層教學中應注意下列原則的使用:
①水平相近原則:在分層時應將學習狀況相近的學生歸為“同一層”;
②差別模糊原則:分層是動態的、可變的,有進步的可以“升級”,退步的應“轉級”,且分層結果不予公布;
③感受成功原則:在制定各層次教學目標、方法、練習、作業時,應使學生跳一跳,才可摘到蘋果為宜,在分層中感受到成功的喜悅;
④零整分合原則:教學內容的合與分,對學生的“放”與“扶”,以及課外的分層輔導都應遵守這個原則;
⑤調節控制原則:由于各層次學生要求不一,因此在課堂上以學、議為主,教師要善于激趣、指導、精講、引思,調節并控制止好各層次學生的學習,做好分類指導;
⑥積極激勵原則:對各層次學生的評價,以縱向性為主。教師通過觀察、反饋信息,及時表揚激勵,對進步大的學生及時調到高一層次,相對落后的同意轉層。從而促進各層學生學習的積極性,使所有學生隨時都處于最佳的學習狀態。
數學教案八年級篇2
無理數
1.無限小數都是無理數無限小數分:為無限循環小數和無限不循環小數,其中無限循環小數是有理數,只有無限不循環的小數才是無理數。
2.無理數包括正無理數、負無理數和零。受思維習慣的影響,有些同學錯誤認為正無理數與負無理數之間應有零,零也是無理數,其實零是一個有理數,因此,無理數只分為正無理數和負無理數兩類。
3.帶根號的數是無理數。是有理數2,是有理數-2,可見帶根號的數不一定是無理數。
4.無理數是用根號形式表示的數。是無理數,但并不是用根號形式表示的,再如:0.1010010001(兩個1之間依次多一個),亦為不帶根號的無理數。
5.無理數是開方開不盡的數。無理數并非由開方的結果來定義的,事實上,如,0.232232223,等無理數,都不是由開方得到的。
6.兩個無理數的和、差、積、商仍是無理數。兩個無理數的和,差,積,商不一定是無理數,如:等都是有理數。
數學教案八年級篇3
函數及其相關概念
1、變量與常量
在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
數學教案八年級篇4
一次函數知識點
(一)一般地,形如y=kx+b(k,b是常數,且k≠0)的函數,叫做一次函數,其中x是自變量。當b=0時,一次函數y=kx,又叫做正比例函數。
(二)一次函數的圖像及性質
1.在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。
2.一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)。
3.正比例函數的圖像總是過原點。
4.k,b與函數圖像所在象限的關系:
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
當k>0,b>0時,直線通過一、二、三象限;
當k>0,b<0時,直線通過一、三、四象限;
當k<0,b>0時,直線通過一、二、四象限;
當k<0,b<0時,直線通過二、三、四象限;
當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
數學教案八年級篇5
提公因式法
1、在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式。當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式。
2、運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1)必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等于一次項的系數。
2)將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
①列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等于一次項系數。
3、將原多項式分解成(x+q)(x+p)的形式。
分式的乘除法
1、把一個分式的分子與分母的公因式約去,叫做分式的約分。
2、分式進行約分的目的是要把這個分式化為最簡分式。
3、如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分。
4、分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3。
5、分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理。當然,簡單的分式之分子分母可直接乘方。
6、注意混合運算中應先算括號,再算乘方,然后乘除,最后算加減。
分數的加減法
1、通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來。
2、通分和約分都是依據分式的&39;基本性質進行變形,其共同點是保持分式的值不變。
3、一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備。
4、通分的依據:分式的基本性質。
5、通分的關鍵:確定幾個分式的公分母。
通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母。
6、類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。
7、同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8、異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然后再加減。
9、同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號。
10、對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分。
11、異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化。
12、作為最后結果,如果是分式則應該是最簡分式。
數學教案八年級篇6
一、菱形
(1)菱形的性質
1)菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2)菱形的性質:
①菱形具有平行四邊形的所有性質;
②菱形的四條邊都相等;
③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;
④菱形既是軸對稱圖形,又是中心對稱圖形,有兩條對稱軸,對稱中心是對角線交點。
3)菱形的面積公式:
菱形的兩條對角線的長分別為,則
(2)菱形的判定
1)菱形的判定:
①有一組鄰邊相等的平行四邊形是菱形;
②對角線互相垂直的平行四邊形是菱形;
③四條邊都相等的四邊形是菱形。
2)證明一個四邊形是菱形的步驟:
方法一:先證明它是一個平行四邊形,然后證明“一組鄰邊相等”或“對角線互相垂直”;
方法二:直接證明“四條邊相等”。
二、正方形
(1)正方形的性質
1)正方形的定義:有一組鄰邊相等且有一個角是直角的平行四邊形叫做正方形。
2)正方形的性質:
正方形具有平行四邊形、矩形、菱形的所有性質,即①正方形的四條邊都相等;②四個角都是直角;③對角線互相垂直平分且相等,并且每條對角線平分一組對角。
3)正方形既是軸對稱圖形,又是中心對稱圖形,它有四條對稱軸,對角線的交點是對稱中心。
(2)正方形的判定
正方形的判定:
①有一組鄰邊相等且有一個角是直角的平行四邊形是正方形;
②有一組鄰邊相等的矩形是正方形;
③對角線互相垂直的矩形是正方形;
④有一個角是直角的菱形是正方形;
⑤對角線相等的菱形是正方形;
⑥對角線互相垂直平分且相等的四邊形是正方形。
數學教案八年級篇7
分式的四則運算
乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。
◆除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
◆乘方法則:分式乘方要把分子、分母各自乘方。用式子表示是:(其中n是正整數)
◆加減法則:同分母的分式相加減,分母不變,把分子相加減;異分母的分式相加減,先通分,轉化為同分母分式,然后再加減。
注意
(1)異分母分式相加減,“先通分”是關鍵,最簡公分母確定后再通分,計算時要注意分式中符號的處理,特別是分子相減,要注意分子的整體性;
(2)運算時順序合理、步驟清晰;
(3)運算結果必須化成最簡分式或整式。
數學有理數比大小知識點
(1)正數永遠比0大,負數永遠比0小;
(2)正數大于一切負數;
(3)兩個負數比較,絕對值大的反而小;
(4)數軸上的兩個數,右邊的數總比左邊的數大;
(5)-1,-2,+1,+4,-0.5,以上數據表示與標準質量的差,絕對值越小,越接近標準。
數學線段的性質
(1)線段公理:所有連接兩點的線中,線段最短。也可簡單說成:兩點之間線段最短。
(2)連接兩點的線段的長度,叫做這兩點的距離。
(3)線段的中點到兩端點的距離相等。
(4)線段的大小關系和它們的長度的大小關系是一致的。