2024年人教版初中上冊數學教案范本
作為一位杰出的教職工,有必要進行細致的教案準備工作,那么關于人教版初中上冊數學教案怎么寫呢?以下是小編整理的一些人教版初中上冊數學教案,僅供參考。
2024年人教版初中上冊數學教案范本【篇1】
【學習目標】
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,學會檢驗一個數值是不是方程的解的方法。
【重點難點】
能驗證一個數是否是一個方程的解。
1.某工廠加強節能措施,去年下半年與上半年相比,月平均用電量減少2 000度,全年用電15萬度,如果設上半年每月平均用電x度,那么所列方程正確的是( )
A.6x+6(x-2 000)=150 000
B.6x+6(x+2 000)=150 000
C.6x+6(x-2 000)=15
D.6x+6(x+2 000)=15
2.李紅買了8個蓮蓬,付50元,找回38元.設每個蓮蓬的價格為x元,根據題意,列出方程為________.
3.一個正方形花圃邊長增加2 m,所得新正方形花圃的`周長是28 m,則原正方形花圃的邊長是多少?(只列方程)
《3.1.等式的性質》同步四維訓練含答案
知識點一:等式的性質1
1.下列變形錯誤的是(D )
A.若a=b,則a+c=b+c
B.若a+2=b+2,則a=b
C.若4=x-1,則x=4+1
D.若2+x=3,則x=3+2
2.已知m+a=n+b,根據等式的性質變形為m=n,那么a,b必須符合的條件是(C )
A.a=-b
B.-a=b
C.a=b
D.a,b可以是任意有理
《3.1從算式到方程》同步練習含解析
7.解:把x=3代入方程,得:15-a=3,
解得:a=12.
故選B.
根據方程解的定義,將方程的解代入方程,就可得一個關于字母a的一元一次方程,從而可求出a的值.
本題考查了方程的解的定義,解決本題的關鍵在于:根據方程的解的定義將x=3代入,從而轉化為關于a的一元一次方程.
8.解:A、7x-4=3x是方程;
B、4x-6不是等式,不是方程;
C、4+3=7沒有未知數,不是方程;
D、2x<5不是等式,不是方程;
故選:A.
根據方程的定義:含有未知數的等式叫方程解答即可.數或整式
2024年人教版初中上冊數學教案范本【篇2】
一、教學目標
1、知識與技能:
(1)在現實中,認識角是一種基本的幾何圖形,理解角的概念,掌握角的表示方法。
(2)認識角的度量單位度、分、秒,能根據角的度量比較角的大小,熟練進行角的換算。
2、能力目標:培養學生的抽象概括能力,增強應用數學的意識。
3、情感目標:通過豐富的圖形世界進一步理解角的有關概念,感受數學與生活的密切聯系,積極參與數學學習活動。
4、過程與方法:提高學生的識圖的能力,學會用運動變化的觀點看問題。
二、教學重點、難點關鍵
1、教學重點:角的概念、表示方法及角度制的換算
2、教學難點:角的表示方法、角度制的換算
3、關鍵:學會觀察圖形是正確表示一個角的關鍵
三、學情分析
角是幾何初步知識中比較抽象的概念,學生在小學已經初步接觸了角的有關知識,對角的概念、比較、度量有了初步的認識。按照教學目標要求,這節課將進一步對角的概念、比較和度量進行規范。培養學生觀察、比較、概括能力,借此引導學生在已有的生活經驗和知識的基礎上學習數學,理解數學,體會數學與生活的關系。學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。本節課設計的教學方法是采用引導發現法,輔之以討論法
四、教學準備
為了提高課堂教學效率,激發學生學習興趣,培養學生的空間想象力,本節課采用的是直觀教學手段,充分利用多媒體演示,便于學生理解和掌握。
五、教學用具:
量角器
六、教學過程
(一)引入新課
1多媒體放映一些生活中圖形:時鐘,教堂,足球射門請生觀察。
2提出問題:
時鐘的'分針和時針,教堂的屋頂,足球與門框,都給我們怎樣的平面圖形的形象?請把它們畫出來。
學生活動:進行獨立思考,畫出一個角,然后觀看教師的演示過程。
(二)活動探究,建構新知
活動一
角的概念
師:我們如何給角下定義?請大家根據自己的理解給角下一個定義。
生:角的兩種定義:
a、角是由兩條具有公共端點的射線組成的圖形,兩條射線的公共端點上一這個角的頂點,這兩條射線是這個角的邊;
b、角也可以看成由一條射線繞著它的端點旋轉而成的圖形。
(學生小組活動思考討論,組內統一意見,代表發言,最后比較各答案得出準確定義。學生對角的概念已初步接觸過,讓學生進一步加深對角的概念的理解,培養學生抽象概括能力以及語言的表達能力。但由于學生的語言表達能力還不是太強,教師可進行適當的糾正、歸納)
活動二
角的表示
師:如何表示一個角?請同學們閱讀課本第136面在關內容,歸納角的表示方法(小組內討論互助)
生:角的表示方法有:
1、角的符號+三個大寫字母,如:∠aob
2、角的符號+一個大寫字母,如:∠o
(頂點處只有一個角時)
3、角的符號+數字如:∠1
4、角的符號+希臘字母如∠α
師:在用這些方法表示角的時候應該注意些什么呢?
生:用“角的符號+三個大寫字母”表示角的時候要用大寫字母,頂點的字母應該寫在中間;在頂點處只有一個角時,才可以用一個大寫的字母表示。
師:老師再告訴大家一個細節:用數字或希臘字母表示角的時候,要在角上畫一個小弧形。另外在角的表示中不能丟了前面角的符號。
(在課堂教學中,教師應該充分相信學生,讓學生在課堂上有充分的活動空間和時間,形成學生自我尋求發展的愿望,充分發揮他們的自主精神。當然,學生在歸納、表述的時候會出現不正確、思維不太嚴謹的地方,教師可給于適當的引導、糾正)
1、先估測圖中所示各個角的大小
2、再用量角器量一量,比較它們的大小,并與同學們交流度量角的方法3、射門角度越大,進球機會越大,請指出在圖中哪一點射門最好
3、對于角的比較大小,你還能有什么好的方法嗎?
生:
1、∠b最大
2、∠a=28°∠b=91°∠c=45°
量角器的使用方法:“一對中,二合線,三讀數”
1、點b射門最好。
2、對于角的比較大小,也可以通過疊合的方法來比較。
(通過學生的探索,讓學生明白角的比較方法很多,可以通過估測、度量的方法,也可以通過疊合的方法來比較角的大?。?/p>
(三)、鞏固練習,遷移新知
試一試
1、如圖打臺球的時候,球的反射角總是等于入射角。
請同學們估測球反彈后會撞擊圖中的哪一點?
(問題1以打臺球為情景,因為臺球是學生喜愛的體育活動,又與角有著密切的關系,可進一步引導學生分析角的三種比較方法)
2、(1)圖中以oa為一邊的角有哪幾個?請按大小順序用“﹤”號連接起來;
(2)∠aoc=∠aob+∠boc,∠aob=∠aod-∠dob。類似地,你還能寫出哪些有關的角的和與差的關系式?
(問題2具有開放性,教學中要指導學生認真讀圖,要給學生較為充分的獨立思考、相互交流的時間和空間,鼓勵學生盡可能多地表述出有關角的和與差的關系式)
3、已知一條射線oa,若從點o再引兩條射線ob、oc,使得∠aob=600,∠boc=300,求∠aoc的度數。
(問題3的解答中,∠aoc有兩種可能,不少同學只得出了一個答案:90°。表現出思維不太嚴謹,此時教師應該抓住思維訓練的契機,培養學生的思維能力)關于角的度量單位,教學時應強調:
(1)度、分、秒是常用的角的度量單位;
(2)度、分、秒的進率是60(與時間的單位時、分、秒的換算一樣)多媒體出示例題與練習
(四)、歸納總結,系統知識
師:本節課學習了哪些知識?
生:學習了角的概念、角的表示、角的比較與度量,角的換算。
師:通過本節課的實踐、探索、交流與討論,你有哪些收獲?
生:學會了角的表示方法,角的大小比較方法,并能熟練地進行角度的換算等
(五)、布置作業:課本p3081、2、3同時出示思考題“用一副三角板,你可以作出哪些特殊的角”作為本節課的延伸。
2024年人教版初中上冊數學教案范本【篇3】
教學目標
1.會利用合并同類項的方法解一元一次方程;(重點)
2.通過對實例的分析、體會一元一次方程作為實際問題的數學模型的作用。(難點)
教學過程
一、情境導入
1.等式的基本性質有哪些?
2.解方程:(1)x-9=8; (2)3x+1=4.
3.下列各題中的兩個項是不是同類項?
(1)3xy與-3xy; (2)0.2ab與0.2ab;
(3)2abc與9bc; (4)3mn與-nm;
(5)4xyz與4xyz; (6)6與x.
4.能把上題中的同類項合并成一項嗎?如何合并?
5.合并同類項的'法則是什么?依據是什么?
二、合作探究
探究點一:利用合并同類項解簡單的一元一次方程
例1解下列方程:
(1)9x-5x=8;
(2)4x-6x-x=15.
解析:先將方程左邊的同類項合并,再把未知數的系數化為1。
解:(1)合并同類項,得4x=8.
系數化為1,得x=2.
(2)合并同類項,得-3x=15.
系數化為1,得x=-5.
方法總結:解方程的實質就是利用等式的性質把方程變形為x=a的形式.
探究點二:根據“總量=各部分量的和”列方程解決問題
例2足球表面是由若干個黑色五邊形和白色六邊形皮塊圍成的,黑、白皮塊數目的比為3∶5,一個足球表面一共有32個皮塊,黑色皮塊和白色皮塊各有多少個?
解析:遇到比例問題時可設其中的每一份為x,本題中已知黑、白皮塊數目比為3∶5,可設黑色皮塊有3x個,則白色皮塊有5x個,然后利用相等關系“黑色皮塊數+白色皮塊數=32”列方程。
解:設黑色皮塊有3x個,則白色皮塊有5x個,根據題意列方程3x+5x=32,解得x=4,則黑色皮塊有3x=12(個),白色皮塊有5x=20(個).
答:黑色皮塊有12個,白色皮塊有20個。
方法總結:解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的數量關系,列出方程,再求解.此題的關鍵是要知道相等關系為:黑色皮塊數+白色皮塊數=32,并能用x和比例關系把黑皮與白皮的數量表示出來。
三、板書設計
1.用合并同類項的方法解簡單的一元一次方程。
解方程的步驟:
(1)合并同類項;
(2)系數化為1(等式的基本性質2)。
2.找等量關系列一元一次方程。
列方程解應用題的步驟:
(1)設未知數;
(2)分析題意找出等量關系;
(3)根據等量關系列方程;
(4)解方程并作答。
教學反思
本節從復習入手,幫助學生回顧合并同類項的相關知識,為學習用合并同類項解方程做好鋪墊.教學中采用引導發現的方法,課堂訓練中鼓勵自己動手,體現學生在課堂上的主體地位;整個教學過程中充分調動學生學習積極性,培養學生合作學習,主動探究的習慣。
2024年人教版初中上冊數學教案范本【篇4】
教學內容:
小學數學六年級下冊P112-113練習二十二1~7題。
教學目標:
1.通過練習,進一步掌握統計與概率的相關知識。
2.能解決統計與概率相關的簡單實際問題。
3.感受數學與生活的緊密聯系,提高學習數學的興趣和學好數學的自信心。
重點、難點:
1.掌握統計與概率的基本知識和方法。
2.靈活應用統計與概率的相關知識解決實際問題。
教學準備:
教學掛圖,小黑板,自主檢測題等。
教學過程
一、情境引入,回顧再現
1.回顧統計與概率的相關知識。
組織學生簡單回憶,說一說:
本單元學習了統計圖,統計表;平均數,中位數,眾數;以及游戲公平,可能性等概率問題。
2.揭示課題。
師:那么這節課我們就來對本部分知識進行練習。
板書課題:統計與概率練習
二、分層練習,強化提高
(一)基本練習。
1.
(1)該公司去年全年的銷售情況如何?
(2)該公司的發展前景怎樣?
(3)你還能提出哪些問題?
①組織學生獨立解答.
②匯報訂正,說解題思路。
教師引導學生從圖中的變化趨勢上來分析問題,從而得出結論:該公司去年總體經營情況很好,產量和銷量不斷增長,第四季度增長幅度較快,而且出現了銷量大于產量的良好勢頭。由此可以作出預測:該公司在未來的一段時間內將有良好的發展。
2.
①組織學生獨立解答.
②匯報訂正,說解題思路
教師注意提醒學生考慮事件發生的等可能性以及幾率的多少。
(二)綜合練習。
①組織學生獨立解答第一小題。
②小組交流討論,解答第二小題。
師根據學生的匯報,讓學生明確在研究一組數據的分布情況時,用平均數、中位數或眾數作為數據的代表都是可以的。但是在一般情況下,用平均數作為數據代表的時候較多,它與這組數據中的每個數據都有關系,但它易受極端數據的影響,所以為了減少這種影響,在評分時就采取去掉一個分和一個最低分,再計算平均數,這樣做是合理的。
①組織學生獨立思考。
②小組交流討論,匯報結果。
本題是有關眾數的應用的練習。從進貨和銷售數量的差來看,尺碼是35、37、39三種型號的鞋進貨有些多了,下一次進貨時可考慮適當降低數量;但從銷量來看,37碼的鞋仍然排名第一,36和38碼的列第二、三名,所以每種型號的'鞋的進貨量的比例總體上不會有大的變化。研究一組數據的頻數大小分布情況時,應用了眾數的知識。
(三)提高練習。
①組織學生獨立思考。
②小組交流討論,匯報結果。
六(2)班同學的血型情況如圖,
(1)從圖中你能得到哪些信息?
(2)該班有50人,各種血型有多少人?
本題是有關可能性的習題,對簡單事件發生的可能性作出預測。從兩隊的歷史戰績來看,各是兩勝一平兩負,不相上下;從這一點來判斷,兩隊獲勝的可能性都是二分之一。但是,仔細觀察可以發現:在離比賽日最近的兩場比賽中均是乙隊獲勝,說明最近乙隊的狀態好于甲隊,由此可以預測:乙隊獲勝的可能性稍大一些。這種判斷也有一定道理。
三、自主檢測,評價完善
自主檢測
1.填空:
(1)人們對收集的統計數據經過分析整理后可以制成( )還可以制成( )
(2)( )統計圖可以清楚地表示出各部分同總數之間的關系。
(3)( )統計圖既能表示出數量的多少,又能反映出數量變化情況
2.選擇:
(1)評價一個班整體學習成績情況,看( )比較合適?
A.平均數B.中位數C.眾數
(2)為了清楚地表示出20__年各月平均氣溫變化情況,應繪制( )。
A.條形B.折線C.扇形
3.做一做:
有A—J 10張字母卡片,小明翻字母卡片,小紅猜小明的字母卡片,如果小紅猜對,小紅獲勝,如果小紅猜錯了,小明獲勝。
(1)你認為這個游戲規則對雙方公平嗎?對誰有利?
(2)請設計一個雙方公平的游戲規則。
四、課堂總結
1.教師評價:通過本節課的練習大都分同學掌握較好,值得表揚。
2.學生談收獲:通過本節課練習你有什么新的收獲?
板書設計:
統計與概率練習
統計表
統計圖:條形統計圖;折線統計圖;扇形統計圖
統計量:平均數;中位數;眾數
可能性:等可能;公平;
作業設計
基礎:
1.簡單的統計圖有( )統計圖、( )統計圖和( )統計圖。
2.( )統計圖是用長短不同、寬窄一致的直條表示數量,從圖上很容易看出( )。
3. 4、7.7、8.4、6.3、7.0、6.4、7.0、8.6、9.1這組數據的眾數是( ),中位數是( ),平均數是( )。
4.在一組數據中,( )只有一個,有時( )不止一個,也可能沒有( )。(填眾數或中位數)
2024年人教版初中上冊數學教案范本【篇5】
教學目標
1.經歷觀察、分析、操作、欣賞以及抽象,歸納等過程,經歷探索圖形平移性質的過程以及與他人合作交流的過程,進一步發展空間觀念,增強審美意識。
2.通過實例認識平移,理解平移的含義,理解平移前后兩個圖形對應點連線平行且相等的性質.
重點、難點
重點:探索并理解平移的性質.
難點:對平移的認識和性質的探索.
教學過程
一、引入新課
1.教師打開幻燈機,投放課本圖5.4-1的圖案.
2.學生觀察這些圖案、思考并回答問題.
(1)它們有什么共同的特點?
(2)能否根據其中的一部分繪制出整個圖案?
3.師生交流.
(1)這引進美麗的圖案是由若干個相同的圖案組合而成的,圖5.4-1 上一排左邊的圖案(不考慮顏色)都有“基本圖形”;中間一個正方形,上、下有正立與倒立的正三角形,如圖(1);上排中間的.圖案(不考慮顏色)都有“基本圖形”:正十二邊形, 四周對稱著4個等邊三角形,如圖(2);上排右邊的圖案(不考慮顏色)都有“基本圖形”;正六邊形,內接六角星,如圖(3);下排的左圖中的“基本圖形”是鴿子與橄欖枝; 下排右圖中的“基本圖形”是上、下一對面朝右與面朝左的人頭像組成的圖案.
《5.4平移》同步講義練習和同步練習
1在△ABC中,∠C=90°,AC=BC=5,現將△ABC沿著CB的方向平移到△A′B′C′的位置,若平移的距離為2,則圖中的陰影部分的面積為 .
2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求陰影部分的面積為 cm2.
3、紿正五邊形的頂點依次編號為1,2,3,4,5.若從某一頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數字是幾,就走幾個邊長,則稱這種走法為一次“移位”.如:小宇在編號為3的頂點上時,那么他應走3個邊長,即從3→4→5→1為第一次“移位”,這時他到達編號為l的頂點;然后從1→2為第二次“移位”.若小宇從編號為2的頂點開始,第2000次“移位”后,則他所處頂點的編號是 .
《5.4平移》同步測試卷含答案
1. 將圖形平移,下列結論錯誤的是( )
A.對應線段相等
B.對應角相等
C.對應點所連的線段互相平分
D.對應點所連的線段相等
解析: 根據平移的性質,將圖形平移,對應線段相等、對應角相等、對應點所連的線段相等,而對應點所連的線段不一定互相平分,故選C.
12. 國旗上的四個小五角星,通過怎樣的移動可以相互得到( )
A.軸對稱 B.平移 C.旋轉 D.平移和旋轉
解析: 國旗上的四個小五角星通過平移和旋轉可以相互得到.故選D。
2024年人教版初中上冊數學教案范本【篇6】
【學習目標】
1、通過觀察生活中的大量圖片或實物,經歷把實物抽象成幾何圖形的過程;
2、能由實物形狀想象出幾何圖形,由幾何圖形想象出實物形狀;
3、能識別一些簡單幾何體,正確區分平面圖形與立體圖形。
【重點難點】
識別簡單的幾何體是重點;從具體事物中抽象出幾何圖形是難點。
【導學指導】
一、知識鏈接
同學們,你仔細觀察過我們生活的世界嗎?從城市宏偉的建筑到鄉村簡樸的住宅,從四通八達的立交橋到街頭巷尾的交通標志,從古老的剪紙藝術到現代化的城市雕塑,從自然界形態各異的動物到北京的申奧標志……,包含著形態各異的圖形。圖形的世界是豐富多彩的!那就讓我們走進圖象的世界去看看吧。
二、自主探究
1、幾何圖形
(1)仔細觀察圖4、1—1,讓同學們感受是豐富多彩的圖形世界;
(2)出示一個長方體的紙盒,讓同學們觀察圖4、1—2回答問題:
從整體上看,它的形狀是什么?從不同側面看,你看到了什么圖形?只看棱、頂點等局部,你又看到了什么?
我們見過的長方體、圓柱、圓錐、球、圓、線段、點,以及小學學習過的三角形、四邊形等,都是從形形色色的物體外形中得出的。我們把這些圖形稱為幾何圖形。
注意:當我們關注物體的形狀、大小和位置時,得出了幾何圖形,它是數學研究的主要對象之一,而物體的顏色、重量、材料等則是其它學科所關注的。
2、立體圖形
思考第117頁思考題并出示實物(如茶葉、地球儀、字典及魔方等)及多媒體演示(如谷堆、帳篷、金字塔等),它們與我們學過的哪些圖形相類似?
長方體、正方體、球、圓柱、圓錐等它們各部分不都在同一平面內,它們是立體圖形。
想一想
生活中還有哪些物體的形狀類似于這些立體圖形呢?
思考:課本118頁圖4、1—4中實物的形狀對應哪些立體圖形?把相應的實物與圖形用線連起來。
3、平面圖形
平面圖形的概念
線段、角、三角形、長方形、圓等它們的各部分都在同一平面內,它們是平面圖形。
思考:課本118頁圖4、1—5的圖中包含哪些簡單的平面圖形?
請再舉出一些平面圖形的例子。
長方形、圓、正方形、三角形、……。
思考:立體圖形與平面圖形是兩類不同的幾何圖形,它們的區別在哪里?它們有什么聯系?
立體圖形的各部分不都在同一平面內,而平面圖形的.各部分都在同一平面內;
立體圖形中某些部分是平面圖形。
《4、1、2點、線、面、體》同步四維訓練
知識點一:幾何體的構成
1、下列結論正確的是(C)
①圓柱由3個面圍成,這3個面都是平面;
②圓錐由2個面圍成,這2個面中,1個是平面,1個是曲面;
③球僅由1個面圍成,這個面是平面;
④正方體由6個面圍成,這6個面都是平面、
A、①②B、②③C、②④D、①④
《4、1、2點、線、面、體》同步練習含解析
一、單選題(共12題;共24分)
1、圓錐體是由下列哪個圖形繞自身的對稱軸旋轉一周得到的
A、正方形
B、等腰三角形
C、圓
D、等腰梯形
2、下面現象能說明“面動成體”的是
A、旋轉一扇門,門運動的痕跡
B、扔一塊小石子,小石子在空中飛行的路線
C、天空劃過一道流星
D、時鐘秒針旋轉時掃過的痕跡
3、下列說法中,正確的是
A、棱柱的側面可以是三角形
B、四棱錐由四個面組成的
C、正方體的各條棱都相等
D、長方形紙板繞它的一條邊旋轉1周可以形成棱柱
2024年人教版初中上冊數學教案范本【篇7】
教學目標
1.知識與技能
領會運用完全平方公式進行因式分解的方法,發展推理能力。
2.過程與方法
經歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟。
3.情感、態度與價值觀
培養良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力。
重、難點與關鍵
1.重點:理解完全平方公式因式分解,并學會應用。
2.難點:靈活地應用公式法進行因式分解。
3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的`。
教學方法
采用“自主探究”教學方法,在教師適當指導下完成本節課內容。
教學過程
一、回顧交流,導入新知
【問題牽引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知識遷移】
2.計算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2。
【教師活動】引導學生完成下面兩道題,并運用數學“互逆”的思想,尋找因式分解的規律。
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2。
【學生活動】從逆向思維的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2。
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2。
二、范例學習,應用所學
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4。
【例2】如果x2+axy+16y2是完全平方,求a的值。
【思路點撥】根據完全平方式的定義,解此題時應分兩種情況,即兩數和的平方或者兩數差的平方,由此相應求出a的值,即可求出a3.
三、隨堂練習,鞏固深化
課本P170練習第1、2題。
【探研時空】
1.已知x+y=7,xy=10,求下列各式的值。
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值。
四、課堂總結,發展潛能
由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2。
在運用公式因式分解時,要注意:
(1)每個公式的形式與特點,通過對多項式的項數、次數等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當的組合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解。
五、布置作業,專題突破
2024年人教版初中上冊數學教案范本【篇8】
一、教學目標
1.理解分式的基本性質。
2.會用分式的基本性質將分式變形。
二、重點、難點
1.重點:理解分式的基本性質。
2.難點:靈活應用分式的基本性質將分式變形。
3.認知難點與突破方法。
教學難點是靈活應用分式的基本性質將分式變形。突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質。應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。
三、練習題的意圖分析
1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.P9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解。
3.P11習題16.1的.第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5。
四、課堂引入
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3.提問分數的基本性質,讓學生類比猜想出分式的基本性質。
五、例題講解
P7例2.填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
P11例3.約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結果要是最簡分式。
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
2024年人教版初中上冊數學教案范本【篇9】
一、內容和內容解析
1.內容
三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法。
2.內容解析
本節內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現實生活中的真實性,激發學生熱愛生活、勇于探索的思想感情。
理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入。學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用。它也是學習三角形的角、邊的延續以及三角形全等、相似等后繼知識一個準備。
本節的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系。
二、目標和目標解析
1.教學目標
(1)理解三角形的高、中線與角平分線等概念;
(2)會用工具畫三角形的高、中線與角平分線;
2.教學目標解析
(1)經歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念。
(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質。
(3)掌握三角形的高、中線與角平分線的畫法。
(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點。
三、教學問題診斷分析
三角形的高線的'理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上。
三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點。
三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上,而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯系又有本質的區別。
2024年人教版初中上冊數學教案范本【篇10】
一、教學目標
1、認識中位數和眾數,并會求出一組數據中的眾數和中位數。
2、理解中位數和眾數的意義和作用。它們也是數據代表,可以反映一定的數據信息,幫助人們在實際問題中分析并做出決策。
3、會利用中位數、眾數分析數據信息做出決策。
二、重點、難點和難點的突破方法
1、重點:認識中位數、眾數這兩種數據代表。
2、難點:利用中位數、眾數分析數據信息做出決策。
3、難點的突破方法:
首先應交待清楚中位數和眾數意義和作用:
中位數僅與數據的排列位置有關,某些數據的變動對中位數沒有影響,中位數可能出現在所給的數據中,當一組數據中的個別數據變動較大時,可用中位數描述其趨勢。眾數是當一組數據中某一重復出現次數較多時,人們往往關心的一個量,眾數不受極端值的影響,這是它的一個優勢,中位數的計算很少不受極端值的影響。
教學過程中注重雙基,一定要使學生能夠很好的掌握中位數和眾數的求法,求中位數的步驟:⑴將數據由小到大(或由大到小)排列,⑵數清數據個數是奇數還是偶數,如果數據個數為奇數則取中間的數,如果數據個數為偶數,則取中間位置兩數的平均值作為中位數。求眾數的方法:找出頻數最多的那個數據,若幾個數據頻數都是最多且相同,此時眾數就是這多個數據。
在利用中位數、眾數分析實際問題時,應根據具體情況,課堂上教師應多舉實例,使同學在分析不同實例中有所體會。
三、例習題的意圖分析
1、教材P143的例4的意圖
(1)、這個問題的研究對象是一個樣本,主要是反映了統計學中常用到一種解決問題的方法:對于數據較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結論去估計總體的情況。
(2)、這個例題另一個意圖是交待了當數據個數為偶數時,中位數的求法和解題步驟。(因為在前面有介紹中位數求法,這里不再重述)
(3)、問題2顯然反映學習中位數的意義:它可以估計一個數據占總體的相對位置,說明中位數是統計學中的一個重要的數據代表。
(4)、這個例題再一次體現了統計學知識與實際生活是緊密聯系的,所以應鼓勵學生學好這部分知識。
2、教材P145例5的意圖
(1)、通過例5應使學生明白通常對待銷售問題我們要研究的是眾數,它代表該型號的產品銷售,以便給商家合理的建議。
(2)、例5也交待了眾數的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數是數據代表的一種。
四、課堂引入
嚴格的講教材本節課沒有引入的問題,而是在復習和延伸中位數的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經和同學們研究過了平均數的這個數據代表。它在分析數據過程中擔當了重要的角色,今天我們來共同研究和認識數據代表中的新成員——中位數和眾數,看看它們在分析數據過程中又起到怎樣的作用。
五、例習題的分析
教材P144例4,從所給的數據可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數據重新排列,通過觀察會發現共有12個數據,偶數個可以取中間的兩個數據146、148,求其平均值,便可得這組數據的中位數。
教材P145例5,由表中第二行可以查到23.5號鞋的頻數,因此這組數據的`眾數可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。
六、隨堂練習
1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統計了這15個人的銷售量如下(單位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求這15個銷售員該月銷量的中位數和眾數。
假設銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規格的空調,銷售臺數如表所示:
1匹1.2匹1.5匹2匹
3月12臺20臺8臺4臺
4月16臺30臺14臺8臺
根據表格回答問題:
商店出售的各種規格空調中,眾數是多少?
假如你是經理,現要進貨,6月份在有限的資金下進貨單位將如何決定?
答案:1.(1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數據的平均數,卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數又是眾數,是大部分人能達到的額定。
2.(1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調。
七、課后練習
1.數據8、9、9、8、10、8、99、8、10、7、9、9、8的中位數是,眾數是
2.一組數據23、27、20、18、X、12,它的中位數是21,則X的值是。
3.數據92、96、98、100、X的眾數是96,則其中位數和平均數分別是()
A.97、96B.96、96.4C.96、97D.98、97
4.如果在一組數據中,23、25、28、22出現的次數依次為2、5、3、4次,并且沒有其他的數據,則這組數據的眾數和中位數分別是()
A.24、25B.23、24C.25、25D.23、25
5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:
溫度(℃)-8-1715212430
天數3557622
請你根據上述數據回答問題:
(1)該組數據的中位數是什么?
(2)若當氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?
答案:1.9;2.22;3.B;4.C;5.(1)15.(2)約97天
2024年人教版初中上冊數學教案范本【篇11】
教學目標:
知識與能力
能正確運用角度表示方向,并能熟練運算和角有關的問題。
過程與方法
能通過實際操作,體會方位角在是實際生活中的應用,發展抽象思維。
情感、態度、價值觀
能積極參與數學學習活動,培養學生對數學的好奇心和求知欲。
教學重點:方位角的表示方法。
教學難點:方位角的準確表示。
教學準備:預習書上有關內容
預習導學:
如圖所示,請說出四條射線所表示的方位角?
教學過程;
一、創設情景,談話導入
在現實生活中,有一種角經常用于航空、航海,測繪中領航員常用地圖和羅盤進行這種角的測定,這就是方位角,方位角應用比較廣泛,什么是方位角呢?
二、精講點拔,質疑問難
方位角其實就是表示方向的角,這種角以正北,正南方向為基準描述物體的方向,如“北偏東30°”,“南偏西40°”等,方位角不能以正東,正西為基準,如不能說成“東偏北60°,西偏南50°”等,但有時如北偏東45°時,我們可以說成東北方向。
三、課堂活動,強化訓練
例1如圖:指出圖中射線OA、OB所表示的方向。
(學生個別回答,學生點評)
例2若燈塔位于船的北偏東30°,那么船在燈塔的什么方位?
(小組討論,個別回答,教師)
例3如圖,貨輪O在航行過程中發現燈塔A在它的南偏東60°的方向上,同時在它北偏東60°,南偏西10°,西北方向上又分別發現了客輪B,貨輪C和海島D,仿照表示燈塔方位的方法,畫出表示客輪B、貨輪C、海島D方向的射線。
(教師分析,一學生上黑板,學生點評)
四、延伸拓展,鞏固內化
例4某哨兵上午8時測得一艘船的.位置在哨所的南偏西30°,距哨所10km的地方,上午10時,測得該船在哨所的北偏東60°,距哨所8km的地方。
(1)請按比例尺1:000畫出圖形。
(獨立完成,一同學上黑板,學生點評)
(2)通過測量計算,確定船航行的方向和進度。
(小組討論,得出結論,代表發言)
五、布置作業、當堂反饋
練習:請使用量角器、刻度尺畫出下列點的位置。
(1)點A在點O的北偏東30°的方向上,離點O的距離為3cm。
(2)點B在點O的南偏西60°的方向上,離點O的距離為4cm。
(3)點C在點O的西北方向上,同時在點B的正北方向上。
作業:書P1407、9
2024年人教版初中上冊數學教案范本【篇12】
教案
第一章有理數
(1)本周小張一共用掉了多少錢?存進了多少錢?
根據上面的記錄,問:哪幾天生產的摩托車比計劃量多?星期幾生產的摩托車最多,是多少輛?星期幾生產的摩托車最少,是多少輛?
夯實基礎
(1)序號為幾的零件最接近標準?
④-(-) 0.025.
第2課時 加法運算律
教學目標:
1.能運用加法運算律簡化加法運算.
2.理解加法運算律在加法運算中的作用,適當進行推理訓練.
教學重點:如何運用加法運算律簡化運算.
教學難點:靈活運用加法運算律.
教與學互動設計:
(一)情境創設,導入新課
思考:在小學里,我們學過的加法運算有哪些運算律?它們的內容是什么?能否舉一兩個例子來?那這些加法運算律還適用于有理數范圍嗎?今天,我們一起來探究這個問題.
(二)合作交流,解讀探究
計算:20+(-30)與(-30)+20兩次得到的和相同嗎?
得出結論:20+(-30)=(-30)+20
換幾組數去試:得到加法交換律:a+b= (學生填).
其實,學生在小學中就已經接觸到運算律,此時,可以讓學生回憶在小學中除了學習了加法的交換律,還學習了加法的哪種運算律?(結合律)
計算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)].
得出結論:加法結合律:(a+b)+c= .
【例1】計算:
16+(-25)+24+(-35)
【例2】課本P20例3
說明:把互為相反數的一對數結合起來相加,可以使運算簡化,這種方法是使用加法交換律和加法結合律.
總結:在進行多個有理數相加時,在下列情況下一般可以用加法交換律和加法結合律簡化運算:①有些加數相加后可以得到整數時,可以先行相加;②有相反數可以互相消去,和為0,可以先行相加;③有許多正數和負數相加時,可以先把符號相同的數相加,即正數和正數相加,負數和負數相加,再把一個正數和一個負數相加.
(三)應用遷移,鞏固提高
【例3】 利用有理數的加法運算律計算,使運算簡便.
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+20__)+(-20__)
【例4】某出租司機某天下午營運全是在東西走向的人民大道上進行的,如果規定向東為正,向西為負,他這天下午行車里程如下:(單位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.
(1)他將最后一名乘客送到目的地,該司機與下午出發點的距離是多少千米?
(2)若汽車耗油量為a公升/千米,這天下午汽車共耗油多少公升?
(四)總結反思,拓展升華
本節課我們探索了有理數的`加法交換律和結合律.靈活運用加法的運算律會使運算簡便.一般情況下,我們將互為相反數的數相結合,同分母的分數相結合,能湊整數的數相結合,正數負數分別相加,從而使計算簡便.
(五)課堂跟蹤反饋
夯實基礎
1.運用加法的運算律計算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最適當的是( )
A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]
B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]
C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]
D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]
2.計算:(-2)+4+(-6)+8+…+(-98)+100.
提升能力
3.小李到銀行共辦理了四筆業務,第一筆存入了120元,第二筆支取了85元,第三筆支取了70元,第四筆存入了130元.如果將這四筆業務合并為一筆,請你替他策劃一下這一筆業務該怎樣做?
4.某檢修小組乘汽車沿公路檢修線路,約定前進為正,后退為負.某天自A地出發到收工時所走路線(單位:千米)為:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)問收工時距A地多遠?
(2)若每千米路程耗油0.2升,問從A地出發到收工共耗油多少升?
第3課時 有理數的減法
教學目標:
1.經歷探索有理數減法法則的過程,理解有理數減法法則.
2.會熟練進行有理數減法運算.
教學重點:有理數減法法則和運算.
教學難點:有理數減法法則的推導.
教與學互動設計
(一)創設情景,導入新課
觀察溫度計:
你能從溫度計看出4℃比-3℃高出多少度嗎?
學生普遍能直觀地看出4℃比-3℃高7℃,進一步地假定某地一天的氣溫是-3~4℃,那么溫差(減最低氣溫,單位℃)如何用算式表示?
按照剛才觀察到的結果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述結論的獲得應放手讓學生回答.
(二)動手實踐,發現新知
觀察、探究、討論:從③式能看出減-3相當于加哪個數嗎?
結論:減去-3等于加上-3的相反數+3.
(三)類比探究,總結提高
如果將4換成-1,還有類似于上述的結論嗎?
先讓學生直觀觀察,然后教師再利用“減法是與加法相反的運算”引導學生換一個角度去驗算.
計算(-1)-(-3)就是要求一個數x,使x與-3相加得-1,因為2與-3相加得-1,所以x應是2,即(-1)-(-3)=2 ①,
又因為(-1)+(+3)=2 ②,
由①②有(-1)-(-3)=-1+(+3) ③,
即上述結論依然成立.
試一試:如果把4換成0、-5,用上面的方法考慮0-(-3),(-5)-(-3),這些數減-3的結果與它加上+3的結果相同嗎?
讓學生利用“減法是加法的相反運算”得出結果,再與加法算式的結果進行比較,從而得出這些數減-3的結果與它們加+3的結果相同的結論.
再試:把減數-3換成正數,結果又如何呢?
計算9-8與9+(-8);15-7與15+(-7)
從中又能有新發現嗎?
讓學生通過計算總結如下結論:減去一個正數等于加上這個正數的相反數.
歸納:由上述實驗可發現,有理數的減法可以轉化為加法來進行.
減法法則:減去一個數,等于加上這個數的相反數.
用字母表示:a-b=a+(-b).
(在上述實驗中,逐步滲透了一種重要的數學思想方法——轉化)
(四)例題分析,運用法則
【例】計算:
(1)(-3)-(-5); (2)0-7;
(3)7.2-(-4.8);(4)-3-5.
(五)總結鞏固,初步應用
總結這節課我們學習了哪些數學知識和數學思想?你能說一說嗎?
教師引導學生回憶本節課所學內容,學生回憶交流,教師和學生一起補充完善,使學生更加明晰所學的知識.
2024年人教版初中上冊數學教案范本【篇13】
1.進一步理解字母表示數的意義,會用含字母的式子表示實際問題中的數量關系.
2.經歷用含有字母的式子表示實際問題數量關系的過程,體會從具體到抽象的認識過程,發展符號意識.
進一步理解字母表示數的意義,會用含字母的式子表示實際問題中的數量關系.
分析題目中的數量關系,用式子表示數量關系.
(設計者: )
一、創設情境明確目標
青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段.列車在凍土地段的行駛速度是100 km/h,列車在凍土地段的行駛時,根據已知數據求出列車行駛的路程.
(1)2 h行駛的路程是多少?3 h呢?t h呢?
(2)字母t表示時間有什么意義?如果用v表示速度,列車行駛的路程是多少?
(3)回顧以前所學的知識,你還能舉出用字母表示數或數量關系的例子嗎?
二、自主學習指向目標
自學教材第54至55頁,完成下列問題:
1.假設列車的行駛速度是100 km/h,根據路程、速度、時間之間的關系:路程=速度×時間,請寫出:
(1)列車2 h行駛的路程為__200__km.
(2)列車3 h行駛的路程為__300__km.
(3)列車t h行駛的路程為__100t__km.
2.在含有字母的式子中如果出現乘號,通常將乘號寫作__·__或__省略不寫__.
三、合作探究達成目標
用字母表示數
活動一:(1)蘋果原價是每千克p元,按8折優惠出售,用式子表示現價;
(2)某產品前年的產量是n件,去年的產量是前年產量的m倍,用式子表示去年的產量;
(3)一個長方體包裝盒的長和寬都是a cm,高是h cm,用式子表示它的體積;
(4)用式子表示數n的相反數.
【展示點評】解答過程見教材第54頁例1的解.含有字母的式子中如果出現乘號,寫成“·”或省略不寫.如第(3)小題,就不能寫成a2·h.
【小組討論】用字母表示數有什么意義?
【反思小結】字母可以表示任意的數,也可以表示特定意義的公式,還可以表示符合條件的.某一個數,甚至可以表示具有某些規律的數,總之字母可以簡明的將數量關系表示出來.
【針對訓練】見“學生用書”.
用字母表示簡單的數量關系
活動二:閱讀教科書例2中的四個問題,思考:
順水行駛時,船的速度=________+________;
逆水行駛時,船的速度=________-________.
解答過程見教材第55頁例2的解答過程.
【展示點評】列式表示關系時,一定要搞清“和”、“差”、“積”、“倍”等關系.
【小組討論】用含有字母的式子表示數量關系時,關鍵是什么?應注意什么問題?
【反思小結】用含有字母的式子表示數量關系時,關鍵是找準題目中的數量關系.
注意:1.用字母表示數時,數字與字母,字母與字母相乘,中間的乘號可以省略不寫或用“·”表示;
2.字母和數字相乘時,省略乘號,并把數字放到字母前;
3.出現除式時,用分數的形式表示;
4.結果含加減運算的,需要帶單位時,式子要用“()”;
5.系數是帶分數時,帶分數要化成假分數.
【針對訓練】見“學生用書”.
四、總結梳理 內化目標
1.用字母表示數的意義.
2.用含有字母的式子表示數量關系的意義.
3.用含有字母的式子表示數量關系時要注意的問題.
實際問題―→用字母表示數―→用字母表示數量關系
《2.1整式》同步練習含答案
1. 其中長方形的長為a,寬為b.
(1)陰影部分的面積是多少?
(2)你能判斷它是單項式或多項式嗎?它的次數是多少?
《2.1整式》課后練習含答案
知識要點
1.單項式:只含有數和字母的乘積的代數式叫做單項式.單獨的一個數或一個字母也是單項式.它的本質特征在于:
(1)不含加減運算;
(2)可以含乘、除、乘方運算,但分母中不能含有字母.
2.單項式的次數、系數:一個單項式中,所有字母的指數和叫做這個單項式的次數.單項式中的數字因數叫做這個單項式的系數.
3.多項式:幾個單項式的和叫做多項式.多項式中,每個單項式叫做多項式的項,其中不含字母的項叫常數項.一個多項式中,次數最高的項的次數,叫做這個多項式的次數.
4.整式:單項和多項式統稱整式.
2024年人教版初中上冊數學教案范本【篇14】
教學目標
【知識與能力目標】
1、鞏固理解有理數的概念;
2、掌握數軸的意義及構成特點,明確其在實際中的應用;
3、會用數軸上的點表示有理數。
【過程與方法目標】
【情感態度價值觀目標】
通過畫數軸,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受。
教學重難點
【教學重點】
數軸的意義及作用。
【教學難點】
數軸上的點與有理數的直觀對應關系。
課前準備
《數學》人教版七年級上冊,自制課件
教學過程
一、探索新知(投影展示)
問題在一條東西向的馬路上,有一個汽車站,汽車站東3m和7、5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4、5m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情景。
學生結合上述問題分組討論,明確以下問題:
1、怎樣用數簡明地表示這些樹、電線桿與汽車站的相對位置關系(體現距離、方向)?
2、舉例說明生活中類似的事例;
3、什么叫數軸?它有哪幾個要素組成?
4、數軸的用處是什么?
5、你會畫數軸嗎并應用它嗎?
“問題”解決:課件投影課本p8圖1、2-1,同時說明其產生的過程及合理、簡明的特點;
結論:正數、0和負數可以用一條直線上的點表示出來。
3、展示溫度計圖形,比較其與圖1、2-1的共同點和不同點:
共同點:溫度計也可以看作將正數、0和負數用一條直線上的點表示出來的情形;
不同點:溫度計是豎直的,方向感不直觀。
4、描述數軸的意義(課本p9中間,由學生閱讀,并嘗試畫一條數軸,強調)
(1)數軸的構成三要素:原點、方向、單位長度;
(2)數軸的用處是:把數用數軸上的點來表示,例(課本p9圖1、2-3),說明有理數都可以用數軸上的`點表示;
5、歸納
(1)一般地,設a是一個正數,則數軸上表示數a的點在原點的邊,與原點的距離是個單位長度;表示數-a的點在原點的邊,與原點的距離是個單位長度。
(2)數軸的出現將圖形(直線上的點)和數緊密聯系起來,使很多數學問題都可以借助圖直觀地表示,是“數形結合”的重要工具。
二、例題分析
例1.先畫出數軸,然后在數軸上表示下列各數:
-1、5,0,-2,2,-10/3
例2、數軸上與原點距離4個長度單位的點表示的數是。
三、鞏固訓練
課本p10練習
自我檢測
(1)數軸的三要素是;
(2)數軸上表示-5的點在原點的側,與原點的距離是個長度單位;
(3)數軸上表示5與-2的兩點之間距離是單位長度,有個點;
(4)如圖,a、b為有理數,則a0,b0,ab
課堂小結
(1)數軸概念:規定了原點、正方向、單位長度的直線叫做數軸。
(2)數軸的三要素:原點、正方向、單位長度。
(3)數學思想:數形結合的思想。
五、作業
1、課本14頁習題1、2
2、完成“自我檢測”
3、個性補充
⑴畫一條數軸,并表示出如下各點:±0.5,±0.1,±0.75。
⑵畫一條數軸,并表示出如下各點:1000,5000,20__。
⑶在數軸上標出到原點的距離小于3的整數。
⑷在數軸上標出-5和+5之間的所有整數。
2024年人教版初中上冊數學教案范本【篇15】
單元教學內容
1、本單元結合學生的生活經驗,列舉了學生熟悉的用正、負數表示的實例,從擴充運算的角度引入負數,然后再指出可以用正、負數表示現實生活中具有相反意義的量,使學生感受到負數的引入是來自實際生活的需要,體會數學知識與現實世界的聯系
引入正、負數概念之后,接著給出正整數、負整數、正分數、負分數集合及整數、分數和有理數的概念
2、通過怎樣用數簡明地表示一條東西走向的馬路旁的樹、電線桿與汽車站的相對位置關系引入數軸、數軸是非常重要的數學工具,它可以把所有的有理數用數軸上的點形象地表示出來,使數與形結合為一體,揭示了數形之間的內在聯系,從而體現出以下4個方面的作用:
(1)數軸能反映出數形之間的對應關系
(2)數軸能反映數的性質、
(3)數軸能解釋數的某些概念,如相反數、絕對值、近似數
(4)數軸可使有理數大小的比較形象化
3、對于相反數的概念,從“數軸上表示互為相反數的兩點分別在原點的兩旁,且離開原點的距離相等”來說明相反數的幾何意義,同時補充“零的相反數是零”作為相反數意義的一部分
4、正確理解絕對值的概念是難點
根據有理數的絕對值的兩種意義,可以歸納出有理數的絕對值有如下性質:
(1)任何有理數都有唯一的絕對值
(2)有理數的絕對值是一個非負數,即最小的絕對值是零
(3)兩個互為相反數的絕對值相等,即│a│=│-a│
(4)任何有理數都不大于它的絕對值,即│a│≥a,│a│≥-a
(5)若│a│=│b│,則a=b,或a=-b或a=b=0
三維目標
1、知識與技能
(1)了解正數、負數的實際意義,會判斷一個數是正數還是負數
(2)掌握數軸的畫法,能將已知數在數軸上表示出來,能說出數軸上已知點所表示的解
(3)理解相反數、絕對值的幾何意義和代數意義,會求一個數的相反數和絕對值
(4)會利用數軸和絕對值比較有理數的大小
2、過程與方法
經過探索有理數運算法則和運算律的過程,體會“類比”、“轉化”、“數形結合”等數學方法
3、情感態度與價值觀
使學生感受數學知識與現實世界的聯系,鼓勵學生探索規律,并在合作交流中完善規范語言
重、難點與關鍵
1、重點:正確理解有理數、相反數、絕對值等概念;會用正、負數表示具有相反意義的量,會求一個數的相反數和絕對值
2、難點:準確理解負數、絕對值等概念
3、關鍵:正確理解負數的意義和絕對值的意義
課時劃分
1、1 正數和負數 2課時
1、2 有理數 5課時
1、3 有理數的加減法 4課時
1、4 有理數的乘除法 5課時
1、5 有理數的乘方 4課時
第一章有理數(復習) 2課時
1、1正數和負數
第一課時
三維目標
一、知識與技能
能判斷一個數是正數還是負數,能用正數或負數表示生活中具有相反意義的量
二、過程與方法
借助生活中的實例理解有理數的意義,體會負數引入的必要性和有理數應用的廣泛性
三、情感態度與價值觀
培養學生積極思考,合作交流的意識和能力
教學重、難點與關鍵
1、重點:正確理解負數的意義,掌握判斷一個數是正數還是負數的方法。
2、難點:正確理解負數的`概念。
3、關鍵:創設情境,充分利用學生身邊熟悉的事物,加深對負數意義的理解。
教具準備
投影儀、
教學過程
四、課堂引入
我們知道,數是人們在實際生活和生活需要中產生,并不斷擴充的、人們由記數、排序、產生數1,2,3,…;為了表示“沒有物體”、“空位”引進了數“0”,測量和分配有時不能得到整數的結果,為此產生了分數和小數、
在生活、生產、科研中經常遇到數的表示與數的運算的問題,例如課本第2頁至第3頁中提到的四個問題,這里出現的新數:-3,-2,-2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%、
五、講授新課
(1)、像-3,-2,-2.7%這樣的數(即在以前學過的0以外的數前面加上負號“-”的數)叫做負數、而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,它們與負數具有相反的意義,我們把這樣的數(即以前學過的0以外的數)叫做正數,有時在正數前面也加上“+”(正)號,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一個數前面的“+”、“-”號叫做它的符號,這種符號叫做性質符號
(2)、中國古代用算籌(表示數的工具)進行計算,紅色算籌表示正數,黑色算籌表示負數
(3)、數0既不是正數,也不是負數,但0是正數與負數的分界數
(4) 、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0℃,是指一個確定的溫度;海拔0表示海平面的平均高度。
用正負數表示具有相反意義的量。
(5)、 把0以外的數分為正數和負數,起源于表示兩種相反意義的量、正數和負數在許多方面被廣泛地應用、在地形圖上表示某地高度時,需要以海平面為基準,通常用正數表示高于海平面的某地的海拔高度,負數表示低于海平面的某地的海拔高度、例如:珠穆朗瑪峰的海拔高度為8844,吐魯番盆地的海拔高度為-155、記錄賬目時,通常用正數表示收入款額,負數表示支出款額。
(6)、 請學生解釋課本中圖1、1-2,圖1、1-3中的正數和負數的含義。
(7)、 你能再舉一些用正負數表示數量的實際例子嗎?
(8)、例如,通常用正數表示汽車向東行駛的路程,用負數表示汽車向西行駛的路程;用正數表示水位升高的高度,用負數表示水位下降的高度;用正數表示買進東西的數量,用負數表示賣出東西的數量
六、鞏固練
課本第3頁,練習1、2、3、4題
2024年人教版初中上冊數學教案范本【篇16】
一、教學目標:
1、加深對加權平均數的理解
2、會根據頻數分布表求加權平均數,從而解決一些實際問題
3、會用計算器求加權平均數的值
二、重點、難點和難點的突破方法:
1、重點:根據頻數分布表求加權平均數
2、難點:根據頻數分布表求加權平均數
3、難點的突破方法:
首先應先復習組中值的定義,在七年級下教材P72中已經介紹過組中值定義。因為在根據頻數分布表求加權平均數近似值過程中要用到組中值去代替一組數據中的每個數據的值,所以有必要在這里復習組中值定義。
應給學生介紹為什么可以利用組中值代替一組數據中的每個數據的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數據分布較為均勻時,比如教材P140探究問題的表格中的第三組數據,它的.范圍是41≤X≤61,共有20個數據,若分布較為平均,41、42、43、44…60個出現1次,那么這組數據的和為41+42+…+60=1010。而用組中值51去乘以頻數20恰好為1020≈1010,即當數據分布較為平均時組中值恰好近似等于它的平均數。所以利用組中值X頻數去代替這組數據的和還是比較合理的,而且這樣做的好處是簡化了計算量。
為了更好的理解這種近似計算的方法和合理性,可以讓學生去讀統計表,體會表格的實際意義。
三、例習題的意圖分析:
1、教材P140探究欄目的意圖。
(1)、主要是想引出根據頻數分布表求加權平均數近似值的計算方法。
(2)、加深了對“權”意義的理解:當利用組中值近似取代替一組數據中的平均值時,頻數恰好反映這組數據的輕重程度,即權。
這個探究欄目也可以幫助學生去回憶、復習七年級下的關于頻數分布表的一些內容,比如組、組中值及頻數在表中的具體意義。
2、教材P140的思考的意圖。
(1)、使學生通過思考這兩個問題過程中體會利用統計知識可以解決生活中的許多實際問題。
(2)、幫助學生理解表中所表達出來的信息,培養學生分析數據的能力。
3、P141利用計算器計算平均值
這部分篇幅較小,與傳統教材那種詳細介紹計算器使用方法產生明顯對比。一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節課的重點內容不是利用計算器求加權平均數,但是掌握其使用方法確實可以運算變得簡單。統計中一些數據較大、較多的計算也變得容易些了。
四、課堂引入:
采用教材原有的引入問題,設計的幾個問題如下:
(1)、請同學讀P140探究問題,依據統計表可以讀出哪些信息
(2)、這里的組中值指什么,它是怎樣確定的?
(3)、第二組數據的頻數5指什么呢?
(4)、如果每組數據在本組中分布較為均勻,比組數據的平均值和組中值有什么關系。
五、隨堂練習:
1、某校為了了解學生作課外作業所用時間的情況,對學生作課外作業所用時間進行調查,下表是該校初二某班50名學生某一天做數學課外作業所用時間的情況統計表
所用時間t(分鐘)人數
0<t≤10p=""4< p="">
0<≤6
20<t≤20p=""14< p="">
30<t≤40p=""13< p="">
40<t≤50p=""9< p="">
50<t≤60p=""4< p="">
(1)、第二組數據的組中值是多少?
(2)、求該班學生平均每天做數學作業所用時間
2、某班40名學生身高情況如下圖,
請計算該班學生平均身高
答案1.(1).15.(2)28.2.165
六、課后練習:
1、某公司有15名員工,他們所在的部門及相應每人所創的年利潤如下表
部門ABCDEFG
人數1124225
每人創得利潤2052.521.51.51.2
該公司每人所創年利潤的平均數是多少萬元?
2、下表是截至到20__年費爾茲獎得主獲獎時的年齡,根據表格中的信息計算獲費爾茲獎得主獲獎時的平均年齡?
年齡頻數
28≤X<304
30≤X<323
32≤X<348
34≤X<367
36≤X<389
38≤X<4011
40≤X<422
3、為調查居民生活環境質量,環保局對所轄的50個居民區進行了噪音(單位:分貝)水平的調查,結果如下圖,求每個小區噪音的平均分貝數。
答案:1.約2.95萬元2.約29歲3.60.54分貝
2024年人教版初中上冊數學教案范本【篇17】
一、內容和內容解析
1.內容
三角形中相關元素的概念、按邊分類及三角形的三邊關系。
2.內容解析
三角形是一種最基本的幾何圖形,是認識其他圖形的基礎,在本章中,學好了三角形的有關概念和性質,為進一步學習多邊形的相關內容打好基礎,本節主要介紹與三角形的的概念、按邊分類和三角形三邊關系,使學生對三角形的有關知識有更為深刻的理解.
本節課的'教學重點:三角形中的相關概念和三角形三邊關系。
本節課的教學難點:三角形的三邊關系。
二、目標和目標解析
1.教學目標
(1)了解三角形中的相關概念,學會用符號語言表示三角形中的對應元素。
(2)理解并且靈活應用三角形三邊關系。
2.教學目標解析
(1)結合具體圖形,識三角形的概念及其基本元素。
(2)會用符號、字母表示三角形中的相關元素,并會按邊對三角形進行分類。
(3)理解三角形兩邊之和大于第三邊這一性質,并會運用這一性質來解決問題。
三、教學問題診斷分析
在探索三角形三邊關系的過程中,讓學生經歷觀察、探究、推理、交流等活動過程,培養學生的和推理能力和合作學習的精神。
四、教學過程設計
1.創設情境,提出問題
問題回憶生活中的三角形實例,結合你以前對三角形的了解,請你給三角形下一個定義。
師生活動:先讓學生分組討論,然后各小組派代表發言,針對學生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學生對三角形概念的理解。
【設計意圖】三角形概念的獲得,要讓學生經歷其描述的過程,借此培養學生的語言表述能力,加深學生對三角形概念的理解。
2.抽象概括,形成概念
動態演示“首尾順次相接”這個的動畫,歸納出三角形的定義。
師生活動:
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
【設計意圖】讓學生體會由抽象到具體的過程,培養學生的語言表述能力。
補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法。
師生活動:結合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡。
【設計意圖】進一步加深學生對三角形中相關元素的認知,并進一步熟悉幾何語言在學習中的應用。
3.概念辨析,應用鞏固
如圖,不重復,且不遺漏地識別所有三角形,并用符號語言表示出來。
1.以AB為一邊的三角形有哪些?
2.以∠D為一個內角的三角形有哪些?
3.以E為一個頂點的三角形有哪些?
4.說出ΔBCD的三個角。
師生活動:引導學生從概念出發進行思考,加深學生對三角形中相關元素概念的理解。
4.拓廣延伸,探究分類
我們知道,按照三個內角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關系對三角形進行分類,又應該如何分呢?小組之間同學進行交流并說說你們的想法。
師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯系,強化學生對三角形按邊分類的理解。