蘇教版初中數學優質課教案設計
數學對許多學生來說非常困難,但是學好數學會對他們的生活有許多的幫助。作為一名老師,你知道如何寫一篇數學教案嗎?你是否在找正準備撰寫“蘇教版初中數學優質課教案設計”,下面小編收集了相關的素材,供大家寫文參考!
蘇教版初中數學優質課教案設計1
總體說明:
完全平方公式則是對多項式乘法中出現的較為特殊的算式的一種歸納、總結.同時,完全平方公式的推導是初中數學中運用推理方法進行代數式恒等變形的開端,通過完全平方公式的學習對簡化某些整式的運算、培養學生的求簡意識有較大好處.而且完全平方公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算、解一元二次方程以及二次函數的恒等變形的重要基礎,同時也具有培養學生逐漸養成嚴密的邏輯推理能力的作用.因此學好完全平方公式對于代數知識的后繼學習具有相當重要的意義.
本節是北師大版七年級數學下冊第一章《整式的運算》的第8小節,占兩個課時,這是第一課時,它主要讓學生經歷探索與推導完全平方公式的過程,培養學生的符號感與推理能力,讓學生進一步體會數形結合的思想在數學中的作用.
一、學生學情分析
學生的技能基礎:學生通過對本章前幾節課的學習,已經學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節課的學習奠定了基礎.
學生活動經驗基礎:在平方差公式一節的學習中,學生已經經歷了探索和應用的過程,獲得了一些數學活動的經驗,培養了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.
二、教學目標
知識與技能:
(1)讓學生會推導完全平方公式,并能進行簡單的應用.
(2)了解完全平方公式的幾何背景.
數學能力:
(1)由學生經歷探索完全平方公式的過程,進一步發展學生的符號感與推理能力.
(2)發展學生的數形結合的數學思想.
情感與態度:
將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”.
三、教學重難點
教學重點:1、完全平方公式的推導;
2、完全平方公式的應用;
教學難點:1、消除學生頭腦中的前概念,避免形成“相異構想”;
2、完全平方公式結構的認知及正確應用.
四、教學設計分析
本節課設計了十一個教學環節:學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數形結合——進一步拓廣——總結口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習.
第一環節:學生練習、暴露問題
活動內容:計算:(a+2)2
設想學生的做法有以下幾種可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正確做法;
針對這幾種結果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?
活動目的:在很多學生的頭腦中,認為兩數和的完全平方與兩數的平方和等同,即:
(a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個正確的概念;這一環節的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.
第二環節:驗證(a+2)2=a2–4a+22
活動內容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22
活動目的:在前一環節已經打破了學生的原有的思維定式的基礎上,給學生建立正確的思維方法,避免形成“相異構想”.
第三環節:推廣到一般情況,形成公式
活動內容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活動目的:讓學生經歷從特殊到一般的探究過程,體驗到發現的快樂.
第四環節:數形結合
活動內容:設問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?
展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.
學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)
活動目的:讓學生進一步認識到數與形都不是孤立存在的,數與形是可以有機地結合在一起,從而發展學生的數形結合的數學思想.
第五環節:進一步拓廣
活動內容:推導兩數差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活動目的:讓學生經歷由兩數和的完全平方公式拓廣到兩數差的完全平方公式的過程,體會到符號差異帶來的結果差異,由第二種推導方法體會到兩數差的完全平方公式是兩數和的完全平方公式的應用.
第六環節:總結口訣、認識特征
活動內容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;
②公式中的a、b可以是任意一個代數式(數、字母、單項式、多項式)
口訣:首平方,尾平方,首尾相乘的兩倍在中央.
活動目的:認識完全平方公式的特征,總結出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現錯誤.
第七環節:公式應用
活動內容:例:計算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9
②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+
活動目的:在前幾個環節中,學生對完全平方公式已經有了感性認識,通過本環節的講解以及下一環節的練習,使學生逐步經歷認識——模仿——再認識.從而上升到理性認識的階段.
第八環節:隨堂練習
活動內容:計算:①;②;③(n+1)2–n2
活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏.
第九環節:學生PK
活動內容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.
活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用.
第十環節:學生反思
活動內容:通過今天這堂課的學習,你有哪些收獲?
收獲1:認識了完全平方公式,并能簡單應用;
收獲2:了解了兩數和與兩數差的完全平方公式之間的差異;
收獲3:感受到數形結合的數學思想在數學中的作用.
活動目的:通過對一堂課的歸納與總結,鞏固學生對完全平方公式的認識,體會數學思想的精妙.
第十一環節:布置作業:
課本P43習題1.13
蘇教版初中數學優質課教案設計2
教學目標
1.理解有理數加法的意義,掌握有理數加法法則中的符號法則和絕對值運算法則;
2.能根據有理數加法法則熟練地進行有理數加法運算,弄清有理數加法與非負數加法的區別;
3.三個或三個以上有理數相加時,能正確應用加法交換律和結合律簡化運算過程;
4.通過有理數加法法則及運算律在加法運算中的運用,培養學生的運算能力;
5.本節課通過行程問題說明法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數學知識來源于生活,并應用于生活。
教學建議
(一)重點、難點分析
本節教學的重點是依據法則熟練進行運算。難點是法則的理解。
(1)加法法則本身是一種規定,教材通過行程問題讓學生了解法則的合理性。
(2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數與0相加,仍得這個數。
(二)知識結構
(三)教法建議
1.對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數、相反數、絕對值等知識。
2.法則是規定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
3.應強調加法交換律“a+b=b+a”中字母a、b的任意性。
4.計算三個或三個以上的加法算式,應建議學生養成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。
5.可以給出一些類似“兩數之和必大于任何一個加數”的判斷題,以明確由于負數參與加法運算,一些算術加法中的正確結論在有理數加法運算中未必也成立。
6.在探討導出法則的行程問題時,可以嘗試發揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數運算法則。
教學設計示例
(第一課時)
教學目的
1.使學生理解有理數加法的意義,初步掌握有理數加法法則,并能準確地進行運算.
2.通過運算,培養學生的運算能力.
教學重點與難點
重點:熟練應用法則進行加法運算.
難點:法則的理解.
教學過程
(一)復習提問
1.有理數是怎么分類的?
2.有理數的絕對值是怎么定義的?一個有理數的絕對值的幾何意義是什么?
3.有理數大小比較是怎么規定的?下列各組數中,哪一個較大?利用數軸說明?
-3與-2;|3|與|-3|;|-3|與0;
-2與|+1|;-|+4|與|-3|.
(二)引入新課
在小學算術中學過了加、減、乘、除四則運算,這些運算是在正有理數和零的范圍內的運算.引入負數之后,這些運算法則將是怎樣的呢?我們先來學運算.
(三)進行新課 (板書課題)
例1 如圖所示,某人從原點0出發,如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?
兩次行走后距原點0為8米,應該用加法.
為區別向東還是向西走,這里規定向東走為正,向西走為負.這兩數相加有以下三種情況:
1.同號兩數相加
(1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和.
5+3=8
用數軸表示如圖
從數軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
可見,正數加正數,其和仍是正數,和的絕對值等于這兩個加數的絕對值的和.
(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米
(-5)+(-3)=-8
用數軸表示如圖
從數軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
可見,負數加負數,其和仍是負數,和的絕對值也是等于兩個加數的絕對值的和.
總之,同號兩數相加,取相同的符號,并把絕對值相加.
例如,(-4)+(-5),……同號兩數相加
(-4)+(-5)=-( ),…取相同的符號
4+5=9……把絕對值相加
∴ (-4)+(-5)=-9.
口答練習:
(1)舉例說明算式7+9的實際意義?
(2)(-20)+(-13)=?
(3)
2.異號兩數相加
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
5+(-5)=0
可知,互為相反數的兩個數相加,和為零.
(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
就是 5+(-3)=2.
(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
就是 3+(-5)=-2.
請同學們想一想,異號兩數相加的法則是怎么規定的?強調和的符號是如何確定的?和的絕對值如何確定?
最后歸納
絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0.
例如(-8)+5……絕對值不相等的異號兩數相加
8>5
(-8)+5=-( )……取絕對值較大的加數符號
8-5=3 ……用較大的絕對值減去較小的絕對值
∴(-8)+5=-3.
口答練習
用算式表示:溫度由-4℃上升7℃,達到什么溫度.
(-4)+7=3(℃)
3.一個數和零相加
(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+0=5.結果向東走了5米.
(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(-5)+0=-5.結果向東走了-5米,即向西走了5米.
請同學們把(1)、(2)畫出圖來
由(1),(2)得出:一個數同0相加,仍得這個數.
總結有理數加法的三個法則.學生看書,引導他們看有理數加法運算的三種情況.
有理數加法運算的三種情況:
特例:兩個互為相反數相加;
(3)一個數和零相加.
每種運算的法則強調:(1)確定和的符號;(2)確定和的絕對值的方法.
(四)例題分析
例1 計算(-3)+(-9).
分析:這是兩個負數相加,屬于同號兩數相加,和的符號與加數相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調相同、相加的特征).
解:(-3)+(-9)=-12.
例2
分析:這是異號兩數相加,和的符號與絕對值較大的加數的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值..(強調“兩個較大”“一個較小”)
解:
解題時,先確定和的符號,后計算和的絕對值.
(五)鞏固練習
1.計算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.計算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
探究活動
題目 (1)在1,2,3,4四個數的前面添加正號或負號,使它們的和為0;
(2)在1,2,3,…,11,12十二個數的前面添加正號或負號,使它們的和為零;
(3)在1,2,3,4,…,99,100一百個數的前面添加正號或負號,使它們的和為0;
(4) 在解決這個問題的過程中,你能總結出一些什么數學規律?
參考答案 我們不妨不妨以第二問為例探討,比如,在12,11,10,5這四個數的前面添加負號,則這12個數的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.
現在我們將各數的符號加以調整,考慮到將一個正數變號,其和就要減少這個正數的兩倍,因此可得到兩個(明顯的)解答:
(1)得+1變為-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①
(2)將(+6-5)變為-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②
又如,在11,10,8,7,5這五個數的前面添加負號,得
12-11-10-9-8-7+6-5+4+3+2+1=-4,
我們就有多種調整的方法,如將-8與+6變號,有
12-11-10+9+8-7-6-5+4+3+2+1=0. ③
經過幾次試驗,我們發現了規律:欲使十二個數的和為零,其中正數的和的絕對值與負數的和的絕對值必須相等.但
1+2+3+4+5+6+7+8+9+10+11+12=78
因此我們應該使各正數的和的絕對值與各負數的和的絕對值均為
為了簡便起見,我們把①式所表示的一個解答記為(12,11,10,5,1),那么②,③兩式所表示的解答就分別記為(12,11,10,6)與(11,10,7,6,5).
同時我們還發現:如果(12,11,10,5,1)是一個解答,那么(9,8,7,6,4,3,2)也必定是一個解答.同樣,對應于②,③兩式,還分別有另兩個解答:(9,8,7,5,4,3,2,1)與(12,9,8,4,3,2,1).這個規律我們不妨叫做對偶律.
此外我們還可發現,由于的三個數12,11,10其和33<39,因此必須再增加一個數6,才有解答(12,11,10,6),也就是說:添加負號的數至少要有四個;反過來,根據對偶律得:添加負號的數最多不超過八個.
掌握了上述幾條規律,我們就能夠在很短的時間內得到許多解答.最后讓我們告訴你,第(2)問的解答個數并非無數多,其總數是124個.
蘇教版初中數學優質課教案設計3
教學目標 1, 整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;
2, 能區分兩種不同意義的量,會用符號表示正數和負數;
3, 體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。
教學難點 正確區分兩種不同意義的量。
知識重點 兩種相反意義的量
教學過程(師生活動) 設計理念
設置情境
引入課題 上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生
活中僅有這些“以前學過的數”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經是七年級的學生了,我是你們的數學老師.下面我先向你們做一下自我介紹,我的名字是,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…
問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).
問題2:在生活中,僅有整數和分數夠用了嗎?
請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。 先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴
密性,但對于學生來說,更多
地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興
趣,所以創設如下的問題情境,以盡量貼近學生的實際.
這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知 問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?
這些問題都必須要求學生理解.
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.
這階段主要是讓學生學會正數和負數的表示.
強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量. 這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。
舉一反三思維拓展 經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維.
問題4:請同學們舉出用正數和負數表示的例子.
問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明.
能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性
課堂練習 教科書第5頁練習
小結與作業
課堂小結 圍繞下面兩點,以師生共同交流的方式進行:
1, 0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;
2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“-”。
本課作業 教科書第7頁習題1.1 第1,2,4,5(第3題作為下節課的思考題。
作業可設必做題和選 做題,體現要求的層次性,以滿足不同學生的需要
本課教育評注(課堂設計理念,實際教學效果及改進設想)
密切聯系生活實際,創設學習情境.本課是有理數的第一節課時.引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數,就必須對原有的數的結構進行整理,引人幣的舉例就是這個目的.
負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子
或圖片中出現的負數就是讓學生去感受和體驗這一點.使學生接受生活生產實際中確實
存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例
子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區分這兩種相反意義的量)就是順理成章的事了.
這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,
體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見
的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。
蘇教版初中數學優質課教案設計4
掌握用因式分解法解一元二次方程.
通過復習用配方法、公式法解一元二次方程,體會和探尋用更簡單的方法——因式分解法解一元二次方程,并應用因式分解法解決一些具體問題.
重點
用因式分解法解一元二次方程.
難點
讓學生通過比較解一元二次方程的多種方法感悟用因式分解法使解題更簡便.
一、復習引入
(學生活動)解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老師點評:(1)配方法將方程兩邊同除以2后,x前面的系數應為12,12的一半應為14,因此,應加上(14)2,同時減去(14)2.(2)直接用公式求解.
二、探索新知
(學生活動)請同學們口答下面各題.
(老師提問)(1)上面兩個方程中有沒有常數項?
(2)等式左邊的各項有沒有共同因式?
(學生先答,老師解答)上面兩個方程中都沒有常數項;左邊都可以因式分解.
因此,上面兩個方程都可以寫成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因為兩個因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實現降次的?)
因此,我們可以發現,上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現降次,這種解法叫做因式分解法.
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的條件是什么?
解:略 (方程一邊為0,另一邊可分解為兩個一次因式乘積.)
練習:下面一元二次方程解法中,正確的是( )
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,兩邊同除以x,得x=1
三、鞏固練習
教材第14頁 練習1,2.
四、課堂小結
本節課要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用.
(2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.
五、作業布置
教材第17頁 習題6,8,10,11
蘇教版初中數學優質課教案設計5
一、教材分析
1、教材的地位和作用
本課位于人民教育出版社義務教育課程標準實驗教科書七年級下冊第五章第二節第一課時。主要內容是讓學生在充分感性認識的基礎上體會平行線的三種判定方法,它是空間與圖形領域的基礎知識,是《相交線與平行線》的重點,學習它會為后面的學行線性質、三角形、四邊形等知識打下堅實的“基石”。同時,本節學習將為加深“角與平行線”的認識,建立空間觀念,發展思維,并能讓學生在活動的過程中交流分享探索的成果,體驗成功的樂趣,提高運用數學的能力。
2、教學重難點
重 點 三種位置關系的角的特征;會根據三種位置關系的角來判斷兩直線平行的方法。
難 點 “轉化”的數學思想的培養。
由“說點兒理”到“用符號表示推理”的逐層加深。
二、教學目標
知識目標 了解同位角、內錯角、同旁內角等角的特征,認識“直線平行”的三個充分條件及在實際生活中的應用。
能力目標 ①通過觀察、思考探索等活動歸納出三種判定方法,培養學生轉化的數學思想,培養學生動手、分析、解決實際問題的能力。
②通過活動及實際問題的研究引導學生從數學角度發現和提出問題,并用數學方法探索、研究和解決問題。
情感目標 ①感受數學與生活的緊密聯系,體會數學的價值,激發學生學習數學的興趣,培養敢想、敢說、敢解決實際問題的學習習慣。
通過學生體驗、猜想并證明,讓學生體會數學充滿著探索和創造,培養學生團結協作,勇于創新的精神。
②通過“轉化”數學思想方法的運用,讓學生認識事物之間是普遍聯系,相互轉化的辯證唯物主義思想。
三、教學方法
1、采用指導探究法進行教學,主要通過二個師生雙邊活動:①動——師生互動,共同探索。②導——知識類比,合理引導等突出學生主體地位,讓教師成為學生學習的組織者、引導者、合作者,讓學生親自動手、動腦、動口參與數學活動,經歷問題的發生、發展和解決過程,在解決問題的過程中完成教學目標。
2、根據學生實際情況,整堂課圍繞“情景問題——學生體驗——合作交流”模式,鼓勵學生積極合作,充分交流,既滿足了學生對新知識的強烈探索欲望,又排除學生學習幾何方法的缺乏,和學無所用的思想顧慮。對學習有困難的學生及時給予幫助,讓他們在學習的過程中獲得愉快和進步。
3、利用課件輔助教學,突破教學重難點,擴大學生知識面,使每個學生穩步提高。
四、教學流程:
我的教學流程設計是:從創設情境,孕育新知開始,經歷探索新知,構建模式;解釋新知,落實新知;總結新知,布置作業等過程來完成教學。
創設情境,孕育新知:
①師生欣賞三幅圖片,讓學生觀察、思考從幾何圖形上看有什么共同點。
②從學生經歷過的事入手,讓學生比較兩張獎狀粘貼的好壞,并說明理由,讓學生留心實際生活,欣賞木工畫平行線的方法。
③落實到學生是否會畫平行線?本環節教師展示圖片,學生觀察思考,交流回答問題,了解實際生活中平行線的廣泛應用。
設計意圖:通過圖片和動畫展示,貼近學生生活,激發學生的學習興趣。從學生經歷過的事入手。讓學生知道數學知識無處不在,應用數學無時不有。符合“數學教學應從生活經驗出發”的新課程標準要求。
2、實驗操作,探索新知1
①由學生是否會畫平行線導入,用小學學過的方法過點P畫直線AB的平行線CD,學生動手畫并展示。
②學生思考三角尺起什么作用(教師點撥)?
③學生動手操作:用學具塑料條擺兩條平行線被第三條直線所截的模型,并探討圖中角的關系(同位角)。
④教師把學生畫平行線的過程和塑料條模型抽象成幾何圖形,指明同位角的位置關系是截線,被截線的同旁,
歸納:兩直線平行條件1
教師展示一組練習,學生獨立完成,鞏固新知。
在這一環節中,教師應關注:
①學生能否畫平行線,動手操作是否準確
②學生能否獨立探究、參與、合作、交流
設計意圖:復習提問,利用教具、學具讓學生動手,提高學生學習興趣,調動學生思考和積極性,提高學生合作交流的能力和質量,教師有的放矢,讓學生掌握重點,培養學生自主探究的學習習慣和能力。及時練習鞏固,,體現學以致用的觀念,消除學生學無所用的思想顧慮。
3、大膽猜想,探究新知
⑴學生分組討論:
①∠2和∠3是什么位置關系?
∠3和∠4是什么位置關系?
②直線CD繞O旋轉是否還保持上述位置關系?
③∠2與∠3,∠2與∠4一定相等嗎?猜想,展示討論成果。
⑵學生探究:
問題:①∠2=∠3能得到AB∥CD嗎?
②∠2+∠4=180可以判定AB∥CD嗎?
學生用語言表述推理過程,教師深入學生中并點撥將未知的轉化為已知,并規范推理過程。和學生一起歸納直線平行的條件2,3。
⑶學生獨立完成練習。
本環節教師關注:
①學生能否主動參與數學活動,敢于發表個人觀點。
②小組團結協作程度,創新意識。
③表揚優秀小組
設計意圖:猜想、交流、歸納,符合知識的形成過程,培養學生轉化的數學思想,學會將陌生的轉化為熟悉的,將未知的轉化為已知的。并用練習及時鞏固,落實新知與方法,增強學生運用數學的能力。
4、解釋運用,鞏固新知
本環節共有五個練習,第一題落實同位角、內錯角、同旁內角位置特征。第二、三題落實三種判定方法的應用。第四、五題是注重學生動手操作,解決實際問題的訓練。
本環節教師應關注:
①深入學生當中,對學習有困難學生進行鼓勵,幫助。
②學生的思維角度是否合理。
設計意圖:加強學生運用新知的意識,培養學生解決實際問題的能力和學習數學的興趣,讓學生鞏固所學內容,并進行自我評價,既面向全體學生,又照顧個別學有余力的學生,體現因材施教的原則。
5、總結新知,布置作業
通過設問回答補充的方式小結,學生自主回答三個問題,教師關注全體學生對本節課知識的程度,學生是否愿意表達自己的觀點,采用必做題和選做題的方式布置作業。
設計意圖:通過提問方式引導學生進行小結,養成學習——總結——再學習的良好習慣,發揮自我評價作用,同時可培養學生的語言表達能力。作業分層要求,做到面向全體學生,給基礎好的學生充分的空間,滿足他們的求知欲。
五、教學設計
初中數學教育方案相關文章:
★ 小學教案模板