小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

中學生數學教學設計

時間: 沐欽 教學設計

在現實社會中,教學是重要的工作之一。所謂反思,就是能夠快速從一個場景和情境中走出來,看到自己在之前的場景和情境中的表現。下面是小編為大家帶來的中學生數學教學設計7篇,希望大家能夠喜歡!

中學生數學教學設計

中學生數學教學設計篇1

集合的概念

教學目的:

(1)使學生初步理解集合的概念,知道常用數集的概念及記法

(2)使學生初步了解“屬于”關系的意義

(3)使學生初步了解有限集、無限集、空集的意義

教學重點:集合的基本概念及表示方法

教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示

一些簡單的集合

授課類型:新授課

課時安排:1課時

教具:多媒體、實物投影儀

內容分析:

1.集合是中學數學的一個重要的基本概念在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數中用到的有數集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎

把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎例如,下一章講函數的概念與性質,就離不開集合與邏輯

本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

這節課主要學習全章的引言和集合的基本概念學習引言是引發學生的學習興趣,使學生認識學習本章的意義本節課的教學重點是集合的基本概念

集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明

教學過程:

一、復習引入:

1.簡介數集的發展,復習公約數和最小公倍數,質數與和數;

2.教材中的章頭引言;

3.集合論的創始人——康托爾(德國數學家)(見附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有關概念:

由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.

定義:一般地,某些指定的對象集在一起就成為一個集合.

1、集合的概念

(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

(2)元素:集合中每個對象叫做這個集合的元素

2、常用數集及記法

(1)非負整數集(自然數集):全體非負整數的集合記作N,

(2)正整數集:非負整數集內排除0的集記作N_N+

(3)整數集:全體整數的集合記作Z,

(4)有理數集:全體有理數的集合記作Q,

(5)實數集:全體實數的集合記作R

注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括

數0

(2)非負整數集內排除0的集記作N_N+Q、Z、R等其它

數集內排除0的集,也是這樣表示,例如,整數集內排除0

的集,表示成Z

_

3、元素對于集合的隸屬關系

(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

4、集合中元素的特性

(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,

或者不在,不能模棱兩可

(2)互異性:集合中的元素沒有重復

(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)

5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……

元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的開口方向,不能把a∈A顛倒過來寫

三、練習題:

1、教材P5練習1、2

2、下列各組對象能確定一個集合嗎?

(1)所有很大的實數(不確定)

(2)好心的人(不確定)

(3)1,2,2,3,4,5.(有重復)

3、設a,b是非零實數,那么可能取的值組成集合的元素是_-2,0,2__

4、由實數x,-x,|x|,所組成的集合,最多含(A)

(A)2個元素(B)3個元素(C)4個元素(D)5個元素

5、設集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數,求證:

(1)當x∈N時,x∈G;

(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G

證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

則x=x+0_a+b∈G,即x∈G

證明(2):∵x∈G,y∈G,

∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

∵a∈Z,b∈Z,c∈Z,d∈Z

∴(a+c)∈Z,(b+d)∈Z

∴x+y=(a+c)+(b+d)∈G,

又∵=

且不一定都是整數,

∴=不一定屬于集合G

四、小結:本節課學習了以下內容:

1.集合的有關概念:(集合、元素、屬于、不屬于)

2.集合元素的性質:確定性,互異性,無序性

3.常用數集的定義及記法

五、課后作業:

六、板書設計(略)

七、課后記:

中學生數學教學設計篇2

一、教學內容分析

圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象。恰當地利用定義解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

二、學生學習情況分析

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

三、設計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率。

四、教學目標

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習,強化對圓錐曲線定義的'理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3、借助多媒體輔助教學,激發學習數學的興趣。

五、教學重點與難點:

教學重點

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學難點:

巧用圓錐曲線定義解題

六、教學過程設計

【設計思路】

(一)開門見山,提出問題

一上課,我就直截了當地給出——

例題1:(1)已知A(—2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)線段(D)不存在

(2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

【設計意圖】

定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

【學情預設】

估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|5入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。

(二)理解定義、解決問題

例2(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。

(2)在(1)的條件下,給定點P(—2,2),求|PA|

【設計意圖】

運用圓錐曲線定義中的數量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。

【學情預設】

根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯系起來,這樣就容易和第二定義聯系起來,從而找到解決本題的突破口。

(三)自主探究、深化認識

如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會

練習:設點Q是圓C:(x1)2225|AB|的最小值。3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。

引申:若將點A移到圓C外,點M的軌跡會是什么?

【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,

可借助“多媒體課件”,引導學生對自己的結論進行驗證。

【知識鏈接】

(一)圓錐曲線的定義

1、圓錐曲線的第一定義

2、圓錐曲線的統一定義

(二)圓錐曲線定義的應用舉例

1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。

2、|PF1||PF2|2。P為等軸雙曲線x2y2a2上一點,F1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。

3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。

4、(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。

(2)已知A(,3)為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。

(3)已知點P(—2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。

5、已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。

七、教學反思

1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。

2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法。循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。

總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題。而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。

中學生數學教學設計篇3

函數單調性與奇偶性

教學目標

1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.

(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.

(2)能從數和形兩個角度認識單調性和奇偶性.

(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.

2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.

3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.

教學建議

一、知識結構

(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.

(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.

二、重點難點分析

(1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.

(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.

三、教法建議

(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.

(2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.

函數的奇偶性概念引入時,可設計一個課件,以

\

的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值

\

開始,逐漸讓

\

在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式

\

時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象(如

\

)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.

中學生數學教學設計篇4

高中數學第一冊(上)1.1集合(一)教學案例教學目標:1、理解集合、集合的元素的概念;2、了解集合的元素的三個特性;3、記憶常用數集的表示;4、會判斷元素與集合的關系,

集合(一)教學案例

。教學重點:1、集合的概念;2、集合的元素的三個特征性質教學難點:1、集合的元素的三個特性;2、數集與數集的關系課前準備:1、教具準備:多媒體制作數學家康托介紹,包括頭像、生平、對數學發展所作的貢獻;本節課所需的例題、圖形等。2、布置學生預習1.1集合.教學設計:一、[創設情境]多媒體展示激發興趣:為科學而瘋的人——康托托康(Contor,Georg)(1845-1918),俄羅斯—德國數學家、19世紀數學偉大成就之一—集合論的創立人。康托生於俄國聖彼得堡,父母親是丹_,父親出生於丹_都哥本哈根,是一個富裕的商人,他的母親瑪麗具有藝術家血統,他父母親年輕時移居到俄國聖彼得堡,康托就出生在那裡,康托是家中長子,並於1856年全家移居到德國法蘭克福,也因為康托多次改變國籍,許多國家都認為康托的成就都是它們培養出來的。康托自幼對數學有濃厚興趣。23歲獲博士學位,以后一直從事數學教學與研究。他所創立的集合論已被公認為全部數學的基礎。1874年康托的有關無窮的概念,震撼了知識界。康托憑借古代與中世紀哲學著作中關于無限的思想而導出了關于數的本質新的思想模式,建立了處理數學中的無限的基本技巧,從而極大地推動了分析與邏輯的發展。他研究數論和用三角函數地表示函數等問題,發現了驚人的結果:證明有理數是可列的,而全體實數是不可列的。由于研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為“悖論”),許多大數學家唯恐陷進去而采取退避三舍的態度。在1874—1876年期間,不到30歲的康托向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都“一樣多”,后來幾年,康托對這類“無窮集合”問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托的集合論是一種“疾病”,康托的概念是“霧中之霧”,甚至說康托是“瘋子”.來自數學_的巨大精神壓力終于摧垮了康托,使他心力交瘁,患了精神_,被送進精神病醫院.他在集合論方面許多非常出色的成果,都是在精神病發作的間歇時期獲得的.真金不怕火煉,康托的思想終于大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托的工作“可能是這個代所能夸耀的最巨大的工作。”可是這時康托仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托在一家精神病院去世。今天,我們將學習高中數學第一章集合與簡易邏輯的1.1集合(一),讓我們回顧一下初中涉及到集合的有關知識。二、[復習舊知識]復習提問:1.在初中,我們學過哪些集合?實數集、二元一次方程的解集、不等式(組)的解集、點的集合等。2.在初中,我們用集合描述過什么?角平分線、線段的垂直平分線、圓、圓的內部、圓的外部等。

實數有理數無理數整數分數正無理數負無理數正分數負分數負整數自然數正整數零3.實數的分類3、實數的分類:

實數正實數負實數零

4、以下由學生完成:(1)、把下列各數填入相應的圈內

0、、2.5、、、-6、、8%、19

整數集合分數集合無理數集合

(2).把下列各數填入相應的大括號內1、-10、、、-2、3.6、、—0.1、8、負有理數集合:{}

整數集合:{}

正實數集:{}

無理數集:{}

3.解不等式組(1)2x-3〈5

4.絕對值小于3的整數是—————————————————三、[學習互動]1、觀察下列對象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)與一個角的兩邊距離相等的點;(4)滿足x-3>2的全體實數;(5)本班全體男生;(6)我國古代四大發明;(7)20__年本省高考考試科目;(8)20__年奧運會的球類項目,

《集合(一)教學案例》通過學生觀察以上對象后,教師提問:[集合的概念](1)集合是什么?某些指定的對象集在一起就成為一個集合,簡稱集。(2)什么是集合的元素?集合中的每個對象叫做這個集合的元素。(3)集合、集合的元素怎樣表示?一般用大括號表示集合且常用大寫字母表示;集合中的元素用小寫字母表示。(4)集合中的元素與集合的關系a是集合A的元素,稱a屬于A,記作a∈A;a不是集合A的元素,稱a不屬于A,記作aA。2、探討下列問題(1){1,2,2,3}是含有1個1、2個2、1個3的集合嗎?(2)的科學家能構成一個集合嗎?(3){a,b,c,d}與{b,c,d,a}是否表同一個集合?通過師生共同探討得出下面結論:通過師生共同探討得出結論:[集合中的元素的性質]確定性:集合中的元素必須是確定的。集合的元素的特點互異性:集合中的元素必須是互異的。無序性:集合中的元素是無先后順序的。組成集合的元素可以是:數、圖、人、事物等。[常用數集的表示](1)自然數集:用N表示(2)正整數集:用N﹡或N+表示(3)整數集:用Z表示(4)有理數集:用Q表示(5)實數集:用R表示(正實數集用R_R+表示)四、[四、[互動參與]例1下面的各組對象能否構成集合是()(A)所有的好人(B)小于20__的實數(C)和20__非常接近的數(D)方程x2-3x+2=0的根例2用符號填空(1)3.14Q(2)πQ(3)0N+(4)0N

32(5)(-2)0N_6)Q

3232(7)Z(8)—R

五、[分層議練]1、選擇題(1)下列不能形成集合的是()A、所有三角形B、《高一數學》中的所有難題C、大于π的整數D、所以的無理數2、判斷正誤(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,則xN()(3)若xQ,則xR()(4)若xN,則xN+()

常用數集屬于a∈AN、N_或N+)、Z、Q、R。集合集合的概念元素與集合的關系集合中元素的性質確定性互異性無序性不屬于aA

本節課設計的目的:通過創設情境激發學生的學習興趣,課前預習培養學生的自學能力;多媒體輔助教學提高課堂效益,使教學呈現方式多樣化;探索現代教學手段與高中數學教學的整合。

中學生數學教學設計篇5

一、教材分析

1、教材地位和作用:二面角是我們日常生活中經常見到的、很普通的一個空間圖形。“二面角”是人教版《數學》第二冊(下B)中9.7的內容。它是在學生學過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學生進一步研究多面體的基礎。因此,它起著承上啟下的作用。通過本節課的學習還對學生系統地掌握直線和平面的知識乃至于創新能力的培養都具有十分重要的意義。

2、教學目標:

知識目標:(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

(2)進一步培養學生把空間問題轉化為平面問題的化歸思想。

能力目標:(1)突出對類比、直覺、發散等探索性思維的培養,從而提高學生的創新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。

德育目標:(1)使學生認識到數學知識來自實踐,并服務于實踐,增強學生應用數學的意識(2)通過揭示線線、線面、面面之間的內在聯系,進一步培養學生聯系的辯證唯物主義觀點。

情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。

3、重點、難點:

重點:“二面角”和“二面角的平面角”的概念

難點:“二面角的平面角”概念的形成過程

二、教法分析

1、教學方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導、活動探究和類比發現法,在形成技能時以訓練法、探究研討法為主。

2、教學控制與調節的措施:本節課由于充分運用了多媒體和實物教具,預計學生對二面角及二面角平面角的概念能夠理解,根據學生及教學的實際情況,估計二面角的具體求法一節課內完成有一定的困難,所以將其放在下節課。

3、教學手段:教學手段的現代化有利于提高課堂效益,有利于創新人才的培養,根據本節課的教學需要,確定利用多媒體課件來輔助教學;此外,為加強直觀教學,還要預先做好一些二面角的模型。

三、學法指導

1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創新意識,全身心地投入到學習中去,成為學習的主人。

2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯想等數學思想方法的運用,學會建立完善的認知結構。

3、會學:通過自己親身參與,學生要領會復習類比和深入研究這兩種知識創新的方法,從而既學到知識,又學會創新,既能解決問題,更能發現問題。

四、教學過程

心理學研究表明,當學生明確數學概念的學習目的和意義時,就會對概念的學習產生濃厚的興趣。創設問題情境,激發了學生的創新意識,營造了創新思維的氛圍。

(一)、二面角

1、揭示概念產生背景。

問題情境1、在平面幾何中“角”是怎樣定義的?

問題情境2、在立體幾何中我們還學習了哪些角?

問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。

通過這三個問題,打開了學生的原有認知結構,為知識的創新做好了準備;同時也讓學生領會到,二面角這一概念的產生是因為它與我們的生活密不可分,激發學生的求知欲。2、展現概念形成過程。

問題情境4、那么,應該如何定義二面角呢?

創設這個問題情境,為學生創新思維的展開提供了空間。引導學生回憶平面幾何中“角”這一概念的引入過程。教師應注意多讓學生說,對于學生的創新意識和創新結果,教師要給與積極的評價。

問題情境5、同學們能舉出一些二面角的實例嗎?通過實際運用,可以促使學生更加深刻地理解概念。

(二)、二面角的平面角

1、揭示概念產生背景。平面幾何中可以把角理解為是一個旋轉量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉而成的,也是一個旋轉量。說明二面角不僅有大小,而且其大小是唯一確定的。平面

與平面的位置關系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。

問題情境6、二面角的大小應該怎么度量?能否轉化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產生的背景。

2、展現概念形成過程

(1)、類比。教師啟發,尋找類比聯想的對象。

問題情境7、我們以前碰到過類似的問題嗎?引導學生回憶前面所學過的兩種空間角的定義,電腦演示以提高效率。

問題情境8、兩定義的共同點是什么?生:空間角總是轉化為平面的角,并且這個角是唯一確定的。

問題情境9、這個平面的角的頂點及兩邊是如何確定的?

(2)、提出猜想:二面角的大小也可通過平面的角來定義。對學生提出的猜想,教師應該給予充分的肯定,以培養他們大膽猜想的意識和習慣,這對強化他們的創新意識大有幫助。

問題情境10、那么,這個角的頂點及兩邊應如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內。這也是學生直覺思維的結果。

(3)、探索實驗。通過實驗,激發了學生的學習興趣,培養了學生的動手操作能力。

(4)、繼續探索,得到定義。

問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發現,角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內唯一確定,聯想到平面內過直線上一點的垂線的唯一性,由此發現二面角的大小的一種描述方法。

(5)、自我驗證:要求學生閱讀課本上的定義。并說明定義的合理性,教師作適當的引導,并加以理論證明。

(三)、二面角及其平面角的畫法

主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

(四)、范例分析

為鞏固學生所學知識,由于時間的關系設置了一道例題。來源于實際生活,不但培養了學生分析問題和解決問題的能力,也讓學生領會到數學概念來自生活實際,并服務于生活實際,從而增強他們應用數學的意識。

例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。

分析:涉及二面角的計算問題,關鍵是找出(或作出)該二面角的平面角。引導學生充分利用已知圖形的性質,最后發現可由定義找出該二面角的平面角。可讓學生先做,為調動學生的積極性,并增加學生的參與感,活躍課堂的氣氛,教師可給學生板演的機會。教師講評時強調解題規范即必須證明∠BDc是二面角B—AD—c的平面角。

變式訓練:圖中共有幾個二面角?能求出它們的大小嗎?根據課堂實際情況,本題的變式訓練也可作為課后思考題。

題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

(五)、練習、小結與作業

練習:習題9.7的第3題

小結在復習完二面角及其平面角的概念后,要求學生對空間中三種角加以比較、歸納,以促成學生建立起空間中角這一概念系統。同時要求學生對本節課的學習方法進行總結,領會復習類比和深入研究這兩種知識創新的方法。

作業:習題9.7的第4題

思考題:見例題

五、板書設計(見課件)

以上是我對《二面角》授課的初步設想,不足之處,懇請大家批評指正,謝謝!

中學生數學教學設計篇6

各位評委、各位專家,大家好!今天,我說課的內容是人民教育出版社全日制普通高級中學教科書(必修)《數學》第一章第五節“一元二次不等式解法”。

下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。

(二)教學內容

本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。

二、教學目標分析

根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:

知識目標——理解“三個二次”的'關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。

三、重難點分析

一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。

要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。

四、教法與學法分析

(一)學法指導

教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。

(二)教法分析

本節課設計的指導思想是:現代認知心理學——建構主義學習理論。

建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。

五、課堂設計

本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。

(一)創設情景,引出“三個一次”的關系

本節課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。

為此,我設計了以下幾個問題:

1、請同學們解以下方程和不等式:

①2x-7=0;②2x-70;③2x-70

學生回答,我板書。

2、我指出:2x-70和2x-70的解實際上只需利用不等式基本性質就容易得到。

3、接著我提出:我們能否利用不等式的基本性質來解一元二次不等式呢?學生可能感到很困惑。

4、為此,我引入一次函數y=2x-7,借助動畫從圖象上直觀認識方程和不等式的解,得出以下三組重要關系:

①2x-7=0的解恰是函數y=2x-7的圖象與x軸

交點的橫坐標。

②2x-70的解集正是函數y=2x-7的圖象

在x軸的上方的點的橫坐標的集合。

③2x-70的解集正是函數y=2x-7的圖象

在x軸的下方的點的橫坐標的集合。

三組關系的得出,實際上讓學生找到了利用“一次函數的圖象”來解一元一次方程和一元一次不等式的方法。讓學生看到了解決一元二次不等式的希望,大大激發了學生解決新問題的興趣。此時,學生很自然聯想到利用函數y=x2-x-6的圖象來求不等式x2-x-60的解集。

(二)比舊悟新,引出“三個二次”的關系

為此我引導學生作出函數y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進行探究。

看函數y=x2-x-6的圖象并說出:

①方程x2-x-6=0的解是

x=-2或x=3 ;

②不等式x2-x-60的解集是

{x|x-2,或x3};

③不等式x2-x-60的解集是

{x|-23}。

此時,學生已經沖出了困惑,找到了利用二次函數的圖象來解一元二次不等式的方法。

學生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數y=x2-x-6變為y=ax2+bx+c(a0),那么圖象與x軸的位置關系又怎樣呢?(學生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學們討論:ax2+bx+c0與ax2+bx+c0的解集與函數y=ax2+bx+c的圖象有怎樣的關系?

(三)歸納提煉,得出“三個二次”的關系

1、引導學生根據圖象與x軸的相對位置關系,寫出相關不等式的解集。

2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經討論之后,有的學生得出:將二次項系數由負化正,轉化為上述模式求解,教師應予以強調;也有的學生提出畫出相應的二次函數圖象,根據圖象寫出解集,教師應給予肯定。)

(四)應用新知,熟練掌握一元二次不等式的解集

借助二次函數的圖象,得到一元二次不等式的解集,學生形成了感性認識,為鞏固所學知識,我們一起來完成以下例題:

例1、解不等式2x2-3x-20

解:因為Δ0,方程2x2-3x-2=0的解是

x1= ,x2=2

所以,不等式的解集是

{ x| x ,或x2}

例1的解決達到了兩個目的:一是鞏固了一元二次不等式解集的應用;二是規范了一元二次不等式的解題格式。

下面我們接著學習課本例2。

例2 解不等式-3x2+6x2

課本例2的出現恰當好處,一方面突出了“對于二次項系數是負數(即a0)的一元二次不等式,可以先把二次項系數化為正數,再求解”;另一方面,學生對此例的解答極易出現寫錯解集(如出現“或”與“且”的錯誤)。

通過例1、例2的解決,學生與我一起總結了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

例3 解不等式4x2-4x+10

例4 解不等式-x2+2x-30

分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學生練習,教師巡視、指導,講評學生完成情況,尋找學生中的閃光點,給予熱情表揚。

4道例題,具有典型性、層次性和學生的可接受性。為了避免學生學后“一團亂麻”、“一盤散沙”的局面,我和學生一起總結。

(五)總結

解一元二次不等式的“四部曲”:

(1)把二次項的系數化為正數

(2)計算判別式Δ

(3)解對應的一元二次方程

(4)根據一元二次方程的根,結合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

(六)作業布置

為了使所有學生鞏固所學知識,我布置了“必做題”;又為學有余力者留有自由發展的空間,我布置了“探究題”。

(1)必做題:習題1.5的1、3題

(2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實數k的取值范圍。

(七)板書設計

一元二次不等式解法(1)

五、教學效果評價

本節課立足課本,著力挖掘,設計合理,層次分明。以“三個一次關系→三個二次關系→一元二次不等式解法”為主線,以“從形到數,從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學思想上既注重知識形成過程的教學,還特別突出學生學習方法的指導,探究能力的訓練,創新精神的培養,引導學生發現數學的美,體驗求知的樂趣。

中學生數學教學設計篇7

教材分析:

三角函數的誘導公式是普通高中課程標準實驗教科書(人教B版)數學必修四,第一章第二節內容,其主要內容是公式(一)至公式(四)。本節課是第二課時,教學內容是公式(三)。教材要求通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法。

教案背景:

通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求。因此本節內容在三角函數中占有非常重要的地位.

教學方法:

以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式。

教學目標:

借助單位圓探究誘導公式。

能正確運用誘導公式將任意角的三角函數化為銳角三角函數。

教學重點:

誘導公式(三)的推導及應用。

教學難點:

誘導公式的應用。

教學手段:

多媒體。

教學情景設計:

一.復習回顧:

1. 誘導公式(一)(二)。

2. 角 (終邊在一條直線上)

3. 思考:下列一組角有什么特征?( )能否用式子來表示?

二.新課:

已知 由

可知

而 (課件演示,學生發現)

所以

于是可得: (三)

設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。

由公式(一)(三)可以看出,角 角 相等。即:

.

公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數式的值或化簡三角函數式。

設計意圖:結合學過的公式(一)(二),發現特點,總結公式。

1. 練習

(1)

設計意圖:利用公式解決問題,發現新問題,小組研究討論,得到新公式。

(學生板演,老師點評,用彩色粉筆強調重點,引導學生總結公式。)

三.例題

例3:求下列各三角函數值:

(1)

(2)

(3)

(4)

例4:化簡

設計意圖:利用公式解決問題。

練習:

(1)

(2) (學生板演,師生點評)

設計意圖:觀察公式特點,選擇公式解決問題。

四.課堂小結:將任意角三角函數轉化為銳角三角函數,體現轉化化歸,數形結合思想的應用,培養了學生分析問題、解決問題的能力,熟練應用解決問題。

五.課后作業:課后練習A、B組

六.課后反思與交流

很榮幸大家來聽我的課,通過這課,我學習到如下的東西:

1.要認真的研讀新課標,對教學的目標,重難點把握要到位

2.注意板書設計,注重細節的東西,語速需要改正

3.進一步的學習網頁制作,讓你的網頁更加的完善,學生更容易操作

4.盡可能讓你的學生自主提出問題,自主的思考,能夠化被動學習為主動學習,充分享受學習數學的樂趣

5.上課的生動化,形象化需要加強

聽課者評價:

1.評議者:網絡輔助教學,起到了很好的效果;教態大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數學時,最好值有個側重點;網絡設計上,網頁上公開的推導公式為上,留有更大的空間讓學生來思考。

2.評議者:網絡教學效果良好,給學生自主思考,學習的空間發揮,教學設計得好;建議:課堂講課聲音,語調可以更有節奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。

3.評議者:學科網絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經驗。

4.評議者:引導學生通過網絡進行探究。

建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。

( 1)給學生思考的時間較長,語調相對平緩,總結時,給學生一些激勵的語言更好

( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考

( 3)網絡平臺的使用,使得學生的參與度明顯提高,存在問題:1.公式對稱性的誘導,點與點的對稱的誘導,終邊的關系的誘導,要進一步的修正;2.公式的概括要注意引導學生怎么用,學習這個誘導公式的作用

( 4)給學生答案,這個網頁要進一步的修正,答案能否不要一點就出來

( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少

( 6)讓學生多探究,課堂會更熱鬧

( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習

( 8)教學模式相對簡單重復

( 9)思路較為清晰,規范化的推理

26466 主站蜘蛛池模板: 粤丰硕水性环氧地坪漆-防静电自流平厂家-环保地坪涂料代理 | 苹果售后维修点查询,苹果iPhone授权售后维修服务中心 – 修果网 拼装地板,悬浮地板厂家,悬浮式拼装运动地板-石家庄博超地板科技有限公司 | 天津市能谱科技有限公司-专业的红外光谱仪_红外测油仪_紫外测油仪_红外制样附件_傅里叶红外光谱技术生产服务厂商 | 广东佛电电器有限公司|防雷开关|故障电弧断路器|智能量测断路器 广东西屋电气有限公司-广东西屋电气有限公司 | 专业生物有机肥造粒机,粉状有机肥生产线,槽式翻堆机厂家-郑州华之强重工科技有限公司 | 展厅设计公司,展厅公司,展厅设计,展厅施工,展厅装修,企业展厅,展馆设计公司-深圳广州展厅设计公司 | 合肥白癜风医院_[治疗白癜风]哪家好_合肥北大白癜风医院 | 胀套-锁紧盘-风电锁紧盘-蛇形联轴器「厂家」-瑞安市宝德隆机械配件有限公司 | 可程式恒温恒湿试验箱|恒温恒湿箱|恒温恒湿试验箱|恒温恒湿老化试验箱|高低温试验箱价格报价-广东德瑞检测设备有限公司 | 岩棉板|岩棉复合板|聚氨酯夹芯板|岩棉夹芯板|彩钢夹芯板-江苏恒海钢结构 | 杰恒蠕动泵-蠕动泵专业厂家-19年专注蠕动泵 | 奥因-光触媒除甲醛公司-除甲醛加盟公司十大品牌 | 仓储笼_金属箱租赁_循环包装_铁网箱_蝴蝶笼租赁_酷龙仓储笼租赁 测试治具|过炉治具|过锡炉治具|工装夹具|测试夹具|允睿自动化设备 | 超声波_清洗机_超声波清洗机专业生产厂家-深圳市好顺超声设备有限公司 | 雾度仪_雾度计_透光率雾度仪价格-三恩时(3nh)光电雾度仪厂家 | 精密钢管,冷拔精密无缝钢管,精密钢管厂,精密钢管制造厂家,精密钢管生产厂家,山东精密钢管厂家 | 江西自考网-江西自学考试网 | 阿里巴巴诚信通温州、台州、宁波、嘉兴授权渠道商-浙江联欣科技提供阿里会员办理 | 印刷人才网 印刷、包装、造纸,中国80%的印刷企业人才招聘选印刷人才网! | 茅茅虫AI论文写作助手-免费AIGC论文查重_写毕业论文降重 | 撕碎机,撕破机,双轴破碎机-大件垃圾破碎机厂家 | 意大利Frascold/富士豪压缩机_富士豪半封闭压缩机_富士豪活塞压缩机_富士豪螺杆压缩机 | 颗粒机,颗粒机组,木屑颗粒机-济南劲能机械有限公司 | 信阳网站建设专家-信阳时代网联-【信阳网站建设百度推广优质服务提供商】信阳网站建设|信阳网络公司|信阳网络营销推广 | 酒精检测棒,数显温湿度计,酒安酒精测试仪,酒精检测仪,呼气式酒精检测仪-郑州欧诺仪器有限公司 | 不锈钢散热器,冷却翅片管散热器厂家-无锡市烨晟化工装备科技有限公司 | 河南15年专业网站建设制作设计,做网站就找郑州启凡网络公司 | 安规_综合测试仪,电器安全性能综合测试仪,低压母线槽安规综合测试仪-青岛合众电子有限公司 | 北京征地律师,征地拆迁律师,专业拆迁律师,北京拆迁律师,征地纠纷律师,征地诉讼律师,征地拆迁补偿,拆迁律师 - 北京凯诺律师事务所 | 十字轴_十字轴万向节_十字轴总成-南京万传机械有限公司 | 铁艺,仿竹,竹节,护栏,围栏,篱笆,栅栏,栏杆,护栏网,网围栏,厂家 - 河北稳重金属丝网制品有限公司 山东太阳能路灯厂家-庭院灯生产厂家-济南晟启灯饰有限公司 | 雷冲击高压发生器-水内冷直流高压发生器-串联谐振分压器-武汉特高压电力科技有限公司 | 骨灰存放架|骨灰盒寄存架|骨灰架厂家|智慧殡葬|公墓陵园管理系统|网上祭奠|告别厅智能化-厦门慈愿科技 | 塑胶跑道_学校塑胶跑道_塑胶球场_运动场材料厂家_中国塑胶跑道十大生产厂家_混合型塑胶跑道_透气型塑胶跑道-广东绿晨体育设施有限公司 | 电磁流量计_智能防腐防爆管道式计量表-金湖凯铭仪表有限公司 | 螺纹三通快插接头-弯通快插接头-宁波舜驰气动科技有限公司 | 中红外QCL激光器-其他连续-半导体连续激光器-筱晓光子 | 郑州大巴车出租|中巴车租赁|旅游大巴租车|包车|郑州旅游大巴车租赁有限公司 | 全自动过滤器_反冲洗过滤器_自清洗过滤器_量子除垢环_量子环除垢_量子除垢 - 安士睿(北京)过滤设备有限公司 | Safety light curtain|Belt Sway Switches|Pull Rope Switch|ultrasonic flaw detector-Shandong Zhuoxin Machinery Co., Ltd | 河南不锈钢水箱_地埋水箱_镀锌板水箱_消防水箱厂家-河南联固供水设备有限公司 |