小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 > 優秀教案 >

三下數學人教版優秀教案

時間: 新華 優秀教案

數學教學要尊重學生個體差異,注重培養學生自主學習的意識,激發學生學習興趣。在數學教學工作中,你知道如何寫優秀數學教案?不妨和我們分享一下。你是否在找正準備撰寫“三下數學人教版優秀教案”,下面小編收集了相關的素材,供大家寫文參考!

三下數學人教版優秀教案1

教學目標

1.等腰三角形的概念. 2.等腰三角形的性質. 3.等腰三角形的概念及性質的應用.

教學重點: 1.等腰三角形的概念及性質. 2.等腰三角形性質的應用.

教學難點:等腰三角形三線合一的性質的理解及其應用.

教學過程

Ⅰ.提出問題,創設情境

在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

有的三角形是軸對稱圖形,有的三角形不是.

問題:那什么樣的三角形是軸對稱圖形?

滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

我們這節課就來認識一種成軸對稱圖形的三角形──等腰三角形.

Ⅱ.導入新課: 要求學生通過自己的思考來做一個等腰三角形.

作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

思考:

1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

2.等腰三角形的兩底角有什么關系?

3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系.

沿等腰三角形的頂角的平分線對折,發現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質:

1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過程獲得啟發,我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質.同學們現在就動手來寫出這些證明過程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,

求:△ABC各角的度數.

分析:根據等邊對等角的性質,我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內角和為180°,就可求出△ABC的三個內角.

把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.

解:因為AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對等角).

設∠A=x,則 ∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過練習來鞏固這節課所學的知識.

Ⅲ.隨堂練習:1.課本P51練習 1、2、3. 2.閱讀課本P49~P51,然后小結.

Ⅳ.課時小結

這節課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過這節課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們.

Ⅴ.作業: 課本P56習題12.3第1、2、3、4題.

板書設計

12.3.1.1 等腰三角形

一、設計方案作出一個等腰三角形

二、等腰三角形性質: 1.等邊對等角 2.三線合一

三下數學人教版優秀教案2

一、學習目標:1.添括號法則.

2.利用添括號法則靈活應用完全平方公式

二、重點難點

重 點: 理解添括號法則,進一步熟悉乘法公式的合理利用

難 點: 在多項式與多項式的乘法中適當添括號達到應用公式的目的.

三、合作學習

Ⅰ.提出問題,創設情境

請同學們完成下列運算并回憶去括號法則.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)

去括號法則:

去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不變號;

如果括號前是負號,去掉括號后,括號里的各項都要變號。

1.在等號右邊的括號內填上適當的項:

(1)a+b-c=a+( ) (2)a-b+c=a-( )

(3)a-b-c=a-( ) (4)a+b+c=a-( )

2.判斷下列運算是否正確.

(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

添括號法則:添上一個正括號,擴到括號里的不變號,添上一個負括號,擴到括號里的要變號。

五、精講精練

例:運用乘法公式計算

(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

隨堂練習:教科書練習

五、小結:去括號法則

六、作業:教科書習題

三下數學人教版優秀教案3

教學目標

1、理解并掌握等腰三角形的判定定理及推論

2、能利用其性質與判定證明線段或角的相等關系.

教學重點:等腰三角形的判定定理及推論的運用

教學難點:正確區分等腰三角形的判定與性質,能夠利用等腰三角形的判定定理證明線段的相等關系.

教學過程:

一、復習等腰三角形的性質

二、新授:

I提出問題,創設情境

出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質專家測得AC的長度就可知河流寬度.

學生們很想知道,這樣估測河流寬度的根據是什么?帶著這個問題,引導學生學習“等腰三角形的判定”.

II引入新課

1.由性質定理的題設和結論的變化,引出研究的內容——在△ABC中,苦∠B=∠C,則AB=AC嗎?

作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關系?

2.引導學生根據圖形,寫出已知、求證.

2、小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

強調此定理是在一個三角形中把角的相等關系轉化成邊的相等關系的重要依據,類似于性質定理可簡稱“等角對等邊”.

4.引導學生說出引例中地質專家的測量方法的根據.

III例題與練習

1.如圖2

其中△ABC是等腰三角形的是[]

2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據什么?).

②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.

④若已知AD=4cm,則BC______cm.

3.以問題形式引出推論l______.

4.以問題形式引出推論2______.

例:如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.

分析:引導學生根據題意作出圖形,寫出已知、求證,并分析證明.

練習:5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?

(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

練習:P53練習1、2、3。

IV課堂小結

1.判定一個三角形是等腰三角形有幾種方法?

2.判定一個三角形是等邊三角形有幾種方法?

3.等腰三角形的性質定理與判定定理有何關系?

4.現在證明線段相等問題,一般應從幾方面考慮?

V布置作業:P56頁習題12.3第5、6題

三下數學人教版優秀教案4

理解一元二次方程求根公式的推導過程,了解公式法的概念,會熟練應用公式法解一元二次方程.

復習具體數字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導,并應用公式法解一元二次方程.

重點

求根公式的推導和公式法的應用.

難點

一元二次方程求根公式的推導.

一、復習引入

1.前面我們學習過解一元二次方程的“直接開平方法”,比如,方程

(1)x2=4 (2)(x-2)2=7

提問1 這種解法的(理論)依據是什么?

提問2 這種解法的局限性是什么?(只對那種“平方式等于非負數”的特殊二次方程有效,不能實施于一般形式的二次方程.)

2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)

(學生活動)用配方法解方程 2x2+3=7x

(老師點評)略

總結用配方法解一元二次方程的步驟(學生總結,老師點評).

(1)先將已知方程化為一般形式;

(2)化二次項系數為1;

(3)常數項移到右邊;

(4)方程兩邊都加上一次項系數的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0 (2)ax2+bx+3=0

如果這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學獨立完成下面這個問題.

問題:已知ax2+bx+c=0(a≠0),試推導它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)

分析:因為前面具體數字已做得很多,我們現在不妨把a,b,c也當成一個具體數字,根據上面的解題步驟就可以一直推下去.

解:移項,得:ax2+bx=-c

二次項系數化為1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,當b2-4ac≥0時,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接開平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a,b,c而定,因此:

(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)這個式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有兩個實數根.

例1 用公式法解下列方程:

(1)2x2-x-1=0 (2)x2+1.5=-3x

(3)x2-2x+12=0 (4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先應把它化為一般形式,然后代入公式即可.

補:(5)(x-2)(3x-5)=0

三、鞏固練習

教材第12頁 練習1.(1)(3)(5)或(2)(4)(6).

四、課堂小結

本節課應掌握:

(1)求根公式的概念及其推導過程;

(2)公式法的概念;

(3)應用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數a,b,c,注意各項的系數包括符號;3)計算b2-4ac,若結果為負數,方程無解;4)若結果為非負數,代入求根公式,算出結果.

(4)初步了解一元二次方程根的情況.

五、作業布置

教材第17頁 習題4

三下數學人教版優秀教案5

教學過程

I創設情境,提出問題

回顧上節課講過的等邊三角形的有關知識

1.等邊三角形是軸對稱圖形,它有三條對稱軸.

2.等邊三角形每一個角相等,都等于60°

3.三個角都相等的三角形是等邊三角形.

4.有一個角是60°的等腰三角形是等邊三角形.

其中1、2是等邊三角形的性質;3、4的等邊三角形的判斷方法.

II例題與練習

1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

①在邊AB、AC上分別截取AD=AE.

②作∠ADE=60°,D、E分別在邊AB、AC上.

③過邊AB上D點作DE∥BC,交邊AC于E點.

2.已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.

3.P56頁練習1、2

III課堂小結:1.等腰三角形和性質;等腰三角形的條件

V布置作業:1.P58頁習題12.3第ll題.

2.已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?


數學教案相關文章:

2021五年級公開課數學教案

四年級數學課堂教案

《認識圖形》一年級數學上冊教案

2022人教版一年級數學上冊教案

2022青島版四年級數學上冊教案

小學教案模板

高中教案模板

小學教案模板

小學教案模板

13709 主站蜘蛛池模板: 专业生产动态配料系统_饲料配料系统_化肥配料系统等配料系统-郑州鑫晟重工机械有限公司 | 细砂提取机,隔膜板框泥浆污泥压滤机,螺旋洗砂机设备,轮式洗砂机械,机制砂,圆锥颚式反击式破碎机,振动筛,滚筒筛,喂料机- 上海重睿环保设备有限公司 | 深圳希玛林顺潮眼科医院(官网)│深圳眼科医院│医保定点│香港希玛林顺潮眼科中心连锁品牌 | 校车_校车价格_19座幼儿园校车_幼儿园校车_大鼻子校车 | 广东高华家具-公寓床|学生宿舍双层铁床厂家【质保十年】 | 高中学习网-高考生信息学习必备平台 | 连续密炼机_双转子连续密炼机_连续式密炼机-南京永睿机械制造有限公司 | 宿舍管理系统_智慧园区系统_房屋/房产管理系统_公寓管理系统 | 北京银联移动POS机办理_收银POS机_智能pos机_刷卡机_收银系统_个人POS机-谷骐科技【官网】 | 百方网-百方电气网,电工电气行业专业的B2B电子商务平台 | 深圳市源和塑胶电子有限公司-首页| 水篦子|雨篦子|镀锌格栅雨水篦子|不锈钢排水篦子|地下车库水箅子—安平县云航丝网制品厂 | ◆大型吹塑加工|吹塑加工|吹塑代加工|吹塑加工厂|吹塑设备|滚塑加工|滚塑代加工-莱力奇塑业有限公司 | 螺旋叶片_螺旋叶片成型机_绞龙叶片_莱州源泽机械制造有限公司 | 河南中专学校|职高|技校招生-河南中职中专网 | 济南网站建设_济南网站制作_济南网站设计_济南网站建设公司_富库网络旗下模易宝_模板建站 | 全自动烧卖机厂家_饺子机_烧麦机价格_小笼汤包机_宁波江北阜欣食品机械有限公司 | jrs高清nba(无插件)直播-jrs直播低调看直播-jrs直播nba-jrs直播 上海地磅秤|电子地上衡|防爆地磅_上海地磅秤厂家–越衡称重 | 智能化的检漏仪_气密性测试仪_流量测试仪_流阻阻力测试仪_呼吸管快速检漏仪_连接器防水测试仪_车载镜头测试仪_奥图自动化科技 | 废水处理-废气处理-工业废水处理-工业废气处理工程-深圳丰绿环保废气处理公司 | 浙江浩盛阀门有限公司| 安平县鑫川金属丝网制品有限公司,声屏障,高速声屏障,百叶孔声屏障,大弧形声屏障,凹凸穿孔声屏障,铁路声屏障,顶部弧形声屏障,玻璃钢吸音板 | 福州时代广告制作装饰有限公司-福州广告公司广告牌制作,福州展厅文化墙广告设计, | 工业洗衣机_工业洗涤设备_上海力净工业洗衣机厂家-洗涤设备首页 bkzzy在职研究生网 - 在职研究生招生信息咨询平台 | 自进式锚杆-自钻式中空注浆锚杆-洛阳恒诺锚固锚杆生产厂家 | CTAB,表面活性剂1631溴型(十六烷基三甲基溴化铵)-上海升纬化工原料有限公司 | 武汉不干胶印刷_标签设计印刷_不干胶标签印刷厂 - 武汉不干胶标签印刷厂家 | 云南外加剂,云南速凝剂,云南外加剂代加工-普洱澜湄新材料科技有限公司 | 壹车网 | 第一时间提供新车_资讯_报价_图片_排行! | 翻斗式矿车|固定式矿车|曲轨侧卸式矿车|梭式矿车|矿车配件-山东卓力矿车生产厂家 | 双能x射线骨密度检测仪_dxa骨密度仪_双能x线骨密度仪_品牌厂家【品源医疗】 | 轻型地埋电缆故障测试仪,频响法绕组变形测试仪,静荷式卧式拉力试验机-扬州苏电 | vr安全体验馆|交通安全|工地安全|禁毒|消防|安全教育体验馆|安全体验教室-贝森德(深圳)科技 | 陕西安玻璃自动感应门-自动重叠门-磁悬浮平开门厂家【捷申达门业】 | 氢氧化钙设备_厂家-淄博工贸有限公司 | 隧道窑炉,隧道窑炉厂家-山东艾瑶国际贸易 | 达利园物流科技集团- | 上海单片机培训|重庆曙海培训分支机构—CortexM3+uC/OS培训班,北京linux培训,Windows驱动开发培训|上海IC版图设计,西安linux培训,北京汽车电子EMC培训,ARM培训,MTK培训,Android培训 | 诸城网站建设-网络推广-网站优化-阿里巴巴托管-诸城恒泰互联 | 石家庄网站建设|石家庄网站制作|石家庄小程序开发|石家庄微信开发|网站建设公司|网站制作公司|微信小程序开发|手机APP开发|软件开发 | 多功能干燥机,过滤洗涤干燥三合一设备-无锡市张华医药设备有限公司 |