高中數學教案模板范文8篇
作為一名專為他人授業解惑的人民教師,很有必要精心設計一份教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當的教學方法。高中數學教案模板要如何寫?下面是小編為大家整理的高中數學教案模板,僅供參考,喜歡可以收藏分享一下喲!
高中數學教案模板范文【篇1】
一、單元教學內容
(1)算法的基本概念
(2)算法的基本結構:順序、條件、循環結構
(3)算法的基本語句:輸入、輸出、賦值、條件、循環語句
二、單元教學內容分析
算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力。
三、單元教學課時安排:
1、算法的基本概念3課時
2、程序框圖與算法的基本結構5課時
3、算法的基本語句2課時
四、單元教學目標分析
1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義
2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。
3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。
4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
五、單元教學重點與難點分析
1、重點
(1)理解算法的含義
(2)掌握算法的基本結構
(3)會用算法語句解決簡單的實際問題
2、難點
(1)程序框圖
(2)變量與賦值
(3)循環結構
(4)算法設計
六、單元總體教學方法
本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。
七、單元展開方式與特點
1、展開方式
自然語言→程序框圖→算法語句
2、特點
(1)螺旋上升分層遞進
(2)整合滲透前呼后應
(3)三線合一橫向貫通
(4)彈性處理多樣選擇
八、單元教學過程分析
1、算法基本概念教學過程分析
對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。
2、算法的流程圖教學過程分析
對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。
3、基本算法語句教學過程分析
經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,
4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
九、單元評價設想
1、重視對學生數學學習過程的評價
關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。
2、正確評價學生的數學基礎知識和基本技能
關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法
高中數學教案模板范文【篇2】
一、目標
1、知識與技能
(1)理解流程圖的順序結構和選擇結構。
(2)能用字語言表示算法,并能將算法用順序結構和選擇結構表示簡單的流程圖
2、過程與方法
學生通過模仿、操作、探索、經歷設計流程圖表達解決問題的過程,理解流程圖的結構。
3、情感、態度與價值觀
學生通過動手作圖,用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想——程序化思想,在歸納概括中培養學生的邏輯思維能力。
二、重點、難點
重點:算法的順序結構與選擇結構。
難點:用含有選擇結構的流程圖表示算法。
三、學法與教學用具
學法:學生通過動手作圖,用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經歷設計流程圖表達解決問題的過程。進而學習順序結構和選擇結構表示簡單的流程圖。
教學用具:尺規作圖工具,多媒體。
四、教學思路
(一)、問題引入揭示題
例1尺規作圖,確定線段的一個5等分點。
要求:同桌一人作圖,一人寫算法,并請學生說出答案。
提問:用字語言寫出算法有何感受?
引導學生體驗到:顯得冗長,不方便、不簡潔。
教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構成一張圖即流程圖表示算法。
本節要學習的是順序結構與選擇結構。
右圖即是同流程圖表示的算法。
(二)、觀察類比理解題
1、投影介紹流程圖的符號、名稱及功能說明。
符號符號名稱功能說明
終端框算法開始與結束
處理框算法的各種處理操作
判斷框算法的各種轉移
輸入輸出框輸入輸出操作
指向線指向另一操作
2、講授順序結構及選擇結構的概念及流程圖
(1)順序結構
依照步驟依次執行的一個算法
流程圖:
(2)選擇結構
對條進行判斷決定后面的步驟的結構
流程圖:
3、用自然語言表示算法與用流程圖表示算法的比較
(1)半徑為r的圓的面積公式當r=10時寫出計算圓的面積的算法,并畫出流程圖。
解:
算法(自然語言)
①把10賦與r
②用公式求s
③輸出s
流程圖
(2)已知函數對于每輸入一個X值都得到相應的函數值,寫出算法并畫流程圖。
算法:(語言表示)
①輸入X值
②判斷X的范圍,若,用函數Y=x+1求函數值;否則用Y=2-x求函數值
③輸出Y的值
流程圖
小結:含有數學中需要分類討論的或與分段函數有關的問題,均要用到選擇結構。
學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)
(三)模仿操作經歷題
1、用流程圖表示確定線段AB的一個16等分點
2、分析講解例2;
分析:
思考:有多少個選擇結構?相應的流程圖應如何表示?
流程圖:
(四)歸納小結鞏固題
1、順序結構和選擇結構的模式是怎樣的?
2、怎樣用流程圖表示算法。
(五)練習P992
(六)作業P991
高中數學教案模板范文【篇3】
一、教學內容分析
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象,恰當地利用定義解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率。
四、教學目標
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3、借助多媒體輔助教學,激發學習數學的興趣。
五、教學重點與難點:
教學重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義解題
六、教學過程設計
【設計思路】
(一)開門見山,提出問題
一上課,我就直截了當地給出例題1:
(1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學情預設】
估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25
這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|5入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。
在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。
(二)理解定義、解決問題
例2:
(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2),求|PA|
【設計意圖】
運用圓錐曲線定義中的數量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。
【學情預設】
根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯系起來,這樣就容易和第二定義聯系起來,從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會。
練習:
設點Q是圓C:(x1)2225|AB|的最小值。3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。
引申:若將點A移到圓C外,點M的軌跡會是什么?
【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導學生對自己的結論進行驗證。
【知識鏈接】
(一)圓錐曲線的定義
1、圓錐曲線的第一定義
2、圓錐曲線的統一定義
(二)圓錐曲線定義的應用舉例
1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。
2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點,F1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。
3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。
4、例題:
(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。
(2)已知A(,3)為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。
(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。
七、教學反思
1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。
2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。
總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。
高中數學教案模板范文【篇4】
一、教材
《直線與圓的位置關系》是高中人教版必修2第四章第二節的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續與提高,又是學習切線的判定定理、圓與圓的位置關系的基礎。從數學思想方法層面上看它運用運動變化的觀點揭示了知識的發生過程以及相關知識間的內在聯系,滲透了數形結合、分類討論、類比、化歸等數學思想方法,有助于提高學生的思維品質。
二、學情
學生初中已經接觸過直線與圓相交、相切、相離的定義和判定;且在上節的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數形結合解題思想的基礎。
三、教學目標
(一)知識與技能目標
能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。
(二)過程與方法目標
經歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態度價值觀目標
激發求知欲和學習興趣,鍛煉積極探索、發現新知識、總結規律的能力,解題時養成歸納總結的良好習慣。
四、教學重難點
(一)重點
用解析法研究直線與圓的位置關系。
(二)難點
體會用解析法解決問題的數學思想。
五、教學方法
根據本節課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的動態演示,變抽象為直觀,為學生的數學探究與數學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發揮各層次學生的作用,教師始終堅持啟發式教學原則,設計一系列問題串,以引導學生的數學思維活動。
六、教學過程
(一)導入新課
教師借助多媒體創設泰坦尼克號的情景,并從中抽象出數學模型:已知冰山的分布是一個半徑為r的圓形區域,圓心位于輪船正西的1處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導學生回顧初中已經學習的直線與圓的位置關系,將所想到的航行路線轉化成數學簡圖,即相交、相切、相離。
設計意圖:在已有的知識基礎上,提出新的問題,有利于保持學生知識結構的連續性,同時開闊視野,激發學生的學習興趣。
(二)新課教學——探究新知
教師提問如何判斷直線與圓的位置關系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點個數
即研究方程組解的個數,具體做法是聯立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發現,兩種方法本質相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學生解答,總結思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關系?
讓學生自主探索,討論交流,并闡述自己的解題思路。
當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關鍵是如何得到圓心到直線的距離d,他的本質是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯立直線與圓的方程,組成方程組,通過方程組解得個數確定直線與圓的交點個數,進一步確定他們的位置關系。最后明確解題步驟。
(四)歸納總結——鞏固新知
為了將結論由特殊推廣到一般引導學生思考:
可由方程組的解的不同情況來判斷:
當方程組有兩組實數解時,直線1與圓C相交;當方程組有一組實數解時,直線1與圓C相切;當方程組沒有實數解時,直線1與圓C相離。
活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎題的練習,鞏固兩種判斷直線與圓的位置關系判斷方法,并使每一個學生獲得后續學習的信心。
(五)小結作業
在小結環節,我會以口頭提問的方式:
(1)這節課學習的主要內容是什么?
(2)在數學問題的解決過程中運用了哪些數學思想?
設計意圖:啟發式的課堂小結方式能讓學生主動回顧本節課所學的知識點。也促使學生對知識網絡進行主動建構。
作業:在學生回顧本堂學習內容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節課主要用比較d與r的關系來解決這類問題,對用方程組解的個數的判斷方法,要求學生課外做進一步的探究,下一節課匯報。
高中數學教案模板范文【篇5】
一、教學目標
1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。
2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
3、通過對四種命題之間關系的學習,培養學生邏輯推理能力
4、初步培養學生反證法的數學思維。
二、教學分析
重點:四種命題;
難點:四種命題的關系
1、本小節首先從初中數學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。
2、教學時,要注意控制教學要求。本小節的內容,只涉及比較簡單的命題,不研究含有邏輯聯結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,
3、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。
三、教學手段和方法
1、以故事形式入題
2、多媒體演示
四、教學過程
(一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數學思想嗎?通過這節課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!
設計意圖:創設情景,激發學生學習興趣
(二)復習提問:
1.命題“同位角相等,兩直線平行”的條件與結論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真。
學生活動:
口答:
(1)若同位角相等,則兩直線平行;
(2)若一個四邊形是正方形,則它的四條邊相等.
設計意圖:通過復習舊知識,打下學習否命題、逆否命題的基礎.
(三)新課講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。
(四)組織討論:
讓學生歸納什么是否命題,什么是逆否命題。
(五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
(六)課堂小結:
1、一般地,用p和q分別表示原命題的條件和結論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結論)
否命題,若¬p則¬q;(同時否定原命題的條件和結論)
逆否命題若¬q則¬p。(交換原命題的條件和結論,并且同時否定)
2、四種命題的關系
(1).原命題為真,它的逆命題不一定為真。
(2).原命題為真,它的否命題不一定為真。
(3).原命題為真,它的逆否命題一定為真。
(七)回扣引入
分析引入中的笑話,先討論,后總結:現在我們來分析一下主人說的四句話:
第一句:“該來的沒來”其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。
第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。
五、作業
1.設原命題是“若斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判。
2.設原命題是“當時,若,則”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假。
高中數學教案模板范文【篇6】
教學目標:
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數學中一些常用的的數集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態度與價值觀:感受集合語言的意義和作用,培養合作交流、勤于思考、積極探討的精神,發展用嚴密謹慎的集合語言描述問題的習慣。
教學重難點:
(1)重點:了解集合的含義與表示、集合中元素的特性。
(2)難點:區別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學過程:
【問題1】在初中我們已經學習了圓、線段的垂直平分線,大家回憶一下教材中是如何對它們進行定義的?
[設計意圖]引出“集合”一詞。
【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設計意圖]探討并形成集合的含義。
【問題3】請同學們舉出認為是集合的例子。
[設計意圖]點評學生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無序性。
【問題4】同學們知道用什么來表示一個集合,一個元素嗎?集合與元素之間有怎樣的關系?
[設計意圖]區別表示集合與元素的的符號,介紹集合中一些常用的的數集及其記法。理解集合與元素的關系。
【問題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有實數根”組成的集
[設計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學們能用列舉法表示不等式x-7<3的解集嗎?
【問題7】例2的講解。請同學們思考課本第6頁的思考題。
[設計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學們總結這節課我們主要學習了那些內容?有什么學習體會?
[設計意圖]學習小結。對本節課所學知識進行回顧。布置作業。
高中數學教案模板范文【篇7】
一、單元教學內容
(1)算法的基本概念
(2)算法的基本結構:順序、條件、循環結構
(3)算法的基本語句:輸入、輸出、賦值、條件、循環語句
二、單元教學內容分析
算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力
三、單元教學課時安排:
1、算法的基本概念3課時
2、程序框圖與算法的基本結構5課時
3、算法的基本語句2課時
四、單元教學目標分析
1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義
2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。
3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。
4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
五、單元教學重點與難點分析
1、重點
(1)理解算法的含義
(2)掌握算法的基本結構
(3)會用算法語句解決簡單的實際問題
2、難點
(1)程序框圖
(2)變量與賦值
(3)循環結構
(4)算法設計
六、單元總體教學方法
本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。
七、單元展開方式與特點
1、展開方式
自然語言→程序框圖→算法語句
2、特點
(1)螺旋上升分層遞進
(2)整合滲透前呼后應
(3)三線合一橫向貫通
(4)彈性處理多樣選擇
八、單元教學過程分析
1、算法基本概念教學過程分析
對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。
2、算法的流程圖教學過程分析
對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。
3、基本算法語句教學過程分析
經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,
4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
九、單元評價設想
1、重視對學生數學學習過程的評價
關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。
2、正確評價學生的數學基礎知識和基本技能
關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法
高中數學教案模板范文【篇8】
教學目標:
1.掌握基本事件的概念;
2.正確理解古典概型的兩大特點:有限性、等可能性;
3.掌握古典概型的概率計算公式,并能計算有關隨機事件的概率。
教學重點:
掌握古典概型這一模型。
教學難點:
如何判斷一個實驗是否為古典概型,如何將實際問題轉化為古典概型問題。
教學方法:
問題教學、合作學習、講解法、多媒體輔助教學。
教學過程:
一、問題情境
有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點向下置于桌上,現從中任意抽取一張,則抽到的牌為紅心的概率有多大?
二、學生活動
1.進行大量重復試驗,用“抽到紅心”這一事件的頻率估計概率,發現工作量較大且不夠準確;
2.(1)共有“抽到紅心1”“抽到紅心2”“抽到紅心3”“抽到黑桃4”“抽到黑桃5”5種情況,由于是任意抽取的,可以認為出現這5種情況的可能性都相等;
(2)6個;即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”,這6種情況的可能性都相等;
三、建構數學
1.介紹基本事件的概念,等可能基本事件的概念;
2.讓學生自己總結歸納古典概型的兩個特點(有限性)、(等可能性);
3.得出隨機事件發生的概率公式:
四、數學運用
1.例題。
例1
有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點向下置于桌上,現從中任意抽取2張共有多少個基本事件?(用枚舉法,列舉時要有序,要注意“不重不漏”)
探究(1):一只口袋內裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個基本事件?該實驗為古典概型嗎?(為什么對球進行編號?)
探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個基本事件,對嗎?
學生活動:
探究(1)如果不對球進行編號,一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實上“摸到兩白”的機會要比“摸到兩黑”的機會大.記白球為1,2,3號,黑球為4,5號,通過枚舉法發現有10個基本事件,而且每個基本事件發生的可能性相同。
探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個基本事件。
例2
一只口袋內裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,則摸到的兩只球都是白球的概率是多少?
問題:在運用古典概型計算事件的概率時應當注意什么?
①判斷概率模型是否為古典概型。
②找出隨機事件A中包含的基本事件的個數和試驗中基本事件的總數。
教師示范并總結用古典概型計算隨機事件的概率的步驟。
例3
同時拋兩顆骰子,觀察向上的點數,問:
(1)共有多少個不同的可能結果?
(2)點數之和是6的可能結果有多少種?
(3)點數之和是6的概率是多少?
問題:如何準確的寫出“同時拋兩顆骰子”所有基本事件的個數?
問題:點數之和是3的倍數的可能結果有多少種?
例4
甲、乙兩人作出拳游戲(錘子、剪刀、布),求:
(1)平局的概率;
(2)甲贏的概率;
(3)乙贏的概率.
設計意圖:進一步提高學生對將實際問題轉化為古典概型問題的能力。
2.練習.
(1)一枚硬幣連擲3次,只有一次出現正面的概率為________。
(2)在20瓶飲料中,有3瓶已過了保質期,從中任取1瓶,取到已過保質期的飲料的概率為________。
(3)第103頁練習1,2。
(4)從1,2,3,…,9這9個數字中任取2個數。
①2個數字都是奇數的概率為_________;
②2個數字之和為偶數的概率為________。
五、要點歸納與方法小結
本節課學習了以下內容:
1.基本事件,古典概型的概念和特點;
2.古典概型概率計算公式以及注意事項、