小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 > 優秀教案 >

好餓的小蛇數學優秀教案

時間: 新華 優秀教案

充分利用多媒體教學,創新數學教學方式、方法要適應課標理念的發展、變化。在數學教學工作中,你知道如何寫優秀數學教案?不妨和我們分享一下。你是否在找正準備撰寫“好餓的小蛇數學優秀教案”,下面小編收集了相關的素材,供大家寫文參考!

好餓的小蛇數學優秀教案1

教學目標

1、理解并掌握等腰三角形的判定定理及推論

2、能利用其性質與判定證明線段或角的相等關系.

教學重點:等腰三角形的判定定理及推論的運用

教學難點:正確區分等腰三角形的判定與性質,能夠利用等腰三角形的判定定理證明線段的相等關系.

教學過程:

一、復習等腰三角形的性質

二、新授:

I提出問題,創設情境

出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質專家測得AC的長度就可知河流寬度.

學生們很想知道,這樣估測河流寬度的根據是什么?帶著這個問題,引導學生學習“等腰三角形的判定”.

II引入新課

1.由性質定理的題設和結論的變化,引出研究的內容——在△ABC中,苦∠B=∠C,則AB=AC嗎?

作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關系?

2.引導學生根據圖形,寫出已知、求證.

2、小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

強調此定理是在一個三角形中把角的相等關系轉化成邊的相等關系的重要依據,類似于性質定理可簡稱“等角對等邊”.

4.引導學生說出引例中地質專家的測量方法的根據.

III例題與練習

1.如圖2

其中△ABC是等腰三角形的是[]

2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據什么?).

②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.

④若已知AD=4cm,則BC______cm.

3.以問題形式引出推論l______.

4.以問題形式引出推論2______.

例:如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.

分析:引導學生根據題意作出圖形,寫出已知、求證,并分析證明.

練習:5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?

(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

練習:P53練習1、2、3。

IV課堂小結

1.判定一個三角形是等腰三角形有幾種方法?

2.判定一個三角形是等邊三角形有幾種方法?

3.等腰三角形的性質定理與判定定理有何關系?

4.現在證明線段相等問題,一般應從幾方面考慮?

V布置作業:P56頁習題12.3第5、6題

好餓的小蛇數學優秀教案2

一、學習目標:1.添括號法則.

2.利用添括號法則靈活應用完全平方公式

二、重點難點

重 點: 理解添括號法則,進一步熟悉乘法公式的合理利用

難 點: 在多項式與多項式的乘法中適當添括號達到應用公式的目的.

三、合作學習

Ⅰ.提出問題,創設情境

請同學們完成下列運算并回憶去括號法則.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)

去括號法則:

去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不變號;

如果括號前是負號,去掉括號后,括號里的各項都要變號。

1.在等號右邊的括號內填上適當的項:

(1)a+b-c=a+( ) (2)a-b+c=a-( )

(3)a-b-c=a-( ) (4)a+b+c=a-( )

2.判斷下列運算是否正確.

(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

添括號法則:添上一個正括號,擴到括號里的不變號,添上一個負括號,擴到括號里的要變號。

五、精講精練

例:運用乘法公式計算

(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

隨堂練習:教科書練習

五、小結:去括號法則

六、作業:教科書習題

好餓的小蛇數學優秀教案3

教學過程

I創設情境,提出問題

回顧上節課講過的等邊三角形的有關知識

1.等邊三角形是軸對稱圖形,它有三條對稱軸.

2.等邊三角形每一個角相等,都等于60°

3.三個角都相等的三角形是等邊三角形.

4.有一個角是60°的等腰三角形是等邊三角形.

其中1、2是等邊三角形的性質;3、4的等邊三角形的判斷方法.

II例題與練習

1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

①在邊AB、AC上分別截取AD=AE.

②作∠ADE=60°,D、E分別在邊AB、AC上.

③過邊AB上D點作DE∥BC,交邊AC于E點.

2.已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.

3.P56頁練習1、2

III課堂小結:1.等腰三角形和性質;等腰三角形的條件

V布置作業:1.P58頁習題12.3第ll題.

2.已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?

好餓的小蛇數學優秀教案4

理解一元二次方程求根公式的推導過程,了解公式法的概念,會熟練應用公式法解一元二次方程.

復習具體數字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導,并應用公式法解一元二次方程.

重點

求根公式的推導和公式法的應用.

難點

一元二次方程求根公式的推導.

一、復習引入

1.前面我們學習過解一元二次方程的“直接開平方法”,比如,方程

(1)x2=4 (2)(x-2)2=7

提問1 這種解法的(理論)依據是什么?

提問2 這種解法的局限性是什么?(只對那種“平方式等于非負數”的特殊二次方程有效,不能實施于一般形式的二次方程.)

2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)

(學生活動)用配方法解方程 2x2+3=7x

(老師點評)略

總結用配方法解一元二次方程的步驟(學生總結,老師點評).

(1)先將已知方程化為一般形式;

(2)化二次項系數為1;

(3)常數項移到右邊;

(4)方程兩邊都加上一次項系數的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0 (2)ax2+bx+3=0

如果這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學獨立完成下面這個問題.

問題:已知ax2+bx+c=0(a≠0),試推導它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)

分析:因為前面具體數字已做得很多,我們現在不妨把a,b,c也當成一個具體數字,根據上面的解題步驟就可以一直推下去.

解:移項,得:ax2+bx=-c

二次項系數化為1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,當b2-4ac≥0時,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接開平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a,b,c而定,因此:

(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)這個式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有兩個實數根.

例1 用公式法解下列方程:

(1)2x2-x-1=0 (2)x2+1.5=-3x

(3)x2-2x+12=0 (4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先應把它化為一般形式,然后代入公式即可.

補:(5)(x-2)(3x-5)=0

三、鞏固練習

教材第12頁 練習1.(1)(3)(5)或(2)(4)(6).

四、課堂小結

本節課應掌握:

(1)求根公式的概念及其推導過程;

(2)公式法的概念;

(3)應用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數a,b,c,注意各項的系數包括符號;3)計算b2-4ac,若結果為負數,方程無解;4)若結果為非負數,代入求根公式,算出結果.

(4)初步了解一元二次方程根的情況.

五、作業布置

教材第17頁 習題4

好餓的小蛇數學優秀教案5

教學目標

1.等腰三角形的概念. 2.等腰三角形的性質. 3.等腰三角形的概念及性質的應用.

教學重點: 1.等腰三角形的概念及性質. 2.等腰三角形性質的應用.

教學難點:等腰三角形三線合一的性質的理解及其應用.

教學過程

Ⅰ.提出問題,創設情境

在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

有的三角形是軸對稱圖形,有的三角形不是.

問題:那什么樣的三角形是軸對稱圖形?

滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

我們這節課就來認識一種成軸對稱圖形的三角形──等腰三角形.

Ⅱ.導入新課: 要求學生通過自己的思考來做一個等腰三角形.

作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

思考:

1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

2.等腰三角形的兩底角有什么關系?

3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系.

沿等腰三角形的頂角的平分線對折,發現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質:

1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過程獲得啟發,我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質.同學們現在就動手來寫出這些證明過程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,

求:△ABC各角的度數.

分析:根據等邊對等角的性質,我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內角和為180°,就可求出△ABC的三個內角.

把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.

解:因為AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對等角).

設∠A=x,則 ∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過練習來鞏固這節課所學的知識.

Ⅲ.隨堂練習:1.課本P51練習 1、2、3. 2.閱讀課本P49~P51,然后小結.

Ⅳ.課時小結

這節課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過這節課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們.

Ⅴ.作業: 課本P56習題12.3第1、2、3、4題.

板書設計

12.3.1.1 等腰三角形

一、設計方案作出一個等腰三角形

二、等腰三角形性質: 1.等邊對等角 2.三線合一


數學教案相關文章:

2021五年級公開課數學教案

四年級數學課堂教案

《認識圖形》一年級數學上冊教案

2022人教版一年級數學上冊教案

小學教案模板

2022青島版四年級數學上冊教案

高中教案模板

小學教案模板

小學教案模板

13117 主站蜘蛛池模板: ★塑料拖链__工程拖链__电缆拖链__钢制拖链 - 【上海闵彬】 | EDLC超级法拉电容器_LIC锂离子超级电容_超级电容模组_软包单体电容电池_轴向薄膜电力电容器_深圳佳名兴电容有限公司_JMX专注中高端品牌电容生产厂家 | 脱硫搅拌器厂家-淄博友胜不锈钢搅拌器厂家 | 创客匠人-让IP变现不走弯路 | 济南保安公司加盟挂靠-亮剑国际安保服务集团总部-山东保安公司|济南保安培训学校 | 山东太阳能路灯厂家-庭院灯生产厂家-济南晟启灯饰有限公司 | 气动|电动调节阀|球阀|蝶阀-自力式调节阀-上海渠工阀门管道工程有限公司 | 网站seo优化_seo云优化_搜索引擎seo_启新网络服务中心 | 铝合金重力铸造_铝合金翻砂铸造_铝铸件厂家-东莞市铝得旺五金制品有限公司 | 箱式破碎机_移动方箱式破碎机/价格/厂家_【华盛铭重工】 | 螺旋丝杆升降机-SWL蜗轮-滚珠丝杆升降机厂家-山东明泰传动机械有限公司 | 儿童乐园|游乐场|淘气堡招商加盟|室内儿童游乐园配套设备|生产厂家|开心哈乐儿童乐园 | 2025福建平潭岛旅游攻略|蓝眼泪,景点,住宿攻略-趣平潭网 | 塑钢件_塑钢门窗配件_塑钢配件厂家-文安县启泰金属制品有限公司 深圳南财多媒体有限公司介绍 | 磷酸肌酸二钠盐,肌酐磷酰氯-沾化欣瑞康生物科技 | 透平油真空滤油机-变压器油板框滤油机-滤油车-华之源过滤设备 | 手板-手板模型-手板厂-手板加工-生产厂家,[东莞创域模型] | 钢木实验台-全钢实验台-化验室通风柜-实验室装修厂家-杭州博扬实验设备 | 冷却塔风机厂家_静音冷却塔风机_冷却塔电机维修更换维修-广东特菱节能空调设备有限公司 | 齿辊分级破碎机,高低压压球机,立式双动力磨粉机-郑州长城冶金设备有限公司 | 焊接烟尘净化器__焊烟除尘设备_打磨工作台_喷漆废气治理设备 -催化燃烧设备 _天津路博蓝天环保科技有限公司 | 报警器_家用防盗报警器_烟雾报警器_燃气报警器_防盗报警系统厂家-深圳市刻锐智能科技有限公司 | 河南橡胶接头厂家,河南波纹补偿器厂家,河南可曲挠橡胶软连接,河南套筒补偿器厂家-河南正大阀门 | 高尔夫球杆_高尔夫果岭_高尔夫用品-深圳市新高品体育用品有限公司 | 油液红外光谱仪-油液监测系统-燃油嗅探仪-上海冉超光电科技有限公司 | 中控室大屏幕-上海亿基自动化控制系统工程有限公司 | 免费分销系统 — 分销商城系统_分销小程序开发 -【微商来】 | 东莞市海宝机械有限公司-不锈钢分选机-硅胶橡胶-生活垃圾-涡电流-静电-金属-矿石分选机 | 济南展厅设计施工_数字化展厅策划设计施工公司_山东锐尚文化传播有限公司 | 深圳市万色印象美业有限公司| 青海电动密集架_智能密集架_密集架价格-盛隆柜业青海档案密集架厂家 | 探鸣起名网-品牌起名-英文商标起名-公司命名-企业取名包满意 | 光谱仪_积分球_分布光度计_灯具检测生产厂家_杭州松朗光电【官网】 | 郑州巴特熔体泵有限公司专业的熔体泵,熔体齿轮泵与换网器生产厂家 | 3A别墅漆/3A环保漆_广东美涂士建材股份有限公司【官网】 | 广东恩亿梯电源有限公司【官网】_UPS不间断电源|EPS应急电源|模块化机房|电动汽车充电桩_UPS电源厂家(恩亿梯UPS电源,UPS不间断电源,不间断电源UPS) | 等离子空气净化器_医用空气消毒机_空气净化消毒机_中央家用新风系统厂家_利安达官网 | 物流之家新闻网-最新物流新闻|物流资讯|物流政策|物流网-匡匡奈斯物流科技 | 冷镦机-多工位冷镦机-高速冷镦机厂家-温州金诺机械设备制造有限公司 | 编织人生 - 权威手工编织网站,编织爱好者学习毛衣编织的门户网站,织毛衣就上编织人生网-编织人生 | 右手官网|右手工业设计|外观设计公司|工业设计公司|产品创新设计|医疗产品结构设计|EMC产品结构设计 |