初中數(shù)學(xué)電子教案設(shè)計(jì)
作為一名數(shù)學(xué)老師,你知道如何寫一篇數(shù)學(xué)教案嗎?數(shù)學(xué)教案能對你的教學(xué)工作提供積極的幫助,和我們分享你的數(shù)學(xué)教案吧。你是否在找正準(zhǔn)備撰寫“初中數(shù)學(xué)電子教案設(shè)計(jì)”,下面小編收集了相關(guān)的素材,供大家寫文參考!
初中數(shù)學(xué)電子教案設(shè)計(jì)1
教學(xué)目標(biāo)
1、使學(xué)生能說出有理數(shù)大小的比較法則
2、能熟練運(yùn)用法則結(jié)合數(shù)軸比較有理數(shù)的大小,特別是應(yīng)用絕對值概念比較兩個(gè)負(fù)數(shù)的大小,能利用數(shù)軸對多個(gè)有理數(shù)進(jìn)行有序排列。
3、能正確運(yùn)用符號(hào)"<"">""∵""∴"寫出表示推理過程中簡單的因果關(guān)系。
三、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):運(yùn)用法則借助數(shù)軸比較兩個(gè)有理數(shù)的大小。
難點(diǎn):利用絕對值概念比較兩個(gè)負(fù)分?jǐn)?shù)的大小。
四、教學(xué)準(zhǔn)備
多媒體課件
五、教學(xué)設(shè)計(jì)
(一)交流對話,探究新知
1、說一說
(多媒體顯示)某一天我們5個(gè)城市的最低氣溫 從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發(fā)學(xué)生的求知欲望,可能有些學(xué)生會(huì)說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學(xué)生會(huì)說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會(huì)說的,老師適當(dāng)點(diǎn)拔,從而學(xué)生在合作交流中不知不覺地完成了以下填空。
比較這一天下列兩個(gè)城市間最低氣溫的高低(填"高于"或"低于")
廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。
2、畫一畫:(1)把上述5個(gè)城市最低氣溫的數(shù)表示在數(shù)軸上,(2)觀察這5個(gè)數(shù)在數(shù)軸上的位置,從中你發(fā)現(xiàn)了什么?
(3)溫度的高低與相應(yīng)的數(shù)在數(shù)軸上的位置有什么?
(通過學(xué)生自己動(dòng)手操作,觀察、思考,發(fā)現(xiàn)原點(diǎn)左邊的數(shù)都是負(fù)數(shù),原點(diǎn)右邊的數(shù)都是正數(shù);同時(shí)也發(fā)現(xiàn)5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數(shù)軸上原點(diǎn)右邊的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。教師趁機(jī)追問,原點(diǎn)左邊的數(shù)也有這樣的規(guī)律嗎?從而激發(fā)學(xué)生探索知識(shí)的欲望,進(jìn)一步驗(yàn)證了原點(diǎn)左邊的數(shù)也有這樣的規(guī)律。從而使學(xué)生親身體驗(yàn)探索的樂趣,在探究中不知不覺獲得了知識(shí)。)由小組討論后,教師歸納得出結(jié)論:
在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。
正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
(二)應(yīng)用新知,體驗(yàn)成功
1、練一練(師生共同完成例1后,學(xué)生完成隨堂練習(xí)1)
例1:在數(shù)軸上表示數(shù)5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號(hào)連接。(師生共同完成)
分析:本題意有幾層含義?應(yīng)分幾步?
要點(diǎn)總結(jié):小組討論歸納,本題解題時(shí)的一般步驟:①畫數(shù)軸②描點(diǎn);③有序排列;④不等號(hào)連接。
隨堂練習(xí): P19 T1
2、做一做
(1)在數(shù)軸上表示下列各對數(shù),并比較它們的大小
①2和7 ②-6和-1 ③-6和-36 ④-和-1.5
(2)求出圖中各對數(shù)的絕對值,并比較它們的大小。
(3)由①、②從中你發(fā)現(xiàn)了什么?
(學(xué)生小組討論后,代表站起來發(fā)言,口述自己組的發(fā)現(xiàn),說明自己組發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生觀察、歸納、用數(shù)學(xué)語言表達(dá)數(shù)學(xué)規(guī)律的能力。)
要點(diǎn)總結(jié):兩個(gè)正數(shù)比較大小,絕對值大的數(shù)大;兩個(gè)負(fù)數(shù)比較大小,絕對值大的數(shù)反而小。
在學(xué)生討論的基礎(chǔ)上,由學(xué)生總結(jié)得出有理數(shù)大小的比較法則。
(1)正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
(2)兩個(gè)正數(shù)比較大小,絕對值大的數(shù)大。
(3)兩個(gè)負(fù)數(shù)比較大小,絕對值大的數(shù)反而小。
3、師生共同完成例2后,學(xué)生完成隨堂練習(xí)2、3、4。
例2比較下列每對數(shù)的大小,并說明理由:(師生共同完成)
(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|
分析:第(4)(5)題較難,第(4)題應(yīng)先通分,第(5)題應(yīng)先化簡,再比較。同時(shí)在講解時(shí),要注意格式。
注:絕對值比較時(shí),分母相同,分子大的數(shù)大;分子相同,則分母大的數(shù)反而小;分子分母都不相同時(shí),則應(yīng)先通分再比較,或把分子化相同再比較。
兩個(gè)負(fù)數(shù)比較大小時(shí)的一般步驟:①求絕對值;②比較絕對值的大小;③比較負(fù)數(shù)的大小。
思考:還有別的方法嗎?(分組討論,積極思考)
4、想一想:我們有幾種方法來判斷有理數(shù)的大小?你認(rèn)為它們各有什么特點(diǎn)?
由學(xué)生討論后,得出比較有理數(shù)的大小共有兩種方法,一種是法則,另一種是利用數(shù)軸,當(dāng)兩個(gè)數(shù)比較時(shí)一般選用第一種,當(dāng)多個(gè)有理數(shù)比較大小時(shí),一般選用第二種較好。
練一練:P19 T2、3、4
5、考考你:請你回答下列問題:
(1)有沒有的有理數(shù),有沒有最小的有理數(shù),為什么?
(2)有沒有絕對值最小的有理數(shù)?若有,請把它寫出來?
(3)在于-1.5且小于4.2的整數(shù)有_____個(gè),它們分別是____。
(4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個(gè)數(shù)的大小嗎?(本題屬提高題,不要求全體學(xué)生掌握)
(新穎的問題會(huì)激發(fā)學(xué)生的好奇心,通過合作交流,自主探究等活動(dòng),培養(yǎng)學(xué)生思維的習(xí)慣和數(shù)學(xué)語言的表達(dá)能力)
6、議一議,談?wù)劚竟?jié)課你有哪些收獲
(由師生共同完成本節(jié)課的小結(jié))本節(jié)課主要學(xué)習(xí)了有理數(shù)大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數(shù)軸,運(yùn)用這種方法時(shí),首先必須把要比較的數(shù)在數(shù)軸上表示出來,然后按照它們在數(shù)軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個(gè)有理數(shù)大小時(shí)非常簡便。
六、布置作業(yè):P19 A組、B組
基礎(chǔ)好的A、B兩組都做
基礎(chǔ)較差的同學(xué)選做A組。
初中數(shù)學(xué)電子教案設(shè)計(jì)2
教學(xué)目標(biāo)
1、知識(shí)與技能:體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過程,了解公式的幾何背景,理解公式的本質(zhì),會(huì)應(yīng)用公式進(jìn)行簡單的計(jì)算.
2、過程與方法:通過讓學(xué)生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達(dá)能力.培養(yǎng)學(xué)生的數(shù)形結(jié)合能力.
3、情感態(tài)度價(jià)值觀:體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn)與喜悅,樹立學(xué)習(xí)自信心.
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):
1、對公式的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)、語言表述(學(xué)生自己的語言)、幾何解釋.
2、會(huì)運(yùn)用公式進(jìn)行簡單的計(jì)算.
教學(xué)難點(diǎn):
1、完全平方公式的推導(dǎo)及其幾何解釋.
2、完全平方公式的結(jié)構(gòu)特點(diǎn)及其應(yīng)用.
教學(xué)工具
課件
教學(xué)過程
一、復(fù)習(xí)舊知、引入新知
問題1:請說出平方差公式,說說它的結(jié)構(gòu)特點(diǎn).
問題2:平方差公式是如何推導(dǎo)出來的?
問題3:平方差公式可用來解決什么問題,舉例說明.
問題4:想一想、做一做,說出下列各式的結(jié)果.
(1)(a+b)2(2)(a-b)2
(此時(shí),教師可讓學(xué)生分別說說理由,并且不直接給出正確評價(jià),還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣.)
二、創(chuàng)設(shè)問題情境、探究新知
一塊邊長為a米的正方形實(shí)驗(yàn)田,因需要將其邊長增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種.(如圖)
(1)四塊面積分別為:、、、;
(2)兩種形式表示實(shí)驗(yàn)田的總面積:
①整體看:邊長為的大正方形,S=;
②部分看:四塊面積的和,S=.
總結(jié):通過以上探索你發(fā)現(xiàn)了什么?
問題1:通過以上探索學(xué)習(xí),同學(xué)們應(yīng)該知道我們提出的問題4正確的結(jié)果是什么了吧?
問題2:如果還有同學(xué)不認(rèn)同這個(gè)結(jié)果,我們再看下面的問題,繼續(xù)探索.(a+b)2表示的意義是什么?請你用多項(xiàng)式的乘法法則加以驗(yàn)證.
(教學(xué)過程中教師要有意識(shí)地提到猜想、感覺得到的不一定正確,只有再通過驗(yàn)證才能得出真知,但還是要鼓勵(lì)學(xué)生大膽猜想,發(fā)表見解,但要驗(yàn)證)
問題3:你能說說(a+b)2=a2+2ab+b2
這個(gè)等式的結(jié)構(gòu)特點(diǎn)嗎?用自己的語言敘述.
(結(jié)構(gòu)特點(diǎn):右邊是二項(xiàng)式(兩數(shù)和)的平方,右邊有三項(xiàng),是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)
問題4:你能根據(jù)以上等式的結(jié)構(gòu)特點(diǎn)說出(a-b)2等于什么嗎?請你再用多項(xiàng)式的乘法法則加以驗(yàn)證.
總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.
問題:①這兩個(gè)公式有何相同點(diǎn)與不同點(diǎn)?②你能用自己的語言敘述這兩個(gè)公式嗎?
語言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.
強(qiáng)化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.
三、例題講解,鞏固新知
例1:利用完全平方公式計(jì)算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流總結(jié):運(yùn)用完全平方公式計(jì)算的一般步驟
(1)確定首、尾,分別平方;
(2)確定中間系數(shù)與符號(hào),得到結(jié)果.
四、練習(xí)鞏固
練習(xí)1:利用完全平方公式計(jì)算
練習(xí)2:利用完全平方公式計(jì)算
練習(xí)3:
(練習(xí)可采用多種形式,學(xué)生上黑板板演,師生共同評價(jià).也可學(xué)生獨(dú)立完成后,學(xué)生互相批改,力求使學(xué)生對公式完全掌握,如有學(xué)生出現(xiàn)問題,學(xué)生、教師應(yīng)及時(shí)幫助.)
五、變式練習(xí)
六、暢談收獲,歸納總結(jié)
1、本節(jié)課我們學(xué)習(xí)了乘法的完全平方公式.
2、我們在運(yùn)用公式時(shí),要注意以下幾點(diǎn):
(1)公式中的字母a、b可以是任意代數(shù)式;
(2)公式的結(jié)果有三項(xiàng),不要漏項(xiàng)和寫錯(cuò)符號(hào);
(3)可能出現(xiàn)①②這樣的錯(cuò)誤.也不要與平方差公式混在一起.
七、作業(yè)設(shè)置
初中數(shù)學(xué)電子教案設(shè)計(jì)3
教學(xué)目標(biāo) 1, 整理前兩個(gè)學(xué)段學(xué)過的整數(shù)、分?jǐn)?shù)(包括小數(shù))的知識(shí),掌握正數(shù)和負(fù)數(shù)的概念;
2, 能區(qū)分兩種不同意義的量,會(huì)用符號(hào)表示正數(shù)和負(fù)數(shù);
3, 體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn) 正確區(qū)分兩種不同意義的量。
知識(shí)重點(diǎn) 兩種相反意義的量
教學(xué)過程(師生活動(dòng)) 設(shè)計(jì)理念
設(shè)置情境
引入課題 上課開始時(shí),教師應(yīng)通過具體的例子,簡要說明在前兩個(gè)學(xué)段我們已經(jīng)學(xué)過的數(shù),并由此請學(xué)生思考:生
活中僅有這些“以前學(xué)過的數(shù)”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經(jīng)是七年級(jí)的學(xué)生了,我是你們的數(shù)學(xué)老師.下面我先向你們做一下自我介紹,我的名字是,身高1.73米,體重58.5千克,今年40歲.我們的班級(jí)是七(13)班,有60個(gè)同學(xué),其中男同學(xué)有22個(gè),占全班總?cè)藬?shù)的37%…
問題1:老師剛才的介紹中出現(xiàn)了幾個(gè)數(shù)?分別是什么?你能將這些數(shù)按以前學(xué)過的數(shù)的分類方法進(jìn)行分類嗎?
學(xué)生活動(dòng):思考,交流
師:以前學(xué)過的數(shù),實(shí)際上主要有兩大類,分別是整數(shù)和分?jǐn)?shù)(包括小數(shù)).
問題2:在生活中,僅有整數(shù)和分?jǐn)?shù)夠用了嗎?
請同學(xué)們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學(xué)生感受引入負(fù)數(shù)的必要性)并思考討論,然后進(jìn)行交流。
(也可以出示氣象預(yù)報(bào)中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學(xué)生交流后,教師歸納:以前學(xué)過的數(shù)已經(jīng)不夠用了,有時(shí)候需要一種前面帶有“-”的新數(shù)。 先回顧小學(xué)里學(xué)過的數(shù)的類型,歸納出我們已經(jīng)學(xué)了整數(shù)和分?jǐn)?shù),然后,舉一些實(shí)際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負(fù)數(shù),這樣做強(qiáng)調(diào)了數(shù)學(xué)的嚴(yán)密性,但對于學(xué)生來說,更多地感到了數(shù)學(xué)的枯燥乏味為了既復(fù)習(xí)小學(xué)里學(xué)過的數(shù),又能激發(fā)學(xué)生的學(xué)習(xí)興趣,所以創(chuàng)設(shè)如下的問題情境,以盡量貼近學(xué)生的實(shí)際.
這個(gè)問題能激發(fā)學(xué)生探究的欲望,學(xué)生自己看書學(xué)習(xí)是培養(yǎng)學(xué)生自主學(xué)習(xí)的重要途徑,都應(yīng)予以重視。
以上的情境和實(shí)例使學(xué)生體會(huì)生活中處處有數(shù)學(xué),通過實(shí)例,使學(xué)生獲取大量的感性材料,為正確建立相反意義的量奠定基礎(chǔ)。
分析問題
探究新知 問題3:前面帶有“一”號(hào)的新數(shù)我們應(yīng)怎樣命名它呢?為什么要引人負(fù)數(shù)呢?通常在日常生活中我們用正數(shù)和負(fù)數(shù)分別表示怎樣的量呢?
這些問題都必須要求學(xué)生理解.
教師可以用多媒體出示這些問題,讓學(xué)生帶著這些問題看書自學(xué),然后師生交流.
這階段主要是讓學(xué)生學(xué)會(huì)正數(shù)和負(fù)數(shù)的表示.
強(qiáng)調(diào):用正,負(fù)數(shù)表示實(shí)際問題中具有相反意義的量,而相反意義的量包含兩個(gè)要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量. 這些問題是這節(jié)課的主要知識(shí),教師要清楚地向?qū)W生說明,并且要注意語言的準(zhǔn)確與規(guī)范,要舍得花時(shí)間讓學(xué)充分發(fā)表想法。
舉一反三思維拓展 經(jīng)過上面的討論交流,學(xué)生對為什么要引人負(fù)數(shù),對怎樣用正數(shù)和負(fù)數(shù)表示兩種相反意義的量有了初步的理解,教師可以要求學(xué)生舉出實(shí)際生活中類似的例子,以加深對正數(shù)和負(fù)數(shù)概念的理解,并開拓思維.
問題4:請同學(xué)們舉出用正數(shù)和負(fù)數(shù)表示的例子.
問題5:你是怎樣理解“正整數(shù)”“負(fù)整數(shù),,’’正分?jǐn)?shù)”和“負(fù)分?jǐn)?shù)”的呢?請舉例說明.
能否舉出例子是學(xué)生對知識(shí)掌握程度的體現(xiàn),也能進(jìn)一步幫助學(xué)生理解引負(fù)數(shù)的必要性
課堂練習(xí) 教科書第5頁練習(xí)
小結(jié)與作業(yè)
課堂小結(jié) 圍繞下面兩點(diǎn),以師生共同交流的方式進(jìn)行:
1, 0由于實(shí)際問題中存在著相反意義的量,所以要引人負(fù)數(shù),這樣數(shù)的范圍就擴(kuò)大了;
2,正數(shù)就是以前學(xué)過的0以外的數(shù)(或在其前面加“+”),負(fù)數(shù)就是在以前學(xué)過的0以外的數(shù)前面加“-”。
本課作業(yè) 教科書第7頁習(xí)題1.1 第1,2,4,5(第3題作為下節(jié)課的思考題。
作業(yè)可設(shè)必做題和選 做題,體現(xiàn)要求的層次性,以滿足不同學(xué)生的需要
本課教育評注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)
密切聯(lián)系生活實(shí)際,創(chuàng)設(shè)學(xué)習(xí)情境.本課是有理數(shù)的第一節(jié)課時(shí).引人負(fù)數(shù)是數(shù)的范圍的一次重要擴(kuò)充,學(xué)生頭腦中關(guān)于數(shù)的結(jié)構(gòu)要做重大調(diào)整(其實(shí)是一次知識(shí)的順應(yīng)過程),而負(fù)數(shù)相對于以前的數(shù),對學(xué)生來說顯得更抽象,因此,這個(gè)概念并不是一下就能建立的.為了接受這個(gè)新的數(shù),就必須對原有的數(shù)的結(jié)構(gòu)進(jìn)行整理,引人幣的舉例就是這個(gè)目的.
負(fù)數(shù)的產(chǎn)生主要是因?yàn)樵械臄?shù)不夠用了(不能正確簡潔地表示數(shù)量),書本的例子
或圖片中出現(xiàn)的負(fù)數(shù)就是讓學(xué)生去感受和體驗(yàn)這一點(diǎn).使學(xué)生接受生活生產(chǎn)實(shí)際中確實(shí)
存在著兩種相反意義的量是本課的教學(xué)難點(diǎn),所以在教學(xué)中可以多舉幾個(gè)這方面的例
子,并且所舉的例子又應(yīng)該符合學(xué)生的年齡和思維特點(diǎn)。當(dāng)學(xué)生接受了這個(gè)事實(shí)后,引入負(fù)數(shù)(為了區(qū)分這兩種相反意義的量)就是順理成章的事了.
這個(gè)教學(xué)設(shè)計(jì)突出了數(shù)學(xué)與實(shí)際生活的緊密聯(lián)系,使學(xué)生體會(huì)到數(shù)學(xué)的應(yīng)用價(jià)值,
體現(xiàn)了學(xué)生自主學(xué)習(xí)、合作交流的教學(xué)理念,書本中的圖片和例子都是生活生產(chǎn)中常見
的事實(shí),學(xué)生容易接受,所以應(yīng)該讓學(xué)生自己看書、學(xué)習(xí),并且鼓勵(lì)學(xué)生討論交流,教師作適當(dāng)引導(dǎo)就可以了。
初中數(shù)學(xué)電子教案設(shè)計(jì)4
一、教材分析
1、教材的地位和作用
本課位于人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書七年級(jí)下冊第五章第二節(jié)第一課時(shí)。主要內(nèi)容是讓學(xué)生在充分感性認(rèn)識(shí)的基礎(chǔ)上體會(huì)平行線的三種判定方法,它是空間與圖形領(lǐng)域的基礎(chǔ)知識(shí),是《相交線與平行線》的重點(diǎn),學(xué)習(xí)它會(huì)為后面的學(xué)行線性質(zhì)、三角形、四邊形等知識(shí)打下堅(jiān)實(shí)的“基石”。同時(shí),本節(jié)學(xué)習(xí)將為加深“角與平行線”的認(rèn)識(shí),建立空間觀念,發(fā)展思維,并能讓學(xué)生在活動(dòng)的過程中交流分享探索的成果,體驗(yàn)成功的樂趣,提高運(yùn)用數(shù)學(xué)的能力。
2、教學(xué)重難點(diǎn)
重 點(diǎn) 三種位置關(guān)系的角的特征;會(huì)根據(jù)三種位置關(guān)系的角來判斷兩直線平行的方法。
難 點(diǎn) “轉(zhuǎn)化”的數(shù)學(xué)思想的培養(yǎng)。
由“說點(diǎn)兒理”到“用符號(hào)表示推理”的逐層加深。
二、教學(xué)目標(biāo)
知識(shí)目標(biāo) 了解同位角、內(nèi)錯(cuò)角、同旁內(nèi)角等角的特征,認(rèn)識(shí)“直線平行”的三個(gè)充分條件及在實(shí)際生活中的應(yīng)用。
能力目標(biāo) ①通過觀察、思考探索等活動(dòng)歸納出三種判定方法,培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想,培養(yǎng)學(xué)生動(dòng)手、分析、解決實(shí)際問題的能力。
②通過活動(dòng)及實(shí)際問題的研究引導(dǎo)學(xué)生從數(shù)學(xué)角度發(fā)現(xiàn)和提出問題,并用數(shù)學(xué)方法探索、研究和解決問題。
情感目標(biāo) ①感受數(shù)學(xué)與生活的緊密聯(lián)系,體會(huì)數(shù)學(xué)的價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)敢想、敢說、敢解決實(shí)際問題的學(xué)習(xí)習(xí)慣。
通過學(xué)生體驗(yàn)、猜想并證明,讓學(xué)生體會(huì)數(shù)學(xué)充滿著探索和創(chuàng)造,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作,勇于創(chuàng)新的精神。
②通過“轉(zhuǎn)化”數(shù)學(xué)思想方法的運(yùn)用,讓學(xué)生認(rèn)識(shí)事物之間是普遍聯(lián)系,相互轉(zhuǎn)化的辯證唯物主義思想。
三、教學(xué)方法
1、采用指導(dǎo)探究法進(jìn)行教學(xué),主要通過二個(gè)師生雙邊活動(dòng):①動(dòng)——師生互動(dòng),共同探索。②導(dǎo)——知識(shí)類比,合理引導(dǎo)等突出學(xué)生主體地位,讓教師成為學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者,讓學(xué)生親自動(dòng)手、動(dòng)腦、動(dòng)口參與數(shù)學(xué)活動(dòng),經(jīng)歷問題的發(fā)生、發(fā)展和解決過程,在解決問題的過程中完成教學(xué)目標(biāo)。
2、根據(jù)學(xué)生實(shí)際情況,整堂課圍繞“情景問題——學(xué)生體驗(yàn)——合作交流”模式,鼓勵(lì)學(xué)生積極合作,充分交流,既滿足了學(xué)生對新知識(shí)的強(qiáng)烈探索欲望,又排除學(xué)生學(xué)習(xí)幾何方法的缺乏,和學(xué)無所用的思想顧慮。對學(xué)習(xí)有困難的學(xué)生及時(shí)給予幫助,讓他們在學(xué)習(xí)的過程中獲得愉快和進(jìn)步。
3、利用課件輔助教學(xué),突破教學(xué)重難點(diǎn),擴(kuò)大學(xué)生知識(shí)面,使每個(gè)學(xué)生穩(wěn)步提高。
四、教學(xué)流程:
我的教學(xué)流程設(shè)計(jì)是:從創(chuàng)設(shè)情境,孕育新知開始,經(jīng)歷探索新知,構(gòu)建模式;解釋新知,落實(shí)新知;總結(jié)新知,布置作業(yè)等過程來完成教學(xué)。
創(chuàng)設(shè)情境,孕育新知:
①師生欣賞三幅圖片,讓學(xué)生觀察、思考從幾何圖形上看有什么共同點(diǎn)。
②從學(xué)生經(jīng)歷過的事入手,讓學(xué)生比較兩張獎(jiǎng)狀粘貼的好壞,并說明理由,讓學(xué)生留心實(shí)際生活,欣賞木工畫平行線的方法。
③落實(shí)到學(xué)生是否會(huì)畫平行線?本環(huán)節(jié)教師展示圖片,學(xué)生觀察思考,交流回答問題,了解實(shí)際生活中平行線的廣泛應(yīng)用。
設(shè)計(jì)意圖:通過圖片和動(dòng)畫展示,貼近學(xué)生生活,激發(fā)學(xué)生的學(xué)習(xí)興趣。從學(xué)生經(jīng)歷過的事入手。讓學(xué)生知道數(shù)學(xué)知識(shí)無處不在,應(yīng)用數(shù)學(xué)無時(shí)不有。符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗(yàn)出發(fā)”的新課程標(biāo)準(zhǔn)要求。
2、實(shí)驗(yàn)操作,探索新知1
①由學(xué)生是否會(huì)畫平行線導(dǎo)入,用小學(xué)學(xué)過的方法過點(diǎn)P畫直線AB的平行線CD,學(xué)生動(dòng)手畫并展示。
②學(xué)生思考三角尺起什么作用(教師點(diǎn)撥)?
③學(xué)生動(dòng)手操作:用學(xué)具塑料條擺兩條平行線被第三條直線所截的模型,并探討圖中角的關(guān)系(同位角)。
④教師把學(xué)生畫平行線的過程和塑料條模型抽象成幾何圖形,指明同位角的位置關(guān)系是截線,被截線的同旁,
歸納:兩直線平行條件1
教師展示一組練習(xí),學(xué)生獨(dú)立完成,鞏固新知。
在這一環(huán)節(jié)中,教師應(yīng)關(guān)注:
①學(xué)生能否畫平行線,動(dòng)手操作是否準(zhǔn)確
②學(xué)生能否獨(dú)立探究、參與、合作、交流
設(shè)計(jì)意圖:復(fù)習(xí)提問,利用教具、學(xué)具讓學(xué)生動(dòng)手,提高學(xué)生學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生思考和積極性,提高學(xué)生合作交流的能力和質(zhì)量,教師有的放矢,讓學(xué)生掌握重點(diǎn),培養(yǎng)學(xué)生自主探究的學(xué)習(xí)習(xí)慣和能力。及時(shí)練習(xí)鞏固,,體現(xiàn)學(xué)以致用的觀念,消除學(xué)生學(xué)無所用的思想顧慮。
3、大膽猜想,探究新知
⑴學(xué)生分組討論:
①∠2和∠3是什么位置關(guān)系?
∠3和∠4是什么位置關(guān)系?
②直線CD繞O旋轉(zhuǎn)是否還保持上述位置關(guān)系?
③∠2與∠3,∠2與∠4一定相等嗎?猜想,展示討論成果。
⑵學(xué)生探究:
問題:①∠2=∠3能得到AB∥CD嗎?
②∠2+∠4=180可以判定AB∥CD嗎?
學(xué)生用語言表述推理過程,教師深入學(xué)生中并點(diǎn)撥將未知的轉(zhuǎn)化為已知,并規(guī)范推理過程。和學(xué)生一起歸納直線平行的條件2,3。
⑶學(xué)生獨(dú)立完成練習(xí)。
本環(huán)節(jié)教師關(guān)注:
①學(xué)生能否主動(dòng)參與數(shù)學(xué)活動(dòng),敢于發(fā)表個(gè)人觀點(diǎn)。
②小組團(tuán)結(jié)協(xié)作程度,創(chuàng)新意識(shí)。
③表揚(yáng)優(yōu)秀小組
設(shè)計(jì)意圖:猜想、交流、歸納,符合知識(shí)的形成過程,培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想,學(xué)會(huì)將陌生的轉(zhuǎn)化為熟悉的,將未知的轉(zhuǎn)化為已知的。并用練習(xí)及時(shí)鞏固,落實(shí)新知與方法,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)的能力。
4、解釋運(yùn)用,鞏固新知
本環(huán)節(jié)共有五個(gè)練習(xí),第一題落實(shí)同位角、內(nèi)錯(cuò)角、同旁內(nèi)角位置特征。第二、三題落實(shí)三種判定方法的應(yīng)用。第四、五題是注重學(xué)生動(dòng)手操作,解決實(shí)際問題的訓(xùn)練。
本環(huán)節(jié)教師應(yīng)關(guān)注:
①深入學(xué)生當(dāng)中,對學(xué)習(xí)有困難學(xué)生進(jìn)行鼓勵(lì),幫助。
②學(xué)生的思維角度是否合理。
設(shè)計(jì)意圖:加強(qiáng)學(xué)生運(yùn)用新知的意識(shí),培養(yǎng)學(xué)生解決實(shí)際問題的能力和學(xué)習(xí)數(shù)學(xué)的興趣,讓學(xué)生鞏固所學(xué)內(nèi)容,并進(jìn)行自我評價(jià),既面向全體學(xué)生,又照顧個(gè)別學(xué)有余力的學(xué)生,體現(xiàn)因材施教的原則。
5、總結(jié)新知,布置作業(yè)
通過設(shè)問回答補(bǔ)充的方式小結(jié),學(xué)生自主回答三個(gè)問題,教師關(guān)注全體學(xué)生對本節(jié)課知識(shí)的程度,學(xué)生是否愿意表達(dá)自己的觀點(diǎn),采用必做題和選做題的方式布置作業(yè)。
設(shè)計(jì)意圖:通過提問方式引導(dǎo)學(xué)生進(jìn)行小結(jié),養(yǎng)成學(xué)習(xí)——總結(jié)——再學(xué)習(xí)的良好習(xí)慣,發(fā)揮自我評價(jià)作用,同時(shí)可培養(yǎng)學(xué)生的語言表達(dá)能力。作業(yè)分層要求,做到面向全體學(xué)生,給基礎(chǔ)好的學(xué)生充分的空間,滿足他們的求知欲。
五、教學(xué)設(shè)計(jì)
初中數(shù)學(xué)電子教案設(shè)計(jì)5
掌握用因式分解法解一元二次方程.
通過復(fù)習(xí)用配方法、公式法解一元二次方程,體會(huì)和探尋用更簡單的方法——因式分解法解一元二次方程,并應(yīng)用因式分解法解決一些具體問題.
重點(diǎn)
用因式分解法解一元二次方程.
難點(diǎn)
讓學(xué)生通過比較解一元二次方程的多種方法感悟用因式分解法使解題更簡便.
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老師點(diǎn)評:(1)配方法將方程兩邊同除以2后,x前面的系數(shù)應(yīng)為12,12的一半應(yīng)為14,因此,應(yīng)加上(14)2,同時(shí)減去(14)2.(2)直接用公式求解.
二、探索新知
(學(xué)生活動(dòng))請同學(xué)們口答下面各題.
(老師提問)(1)上面兩個(gè)方程中有沒有常數(shù)項(xiàng)?
(2)等式左邊的各項(xiàng)有沒有共同因式?
(學(xué)生先答,老師解答)上面兩個(gè)方程中都沒有常數(shù)項(xiàng);左邊都可以因式分解.
因此,上面兩個(gè)方程都可以寫成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因?yàn)閮蓚€(gè)因式乘積要等于0,至少其中一個(gè)因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實(shí)現(xiàn)降次的?)
因此,我們可以發(fā)現(xiàn),上述兩個(gè)方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個(gè)一次式的乘積等于0的形式,再使這兩個(gè)一次式分別等于0,從而實(shí)現(xiàn)降次,這種解法叫做因式分解法.
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的條件是什么?
解:略 (方程一邊為0,另一邊可分解為兩個(gè)一次因式乘積.)
練習(xí):下面一元二次方程解法中,正確的是( )
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,兩邊同除以x,得x=1
三、鞏固練習(xí)
教材第14頁 練習(xí)1,2.
四、課堂小結(jié)
本節(jié)課要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應(yīng)用.
(2)因式分解法要使方程一邊為兩個(gè)一次因式相乘,另一邊為0,再分別使各一次因式等于0.
五、作業(yè)布置
教材第17頁 習(xí)題6,8,10,11
初中數(shù)學(xué)教育方案相關(guān)文章: