初中教案數學簡單
教案可以幫助教師了解學生的學習情況和需求,以便更好地指導教師進行教學,從而提高教學效果和學生的學習效果。好的初中教案數學簡單應該怎么寫?快來看看,小編給大家分享初中教案數學簡單的寫作技巧和示例,供大家參考!
初中教案數學簡單篇1
一、 教材結構與內容簡析
在分析新數學課程標準的基礎上確定了本節課在教材中的地位和作用以及確定本節課的教學目標、重點和難點。首先來看一下本節課在教材中的地位和作用。
有理數的加減法在整個知識系統中的地位和作用是很重要的。它是整個初中代數的一個基礎,它直接關系到有理數運算、實數運算、代數式運算、解方程、、研究函數等內容的學習。初中階段要培養學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現實模型,把它轉化成數學問題,從而培養學生的數學意識,增強學生對數學的理解和解決實際問題的能力。 就第一章而言,有理數的加減法是本章的一個重點。在有理數范圍內進行的各種運算:加、減法可以統一成為加法,乘法、除法和乘方可以統一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數運算,學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符號和絕對值),關鍵是這一節的學習。
數學思想方法分析:作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節課在教學中力圖向學生滲透的德育目標是:(1)滲透由特殊到一般的辯證唯物主義思想 (2)培養學生嚴謹的思維品質。
二、 教學目標
根據新課程標準和上述對教材結構與內容分析,考慮到學生已有的認知結構及心理特征 ,制定如下教學目標:
1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;
2. 通過學習理解加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;
3.通過加法運算練習,培養學生的運算能力。
三、教學建議
(一)重點、難點分析
本小節的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略符號與括號的代數和的計算.
由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,就可靈活運用加法運算律,簡化計算.
(二)教法建議
1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.
2.關于“去括號法則”,只要學生了解,并不要求追究所以然.
3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如:-3-4表示-3、-4兩數的代數和,-4+3表示-4、+3兩數的代數和,3+4表示3和+4的代數和等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。
4.先把正數與負數分別相加,可以使運算簡便。
5.在交換加數的位置時,要連同前面的符號一起交換。如:12-5+7 應變成 12+7-5,而不能變成12-7+5。
備注:教學過程我主要說第一小節---去括號
(三)教學過程:根據教材的結構特點,緊緊抓住新舊知識的內在聯系,運用類比、聯想、轉化的思想,突破難點.
初中教案數學簡單篇2
問題描述:
初中數學教學案例
初中的,隨便那個年級.2000字.案例和反思
1個回答分類:數學2014-11-30
問題解答:
我來補答
2.3平行線的性質
一、教材分析:
本節課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章第3節平行線的性質,它是平行線及直線平行的繼續,是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.
二、教學目標:
知識與技能:掌握平行線的性質,能應用性質解決相關問題.
數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程.
解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創新意識和創新精神.
情感態度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神.
三、教學重、難點:
重點:平行線的性質
難點:“性質1”的探究過程
四、教學方法:
“引導發現法”與“動像探索法”
五、教具、學具:
教具:多媒體課件
學具:三角板、量角器.
六、教學媒體:
大屏幕、實物投影
七、教學過程:
(一)創設情境,設疑激思:
1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.
2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?
學生活動:
思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;
教師:首先肯定學生的回答,然后提出問題.
問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?
引出課題——平行線的性質.
(二)數形結合,探究性質
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).
問題一:指出圖中的同位角,并度量這些角,把結果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數
數量關系
學生活動:畫圖——度量——填表——猜想
結論:兩直線平行,同位角相等.
問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?
學生:探究、討論,最后得出結論:仍然成立.
2.教師用《幾何畫板》課件驗證猜想
3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)
(三)引申思考,培養創新
問題三:請判斷內錯角、同旁內角各有什么關系?
學生活動:獨立探究——小組討論——成果展示.
教師活動:引導學生說理.
因為a‖b因為a‖b
所以∠1=∠2所以∠1=∠2
又∠1=∠3又∠1+∠4=180°
所以∠2=∠3所以∠2+∠4=180°
語言敘述:
性質2兩條直線被第三條直線所截,內錯角相等.
(兩直線平行,內錯角相等)
性質3兩條直線被第三條直線所截,同旁內角互補.
(兩直線平行,同旁內角互補)
(四)實際應用,優勢互補
1.(搶答)
(1)如圖,平行線AB、CD被直線AE所截
①若∠1=110°,則∠2=°.理由:.
②若∠1=110°,則∠3=°.理由:.
③若∠1=110°,則∠4=°.理由:.
(2)如圖,由AB‖CD,可得()
(A)∠1=∠2(B)∠2=∠3
(C)∠1=∠4(D)∠3=∠4
(3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=()
(A)180°(B)270°(C)360°(D)540°
(4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時,∠2=.
學生提問,并找出回答問題的同學.
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
(五)概括存儲(小結)
1.平行線的性質1、2、3;
2.用“運動”的觀點觀察數學問題;
3.用數形結合的方法來解決問題.
(六)作業第69頁2、4、7.
八、教學反思:
①教的轉變:本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發現結論后,利用幾何畫板直觀地、動態地展示同位角的關系,激發學生自覺地探究數學問題,體驗發現的樂趣.
②學的轉變:學生的角色從學會轉變為會學.本節課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.
③課堂氛圍的轉變:整節課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節課學生與學生、學生與教師之間以“對話”、“討論”為出發點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環境中自主選擇獲得成功的方向,判斷發現的價值.
初中教案數學簡單篇3
教學目標:
知識與技能:理解倒數的意義,會求有理數的倒數。了解有理數除法的意義,理解有理數除法的法則,會進行有理數的除法運算.
過程與方法:通過有理數除法的法則的導出及運用,學生能體會轉化的思想。
感知數學知識具有普遍聯系性、相互轉化性。
情感與態度:通過有理數乘法運算的推廣,體會知識系統的完整性。
體會在解決問題的過程中與他人合作的重要性。通過對解決問題的過程的反思,獲得解決問題的經驗。
教學重點:有理數的除法法則及其運用
教學難點:(1)商的符號的確定。(2)0不能作除數的理解。
教材分析: 乘法與除法互為逆運算,小學已經學過。通過實例引入,說明它在有理數的范圍內也成立。本節內容在學生已有有理數乘法知識的基礎上,通過學生經歷從具體情景中抽象出法則的&39;過程,使他們發現其中的規律,掌握必要的運算技能,使學生在有理數運算的學習中繼續發展數感,在符號法則的學習中增強符號感。
教具: 多媒體課件
教學方法 :引導發現法類比歸納法
課時安排:一課時
創設情境
問題:有四名同學參加數學測驗,以90分為標準,超過得分數記為正數,不足的分數記為負數,評分記錄如下:+5、-20。-19。-14。求:這四名同學的平均成績是超過80分或不足80分?學生在教師的激情互動中,思考列式(+5-20-19-14)÷4
化簡:(-48)÷4=?(但不知如何計算)
揭示課題
從實際生活引入,體現數學知識源于生活及數學的現實意義。
復習回顧前置補償
求下列各數的倒數:
(1)-;(2)4;(3)0.2(4)-0.25;(5)-1
學生對老師的提問進行搶答為學習今天的有理數除法先復習小學倒數概念
探究活動一 課件出示練習題
填空:
①8÷(-2)=8×();
②6÷(-3)=6×();
③-6÷()=-6×;
④-6÷()=-6×。
教師強調0沒有倒數。學生填空后試著得出互為倒數的概念(乘積是1的兩個數互為倒數)
培養學生發現問題總結問題的能力
探究活動二 引例1計算:(-6)÷2
根據除法是乘法的逆運算,引導學生將有理數的除法運算轉化為學生已知的乘法運算。
強調0不能作除數。(舉例強化已導出的法則)學生自主探究有理數的除法運算轉化為學生一致的乘法運算
學生歸納導出法則(一):除以一個數等于乘以這個數的倒數
小組合作交流探究發現結果
探究活動三
(舉例強化已導出的法則)
例1計算(1)(-105)÷7[
(2)6÷(-0.25)
(3)(-0.09)÷(-0.3)
教師強調(1)除法法則與乘法法則相近,只是“乘”“除”二字不同,很容易記。.(2)此法則是有理數的除法運算的又一種方法。
學生自己觀察回憶,進行自主學習和合作交流,得出有理數的除法法則(兩數相除,同號得正,異號得負,并把絕對值相乘。0除以任何不等于0的數都得0)
激發學生學習的積極性和主動性滿足學生的表現欲和探究欲)
強化練習課本例2計算:
(1)(-)÷(-6)÷(-)
(2)(-)÷(-)
學生試著獨立完成有理數的除法法則的靈活應用,并滲透了除法、分數、比可互相轉化。
反饋矯正
課本69—70頁第1、2、3題學生獨立完成并小組互評鞏固法則,調動學生積極性
歸納小節1、學習內容:倒數的概念及求法;有理數的除法
2、通過本節的學習,你有哪些體會?請與同學交流。
同學之間進行交流,小結本節內容培養了學生總結問題的能力
作業布置必做題:課本70頁第1,3,4題
選做題:若ab≠0,則可能的取值是_______.綜合考查,學以致用。不同的學生得到不同的發展
附:板書設計
2.9有理數的除法
例1計算:練習處:
例2計算:
教學反思:
《有理數的除法》一課是傳統內容,在設計理念上,我努力體現“以學生為主”的思想,從學生已有的知識經驗出發,展開教學,使學生自然進入狀態,一切都很順暢,達到了課前設計的構想。在教學中,突出了學生在教學學習過程的主體地位,突出了探索式學習方式,讓學生經歷了觀察、實踐、猜測、推理、交流、反思等活力,既應用了基本概念、基礎知識又鍛煉了學生能力。
在這節課中,本人認為也有不足之處,由于學生的層次各異,在總結問題時,中等以下和學習有困難的學生明顯信心不足,要注意和他們交流、幫助他們把復雜的問題化為簡單的問題。
初中教案數學簡單篇4
一、目的要求
1、使學生初步理解一次函數與正比例函數的概念。
2、使學生能夠根據實際問題中的條件,確定一次函數與正比例函數的解析式。
二、內容分析
1、初中主要是通過幾種簡單的函數的初步介紹來學習函數的,前面三小節,先學習函數的概念與表示法,這是為學習后面的幾種具體的函數作準備的,從本節開始,將依次學習一次函數(包括正比例函數)、二次函數與反比例函數的有關知識,大體上,每種函數是按函數的解析式、圖象及性質這個順序講述的,通過這些具體函數的學習,學生可以加深對函數意義、函數表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數的知識及有關的數學思想方法在解決實際問題中的應用。
2、舊教材在講幾個具體的函數時,是按先講正反比例函數,后講一次、二次函數順序編排的,這是適當照顧了學生在小學數學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數,并且,把正比例函數作為一次函數的特例予以介紹,而最后才學習反比例函數,為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規津,從函數角度看,一次函數的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數就要復雜一些了,特別是,反比例函數的圖象是由兩條曲線組成的,先學習反比例函數難度可能要大一些。第二,把正比例函數作為一次函數的特例介紹,既可以提高學習效益,又便于學生了解正比例函數與一次函數的關系,從而,可以更好地理解這兩種函數的概念、圖象與性質。
3、“函數及其圖象”這一章的重點是一次函數的概念、圖象和性質,一方面,在學生初次接觸函數的有關內容時,一定要結合具體函數進行學習,因此,全章的主要內容,是側重在具體函數的講述上的。另一方面,在大綱規定的幾種具體函數中,一次函數是最基本的,教科書對一次函數的討論也比較全面。通過一次函數的學習,學生可以對函數的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數、反比例函數的學習方法。
三、教學過程
復習提問:
1、什么是函數?
2、函數有哪幾種表示方法?
3、舉出幾個函數的例子。
新課講解:
可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數的例子。然后讓學生觀察這些例子(實際上均是一次函數的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:
(1)這些式子表示的是什么關系?(在學生明確這些式子表示函數關系后,可指出,這是函數。)
(2)這些函數中的自變量是什么?函數是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數,等號右邊是一個代數式,其中的字母x與t是自變量。)
(3)在這些函數式中,表示函數的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)
(4)x的&39;一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設問,最后給出一次函數的定義。
一般地,如果y=kx+b(k,b是常數,k≠0)那么,y叫做x的一次函數。
對這個定義,要注意:
(1)x是變量,k,b是常數;
(2)k≠0(當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數函數,這點,不一定向學生講述。)
由一次函數出發,當常數b=0時,一次函數kx+b(k≠0)就成為:y=kx(k是常數,k≠0)我們把這樣的函數叫正比例函數。
在講述正比例函數時,首先,要注意適當復習小學學過的正比例關系,小學數學是這樣陳述的:
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。
寫成式子是(一定)
需指出,小學因為沒有學過負數,實際的例子都是k>0的例子,對于正比例函數,k也為負數。
其次,要注意引導學生找出一次函數與正比例函數之間的關系:正比例函數是特殊的一次函數。
課堂練習:
教科書13、4節練習第1題.
初中教案數學簡單篇5
教學目標
1、使學生能說出有理數大小的比較法則
2、能熟練運用法則結合數軸比較有理數的大小,特別是應用絕對值概念比較兩個負數的大小,能利用數軸對多個有理數進行有序排列。
3、能正確運用符號"<"">""∵""∴"寫出表示推理過程中簡單的因果關系。
三、教學重點與難點
重點:運用法則借助數軸比較兩個有理數的大小。
難點:利用絕對值概念比較兩個負分數的大小。
四、教學準備
多媒體課件
五、教學設計
(一)交流對話,探究新知
1、說一說
(多媒體顯示)某一天我們5個城市的最低氣溫 從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發學生的求知欲望,可能有些學生會說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學生會說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會說的,老師適當點拔,從而學生在合作交流中不知不覺地完成了以下填空。
比較這一天下列兩個城市間最低氣溫的高低(填"高于"或"低于")
廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。
2、畫一畫:(1)把上述5個城市最低氣溫的數表示在數軸上,(2)觀察這5個數在數軸上的位置,從中你發現了什么?
(3)溫度的高低與相應的數在數軸上的位置有什么?
(通過學生自己動手操作,觀察、思考,發現原點左邊的數都是負數,原點右邊的數都是正數;同時也發現5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數軸上原點右邊的兩個數,右邊的數總比左邊的數大。教師趁機追問,原點左邊的數也有這樣的規律嗎?從而激發學生探索知識的欲望,進一步驗證了原點左邊的數也有這樣的規律。從而使學生親身體驗探索的樂趣,在探究中不知不覺獲得了知識。)由小組討論后,教師歸納得出結論:
在數軸上表示的兩個數,右邊的數總比左邊的數大。
正數都大于零,負數都小于零,正數大于負數。
(二)應用新知,體驗成功
1、練一練(師生共同完成例1后,學生完成隨堂練習1)
例1:在數軸上表示數5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號連接。(師生共同完成)
分析:本題意有幾層含義?應分幾步?
要點總結:小組討論歸納,本題解題時的一般步驟:①畫數軸②描點;③有序排列;④不等號連接。
隨堂練習: P19 T1
2、做一做
(1)在數軸上表示下列各對數,并比較它們的大小
①2和7 ?、?6和-1 ?、?6和-36 ?、?和-1.5
(2)求出圖中各對數的絕對值,并比較它們的大小。
(3)由①、②從中你發現了什么?
(學生小組討論后,代表站起來發言,口述自己組的發現,說明自己組發現的過程,逐步培養學生觀察、歸納、用數學語言表達數學規律的能力。)
要點總結:兩個正數比較大小,絕對值大的數大;兩個負數比較大小,絕對值大的數反而小。
在學生討論的基礎上,由學生總結得出有理數大小的比較法則。
(1)正數都大于零,負數都小于零,正數大于負數。
(2)兩個正數比較大小,絕對值大的數大。
(3)兩個負數比較大小,絕對值大的數反而小。
3、師生共同完成例2后,學生完成隨堂練習2、3、4。
例2比較下列每對數的大小,并說明理由:(師生共同完成)
(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|
分析:第(4)(5)題較難,第(4)題應先通分,第(5)題應先化簡,再比較。同時在講解時,要注意格式。
注:絕對值比較時,分母相同,分子大的數大;分子相同,則分母大的數反而小;分子分母都不相同時,則應先通分再比較,或把分子化相同再比較。
兩個負數比較大小時的一般步驟:①求絕對值;②比較絕對值的大小;③比較負數的大小。
思考:還有別的方法嗎?(分組討論,積極思考)
4、想一想:我們有幾種方法來判斷有理數的大小?你認為它們各有什么特點?
由學生討論后,得出比較有理數的大小共有兩種方法,一種是法則,另一種是利用數軸,當兩個數比較時一般選用第一種,當多個有理數比較大小時,一般選用第二種較好。
練一練:P19 T2、3、4
5、考考你:請你回答下列問題:
(1)有沒有的有理數,有沒有最小的有理數,為什么?
(2)有沒有絕對值最小的有理數?若有,請把它寫出來?
(3)在于-1.5且小于4.2的整數有_____個,它們分別是____。
(4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個數的大小嗎?(本題屬提高題,不要求全體學生掌握)
(新穎的問題會激發學生的好奇心,通過合作交流,自主探究等活動,培養學生思維的習慣和數學語言的表達能力)
6、議一議,談談本節課你有哪些收獲
(由師生共同完成本節課的小結)本節課主要學習了有理數大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數軸,運用這種方法時,首先必須把要比較的數在數軸上表示出來,然后按照它們在數軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個有理數大小時非常簡便。
六、布置作業:P19 A組、B組
基礎好的A、B兩組都做
基礎較差的同學選做A組。
初中教案數學簡單篇6
教學目標
1、了解數軸的概念和數軸的畫法,掌握數軸的三要素;
2、會用數軸上的點表示有理數,會利用數軸比較有理數的大小;
3、使學生初步了解數形結合的思想方法,培養學生相互聯系的觀點。
教學建議
一、重點、難點分析
本節的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小。難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎。
二、知識結構
有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的方法,本課知識要點如下表:
定義三要素應用
數形結合
規定了原點、正方向、單位長度的直線叫數軸原點
正方向
單位長度幫助理解有理數的概念,每個有理數都可用數軸上的點表示,但數軸上的點并非都是有理數比較有理數大小,數軸上右邊的數總比左邊的數要大
在理解并掌握數軸概念的基礎之上,要會畫出數軸,能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數,要知道所有的有理數都可以用數軸上的點表示,會利用數軸比較有理數的大小。
三、教法建議
小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念。數軸是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是數軸的根本依據。數軸與它所在的位置無關,但為了教學上需要,一般水平放置的數軸,規定從原點向右為正方向。要注意原點位置選擇的任意性。
關于有理數與數軸上的點的對應關系,應該明確的是有理數可以用數軸上的點表示,但數軸上的點與有理數并不存在一一對應的關系。根據幾個有理數在數軸上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。
四、數軸的相關知識點
1、數軸的概念
(1)規定了原點、正方向和單位長度的直線叫做數軸。
這里包含兩個內容:一是數軸的三要素:原點、正方向、單位長度缺一不可。二是這三個要素都是規定的。
(2)數軸能形象地表示數,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。
以數軸是理解有理數概念與運算的重要工具。有了數軸,數和形得到初步結合,數與表示數的圖形(如數軸)相結合的思想是學習數學的思想。另外,數軸能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小。因此,應重視對數軸的學習。
2、數軸的畫法
(1)畫直線(一般畫成水平的)、定原點,標出原點“O”。
(2)取原點向右方向為正方向,并標出箭頭。
(3)選適當的長度作為單位長度,并標出…,—3,—2,—1,1,2,3…各點。具體如下圖。
(4)標注數字時,負數的次序不能寫錯,如下圖。
3。用數軸比較有理數的大小
(1)在數軸上表示的兩數,右邊的數總比左邊的數大。
(2)由正、負數在數軸上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。
(3)比較大小時,用不等號順次連接三個數要防止出現“”的寫法,正確應寫成“”。
五、數軸定義的理解
初中教案數學簡單篇7
首先我用蘇軾的《題西林壁》巧妙地喚起學生的生活感受,讓他們認識到視圖的知識在生活中我們早有親身體驗,只是還沒有形成概念,然后我再用“粉筆”這一簡單的教具,讓學生再次體會,加深認識,這樣,教學與生活緊密相連,既有自然地導入課題,又消除學生對新知識的恐懼,同時還激發了學生濃厚的學習興趣。
然后,我不適時地出示“三視圖”這一概念,通過實驗,讓學生認識到視圖就是由立體圖形轉化成的平面圖形,并不斷地訓練、討論、總結,得出畫三視圖的正確方法。這時教師要巧妙點撥,學生如何從正面、上面、側面三個角度來觀察,既體現了學生的主體地位,又突出了教師的主導作用,鍛煉了學生的動手操能力。
由視圖到立體圖形與上面的過程恰恰相反,需要學生根據視圖進行想象,在大腦中構建一個立體形象。我引導學生利用直觀形象與生活中的實物進行聯系,通過歸納、總結、對比的方法,有效的突破這一難點。
為了進一步地激發學生的學習興趣,培養學生的想象能力和思維能力,可以讓學生用一些小立方體隨意擺出幾種組合并描繪出它的視圖,再由視圖到立體圖形的課堂訓練。
最后,讓學生歸納所學知識,進一步鍛煉學生的概括能力,使知識系統化。
以上設計如有不妥之處,望老師們不吝賜教,我不勝感激。
評課記錄
開發區李玉:于坤老師這節課有幾個突出特點:
1、給學生創設了生動的問題情境。本節課用宋朝文學家蘇軾的一首著名的詩《題西林壁》。“橫看成嶺側成峰,遠近高低各不同……”來引入課題,從橫、側、遠、近、高、低等不同角度來觀察廬山,引出如何觀察生活中的立體圖形,這個切入點非常好,一下子就能抓住學生的心,吸引學生的注意力。在平日的教學中,我們也應該多找這樣的例子。如在教七年級《代數式》時,有的老師這樣引入“童年是美好而幸福的,大家還記得那首“唱不完的兒歌吧”,然后同學們一起念“一只青蛙一張嘴,兩只眼睛四條腿,撲騰一聲跳下水;兩只青蛙兩張嘴,四只眼睛八條腿,撲騰兩聲跳下水;三只青蛙三張嘴,六只眼睛12條腿,撲騰三聲跳下水……”,然后問:你能不能用一句話來唱完這首兒歌?引發學生思考的興趣,有的學生通過思考得出:n只青蛙n張嘴,2n只眼睛4n條腿,撲騰n聲跳下水,將字母表示數的優點一下子表現出來,令學生頓覺耳目一新。
2、注重過程教學和學法指導
在教學畫圓柱體、長方體、球體和圓錐體的三視圖時,老師不是直接給學生講解它們的三視圖是什么,然后讓學生記憶、變式練習,而是引導學生通過看書、觀察老師手中的教具、學生自己的學具或學生自制的模型,再找學生回答、小組討論,然后教師和學生一起確定答案。這種教學模式:提出問題,創設問題情境———觀察實物或學生看書、計算、畫圖、獨立思考、猜想———小組討論交流———讓一個小組代表發言,其它小組補充說明———師生交流總結———拓展應用的模式,比較符合學生的認知規律,能讓學生經歷探索知識的發生發展過程及在合作學習中學會與他人交流,不僅學會了知識,而且能鍛煉學生的各種能力。
3、體現學生主體地位,注重學法指導
教師在本節課上處處關注學生學習的主觀能動性,學生自始至終處于被肯定、被激勵之中,時時感受到自己是學習的主人,教師給學生留有較大的學習的空間:如觀察、討論、動手擺放學具等,提出問題后讓學生充分思考并給予適時的點撥。
初中教案數學簡單篇8
教學目標
1.理解二元一次方程及二元一次方程的解的概念;
2.學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;
3.學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
教學重點、難點
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程.
教學過程
1.情景導入:
新聞鏈接:桐鄉70歲以上老人可領取生活補助,得到方程:80a+150b=902880.2.
2.新課教學:
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程.
3.合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?
4.課堂練習:
1)已知:5xm-2yn=4是二元一次方程,則m+n=;
2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_
5.課堂總結:
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式.
作業布置
本章的課后的方程式鞏固提高練習。
初中教案數學簡單篇9
教學目標:
1、知識與技能:
⑴、在具體的現實情境中,認識一個角的余角和補角,掌握余角和補角的性質。
⑵、了解方位角,能確定具體物體的方位。
2、過程與方法:
進一步提高學生的抽象概括能力,發展空間觀念和知識運用能力,學會推理,并能對問題的結論進行合理的猜想。
3、情感態度與價值觀:
體會觀察、歸納、推理對數學知識中獲取數學猜想和論證的重要作用,初步數學中推理的嚴謹性和結論的確定性,能在獨立思考和小組交流中獲益。
重、難點及關鍵:
1、重點:認識角的互余、互補關系及其性質,確定方位是本節課的重點。
2、難點:通過簡單的推理,歸納出余角、補角的性質,并能用規范的語言描述性質是難點。
3、關鍵:了解推理的意義和推理過程是掌握性質的關鍵。
教學過程:
一、引入新課:
讓學生觀察意大利著名建筑比薩斜塔。
比薩斜塔建于1173年,工程曾間斷了兩次很長的時間,歷經約二百年才完工。設計為垂直建造,但是在工程開始后不久便由于地基不均勻和土層松軟而傾斜。
二、新課講解:
1、探究互為余角的定義:
如果兩個角的和是90(直角),那么這兩個角叫做互為余角,其中一個角是另一個角的余角。即:1是2的余角或2是1的余角。
2、練習⑴:
圖中給出的各角,那些互為余角?
3、探究互為補角的定義:
如果兩個角的和是180(平角),那么這兩個角叫做互為補角,其中一個角是另一個角的補角。即:3是4的補角或4是3的補角。
4、練習⑵:
(1)圖中給出的各角,那些互為補角?
(2)填下列表:
a的余角a的補角
5
32
45
77
6223
x
結論:同一個銳角的補角比它的余角大90。
(3)填空:
①70的余角是,補角是。
②a(90)的它的余角是,它的補角是。
重要提醒:ⅰ(如何表示一個角的余角和補角)
銳角a的余角是(90a)
a的補角是(180a)
ⅱ互余和互補是兩個角的數量關系,與它們的位置無關。
5、講解例題:
例1:若一個角的補角等于它的余角4倍,求這個角的度數。
解:設這個角是x,則它的補角是(180-x),余角是(90-x)。
根據題意得:
(180-x)=4(90-x)
解之得:x=60
答:這個角的度數是60。
6、練習⑶:
一個角的補角是它的3倍,這個角是多少度?
7、探究補角的性質:
如圖1與2互補,3與4互補,如果1=3,那么2與4相等嗎?為什么?
教師活動:操作多媒體演示。
學生活動:觀察圖形的運動,得出結果:4
補角性質:同角或等角的補角相等
教師活動:向學生說明,以上從觀察圖形得到的`結論,還可以從理論上說明其理由。
∵1+2=180,3+4=180
2=180-1,4=180-3
∵1=3
180-1=180-3
即:2=4
8、探究余角的性質:
如圖1與2互余,3與4互余,如果1=3,那么2與4相等嗎?為什么?
教師活動:操作多媒體演示。
學生活動:觀察圖形的運動,得出結果:4
余角性質:同角或等角的余角相等
教師活動:向學生說明,以上從觀察圖形得到的結論,還可以從理論上說明其理由。
∵1+2=90,3+4=90
2=90-1,4=90-3
∵1=3
90-1=90-3
即:2=4
9、講解例題:
例2:如圖,AOB=90COD=EOD=90,C,O,E在一條直線上,且4,請說出1與3之間的關系?并試著說明理由?
解:3
∵2=COD=90
3+2=AOB=90
3(等角的余角相等)
10、練習⑷:
如圖AOB=90COD=90則1與2是什么關系?
11、講解方位角:
(1)認識方位:
正東、正南、正西、正北、東南、
西南、西北、東北。
(2)找方位角:
ⅰ乙地對甲地的方位角ⅱ甲地對乙地的方位角
12、講解例題:
例3:選擇題:
(1)A看B的方向是北偏東21,那么B看A的方向()
A:南偏東69B:南偏西69C:南偏東21D:南偏西21
(2)如圖,下列說法中錯誤的是()
A:OC的方向是北偏東60
B:OC的方向是南偏東60
C:OB的方向是西南方向
D:OA的方向是北偏西22
(3)在點O北偏西60的某處有一點A,在點O南偏西20的某處有一點B,則AOB的度數是()
A:100B:70C:180D:140
例4:如圖.貨輪O在航行過程中,發現燈塔A在它南偏東60的方向上,同時,在它北偏東40,南偏西10,西北(即北偏西45)方向上又分別發現了客輪B,貨輪C和海島D.仿照表示燈塔方位的方法畫出表示客輪B,貨輪C和海島D方向的射線.
三、課堂小結:
1、本節課學習了余角和補角,并通過簡單的推理,得到出了余角和補角的性質。
2、了解方位角,學會了確定物體運動的方向。
四、課外作業:
1、課本第114頁:9、11、12題。
2、學習指要第78-79頁:訓練二和訓練三。
課后反思:
初中教案數學簡單篇10
整式的加減——初中數學第一冊教案(通用2篇)
整式的加減——初中數學第一冊篇1第9課3.4整式的加減(1)
教學目的
1、使學生在掌握合并同類項、去括號法則基礎上進行整式的加減運算。
2、使學生掌握整式加減的一般步驟,熟練進行整式的加減運算。
教學分析
重點:整式的加減運算。
難點:括號前是-號,去括號時,括號內的各項都要改變符號。
突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。
教學過程
一、復習
1、 敘述合并同類項法則。
2、 練習題:(用投影儀顯示、學生完成)
3、 敘述去括號與添括號法則。
4、 練習題:(用投影儀顯示、學生完成)
5、化簡:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎。
2、例題
例1(P166例1)(學生自學后,教師按以下提示點拔即可)
求單項式5x2y,-2x2y,2xy2,-4xy2的和。
提示:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。
解:(略,見教材P166)
練習:P167 1、2
例2(P166例2)
求3x2-6x+5與4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每個多項式要加括號)(口述:文字敘述的整式加減,對每個整式要添上括號)
=3x2-6x+5+4x2-7x-6 (去括號)
=7x2+x-1 (合并同類項)
練習:P167 3
例3。(P166例3)(學生自學后,完成練習,教師矯正練習錯誤)
求2x2+xy+3y2與x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、歸納整式加減的一般步驟。(最好由學生歸納)
整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。
三、練習
補:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B(視時間是否足夠而定)
四、小結(用投影儀板演)
1、文字敘述的整式加減,對每一個整式要添上括號。
2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。
五、作業
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。 (可適當減少些)
整式的加減——初中數學第一冊教案篇2整式的加減(1)
教學目的
1、使學生在掌握合并同類項、去括號法則基礎上進行整式的加減運算。
2、使學生掌握整式加減的一般步驟,熟練進行整式的加減運算。
教學分析
重點:整式的加減運算。
難點:括號前是-號,去括號時,括號內的各項都要改變符號。
突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。
教學過程
一、復習
1、敘述合并同類項法則。
2、敘述去括號與添括號法則。
3、化簡:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎。
2、例題
例1(P166例1)
求單項式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。
解:(略,見教材P166)
例2(P166例2)
求3x2-6x+5與4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每個多項式要加括號)
=3x2-6x+5+4x2-7x-6 (去括號)
=7x2+x-1 (合并同類項)
例3。(P166例3)
求2x2+xy+3y2與x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、歸納整式加減的一般步驟。
整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。
三、練習
P167:1,2,3,4。
補:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B
四、小結
1、文字敘述的整式加減,對每一個整式要添上括號。
2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。
五、作業
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。
基礎訓練同步練習1。
整式的加減(1)
教學目的
1、使學生在掌握合并同類項、去括號法則基礎上進行整式的加減運算。
2、使學生掌握整式加減的一般步驟,熟練進行整式的加減運算。
教學分析
重點:整式的加減運算。
難點:括號前是-號,去括號時,括號內的各項都要改變符號。
突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。
教學過程
一、復習
1、敘述合并同類項法則。
2、敘述去括號與添括號法則。
3、化簡:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎。
2、例題
例1(P166例1)
求單項式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。
解:(略,見教材P166)
例2(P166例2)
求3x2-6x+5與4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每個多項式要加括號)
=3x2-6x+5+4x2-7x-6 (去括號)
=7x2+x-1 (合并同類項)
例3。(P166例3)
求2x2+xy+3y2與x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、歸納整式加減的一般步驟。
整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。
三、練習
P167:1,2,3,4。
補:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B
四、小結
1、文字敘述的整式加減,對每一個整式要添上括號。
2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。
五、作業
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。
基礎訓練同步練習1。
整式的加減(1)
教學目的
1、使學生在掌握合并同類項、去括號法則基礎上進行整式的加減運算。
2、使學生掌握整式加減的一般步驟,熟練進行整式的加減運算。
教學分析
重點:整式的加減運算。
難點:括號前是-號,去括號時,括號內的各項都要改變符號。
突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。
教學過程
一、復習
1、敘述合并同類項法則。
2、敘述去括號與添括號法則。
3、化簡:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎。
2、例題
例1(P166例1)
求單項式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。
解:(略,見教材P166)
例2(P166例2)
求3x2-6x+5與4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每個多項式要加括號)
=3x2-6x+5+4x2-7x-6 (去括號)
=7x2+x-1 (合并同類項)
例3。(P166例3)
求2x2+xy+3y2與x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、歸納整式加減的一般步驟。
整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。
三、練習
P167:1,2,3,4。
補:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B
四、小結
1、文字敘述的整式加減,對每一個整式要添上括號。
2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。
五、作業
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。
基礎訓練同步練習1。
整式的加減(1)
教學目的
1、使學生在掌握合并同類項、去括號法則基礎上進行整式的加減運算。
2、使學生掌握整式加減的一般步驟,熟練進行整式的加減運算。
教學分析
重點:整式的加減運算。
難點:括號前是-號,去括號時,括號內的各項都要改變符號。
突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。
教學過程
一、復習
1、敘述合并同類項法則。
2、敘述去括號與添括號法則。
3、化簡:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎。
2、例題
例1(P166例1)
求單項式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。
解:(略,見教材P166)
例2(P166例2)
求3x2-6x+5與4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每個多項式要加括號)
=3x2-6x+5+4x2-7x-6 (去括號)
=7x2+x-1 (合并同類項)
例3。(P166例3)
求2x2+xy+3y2與x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、歸納整式加減的一般步驟。
整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。
三、練習
P167:1,2,3,4。
補:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B
四、小結
1、文字敘述的整式加減,對每一個整式要添上括號。
2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。
五、作業
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。
基礎訓練同步練習1。