高中數(shù)學等差數(shù)列教案
在一年的數(shù)學教育活動中,作為高中數(shù)學老師的你了解怎樣寫高中數(shù)學等差數(shù)列教案嗎?來寫一篇高中數(shù)學等差數(shù)列教案吧,它會對你的數(shù)學教學工作起到不菲的幫助。下面是小編為大家收集有關(guān)于高中數(shù)學等差數(shù)列教案,希望你喜歡。
高中數(shù)學等差數(shù)列教案1
一、指導思想
1、培養(yǎng)學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學知識分析問題和解決問題的能力.使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力.
2、根據(jù)數(shù)學的學科特點,加強學習目的性的教育,提高學生學習數(shù)學的自覺心和興趣,培養(yǎng)學生良好的學習習慣,實事求是的科學態(tài)度,頑強的學習毅力和獨立思考、探索創(chuàng)新的精神.
3、使學生具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應(yīng)用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,理解數(shù)學中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀.
二、目的要求
1.深入鉆研教材,以教材為核心,“以綱為綱,以本為本”深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系和網(wǎng)絡(luò)結(jié)構(gòu),細致領(lǐng)會教材改革的精髓,把握通性通法,逐步明確教材對教學形式、內(nèi)容和教學目標的影響.
2.因材施教,以學生為學習的主體,構(gòu)建新的認知體系,營造有利于學生學習的氛圍.
3.加強課堂教學研究,科學設(shè)計教學方法,扎實有效的提高課堂教學效果,全面提高數(shù)學教學質(zhì)量.
三、具體措施
1.不孤立記憶和認識各個知識點,而要將其放到相應(yīng)的體系結(jié)構(gòu)中,在比較、辨析的過程中尋求其內(nèi)在聯(lián)系,達到理解層次,注意知識塊的復習,構(gòu)建知識網(wǎng)路.注重基礎(chǔ)知識和基本解題技能,注意基本概念、基本定理、公式的辨析比較,靈活運用;力求有意識的分析理解能力;尤其是數(shù)學語言的表達形式,推力論證要思路清晰、整體完整.
2.學會分析,首先是閱讀理解,側(cè)重于解題前對信息的捕捉和思路的探索;其次是解題回顧,側(cè)重于經(jīng)驗及教訓的總結(jié),重視常見題型及通法通解.
3.以“錯”糾錯,查缺補漏,反思錯誤,嚴格訓練,規(guī)范解題,養(yǎng)成:想明白,寫清楚,算準確的習慣,注意思路的清晰性、思維的嚴謹性、敘述的條理性、結(jié)果的準確性,注重書寫過程,舉一反三,及時歸納,觸類旁通,加強數(shù)學思想和數(shù)學方法的應(yīng)用.
4.協(xié)調(diào)好講、練、評、輔之間的關(guān)系,追求數(shù)學復習的效果,注重實效,努力提高復習教學的效率和效益;精心設(shè)計教學,做到精講精練,不加重學生的負擔,避免“題海戰(zhàn)” ,精心準備,講評到為,做到講評試卷或例題時:講清考察了那些知識點,怎樣審題,怎樣打開解題思路,用到了那些方法技巧,關(guān)鍵步驟在那里,哪些是典型錯誤,是知識和是邏輯,是方法、是心理上、策略上的錯誤,針對學生的錯誤調(diào)整復習策略,使復習更加有重點、針對性,加快教學節(jié)奏,提高教學效率.
5.周密計劃合理安排,現(xiàn)數(shù)學學科特點,注重知識能力的提高,提升綜合解題能力,加強解題教學,使學生在解題探究中提高能力.
6.多從“貼近教材、貼近學生、貼近實際”角度,選擇典型的數(shù)學聯(lián)系生活、生產(chǎn)、環(huán)境和科技方面的問題,對學生進行有計劃、針對性強的訓練,多給學生鍛煉各種能力的機會,從而達到提升學生數(shù)學綜合能力之目的.不脫離基礎(chǔ)知識來講學生的能力,基礎(chǔ)扎實的學生不一定能力 強.教學中,不斷地將基礎(chǔ)知識運用于數(shù)學問題的解決中,努力提高學生的學科綜合能力.
新的學期是新的起點,新的希望。通過這份高二數(shù)學上學期教學工作計劃,我相信自己在本學期一定能夠?qū)蓚€班的數(shù)學成績帶上去,我相信,我能行。
高中數(shù)學等差數(shù)列教案2
一、學情分析
本節(jié)課是在學生已學知識的基礎(chǔ)上進行展開學習的,也是對以前所學知識的鞏固和發(fā)展,但對學生的知識準備情況來看,學生對相關(guān)基礎(chǔ)知識掌握情況是很好,所以在復習時要及時對學生相關(guān)知識進行提問,然后開展對本節(jié)課的鞏固性復習。而本節(jié)課學生會遇到的困難有:數(shù)軸、坐標的表示;平面向量的坐標表示;平面向量的坐標運算。
二、考綱要求
1.會用坐標表示平面向量的加法、減法與數(shù)乘運算.
2.理解用坐標表示的平面向量共線的條件.
3.掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算.
4.能用坐標表示兩個向量的夾角,理解用坐標表示的平面向量垂直的條件.
三、教學過程
(一) 知識梳理:
1.向量坐標的求法
(1)若向量的起點是坐標原點,則終點坐標即為向量的坐標.
(2)設(shè)A(x1,y1),B(x2,y2),則
=_________________
| |=_______________
(二)平面向量坐標運算
1.向量加法、減法、數(shù)乘向量
設(shè) =(x1,y1), =(x2,y2),則
+ = - = λ = .
2.向量平行的坐標表示
設(shè) =(x1,y1), =(x2,y2),則 ∥ ?________________.
(三)核心考點·習題演練
考點1.平面向量的坐標運算
例1.已知A(-2,4),B(3,-1),C(-3,-4).設(shè) (1)求3 + -3 ;
(2)求滿足 =m +n 的實數(shù)m,n;
練:(2015江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈R),則m-n的值為 .
考點2平面向量共線的坐標表示
例2:平面內(nèi)給定三個向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求實數(shù)k的值;
練:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實數(shù),( +λ )∥ ,則λ= ( )
思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?
方法總結(jié):
1.向量共線的兩種表示形式
設(shè)a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應(yīng)視題目的具體條件而定,一般情況涉及坐標的應(yīng)用②.
2.兩向量共線的充要條件的作用
判斷兩向量是否共線(平行的問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數(shù)的值.
考點3平面向量數(shù)量積的坐標運算
例3“已知正方形ABCD的邊長為1,點E是AB邊上的動點,
則 的值為 ; 的值為 .
【提示】解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標系利用向量的數(shù)量積的坐標表示來運算,這樣可以使數(shù)量積的運算變得簡捷.
練:(2014,安徽,13)設(shè) =(1,2), =(1,1), = +k .若 ⊥ ,則實數(shù)k的值等于( )
【思考】兩非零向量 ⊥ 的充要條件: · =0? .
解題心得:
(1)當已知向量的坐標時,可利用坐標法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.
(2)解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標系利用向量的數(shù)量積的坐標表示來運算,這樣可以使數(shù)量積的運算變得簡捷.
(3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.
考點4:平面向量模的坐標表示
例4:(2015湖南,理8)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為(2,0),則 的值為( )
A.6 B.7 C.8 D.9
練:(2016,上海,12)
在平面直角坐標系中,已知A(1,0),B(0,-1),P是曲線上一個動點,則 的取值范圍是?
解題心得:
求向量的模的方法:
(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運算轉(zhuǎn)化為數(shù)量積運算;
(2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..
五、課后作業(yè)(課后習題1、2題)
高中數(shù)學等差數(shù)列教案3
教學目標
知識與技能目標:
本節(jié)的中心任務(wù)是研究導數(shù)的幾何意義及其應(yīng)用,概念的形成分為三個層次:
(1) 通過復習舊知“求導數(shù)的兩個步驟”以及“平均變化率與割線斜率的關(guān)系”,解決了平均變化率的幾何意義后,明確探究導數(shù)的幾何意義可以依據(jù)導數(shù)概念的形成尋求解決問題的途徑。
(2) 從圓中割線和切線的變化聯(lián)系,推廣到一般曲線中用割線逼近的方法直觀定義切線。
(3) 依據(jù)割線與切線的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導數(shù)的幾何意義教案在導數(shù)的幾何意義教案處的導數(shù)導數(shù)的幾何意義教案的幾何意義,使學生認識到導數(shù)導數(shù)的幾何意義教案就是函數(shù)導數(shù)的幾何意義教案的圖象在導數(shù)的幾何意義教案處的切線的斜率。即:
導數(shù)的幾何意義教案=曲線在導數(shù)的幾何意義教案處切線的斜率k
在此基礎(chǔ)上,通過例題和練習使學生學會利用導數(shù)的幾何意義解釋實際生活問題,加深對導數(shù)內(nèi)涵的理解。在學習過程中感受逼近的思想方法,了解“以直代曲”的數(shù)學思想方法。
過程與方法目標:
(1) 學生通過觀察感知、動手探究,培養(yǎng)學生的動手和感知發(fā)現(xiàn)的能力。
(2) 學生通過對圓的切線和割線聯(lián)系的認識,再類比探索一般曲線的情況,完善對切線的認知,感受逼近的思想,體會相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學思維能力的提高。
(3) 結(jié)合分層的探究問題和分層練習,期望各種層次的學生都可以憑借自己的能力盡力走在教師的前面,獨立解決問題和發(fā)現(xiàn)新知、應(yīng)用新知。
情感、態(tài)度、價值觀:
(1) 通過在探究過程中滲透逼近和以直代曲思想,使學生了解近似與精確間的辨證關(guān)系;通過有限來認識無限,體驗數(shù)學中轉(zhuǎn)化思想的意義和價值;
(2) 在教學中向他們提供充分的從事數(shù)學活動的機會,如:探究活動,讓學生自主探究新知,例題則采用練在講之前,講在關(guān)鍵處。在活動中激發(fā)學生的學習潛能,促進他們真正理解和掌握基本的數(shù)學知識技能、數(shù)學思想方法,獲得廣泛的數(shù)學活動經(jīng)驗,提高綜合能力,學會學習,進一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。
教學重點與難點
重點:理解和掌握切線的新定義、導數(shù)的幾何意義及應(yīng)用于解決實際問題,體會數(shù)形結(jié)合、以直代曲的思想方法。
難點:發(fā)現(xiàn)、理解及應(yīng)用導數(shù)的幾何意義。
教學過程
一、復習提問
1.導數(shù)的定義是什么?求導數(shù)的三個步驟是什么?求函數(shù)y=x2在x=2處的導數(shù).
定義:函數(shù)在導數(shù)的幾何意義教案處的導數(shù)導數(shù)的幾何意義教案就是函數(shù)在該點處的瞬時變化率。
求導數(shù)的步驟:
第一步:求平均變化率導數(shù)的幾何意義教案;
第二步:求瞬時變化率導數(shù)的幾何意義教案.
(即導數(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點導數(shù))
2.觀察函數(shù)導數(shù)的幾何意義教案的圖象,平均變化率導數(shù)的幾何意義教案 在圖形中表示什么?
生:平均變化率表示的是割線PQ的斜率.導數(shù)的幾何意義教案
師:這就是平均變化率(導數(shù)的幾何意義教案)的幾何意義,
3.瞬時變化率(導數(shù)的幾何意義教案)在圖中又表示什么呢?
如圖2-1,設(shè)曲線C是函數(shù)y=f(x)的圖象,點P(x0,y0)是曲線C上一點.點Q(x0+Δx,y0+Δy)是曲線C上與點P鄰近的任一點,作割線PQ,當點Q沿著曲線C無限地趨近于點P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點P處的切線.
導數(shù)的幾何意義教案
追問:怎樣確定曲線C在點P的切線呢?因為P是給定的,根據(jù)平面解析幾何中直線的點斜式方程的知識,只要求出切線的斜率就夠了.設(shè)割線PQ的傾斜角為導數(shù)的幾何意義教案,切線PT的傾斜角為導數(shù)的幾何意義教案,易知割線PQ的斜率為導數(shù)的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導數(shù)的幾何意義教案,即導數(shù)的幾何意義教案。
由導數(shù)的定義知導數(shù)的幾何意義教案 導數(shù)的幾何意義教案。
導數(shù)的幾何意義教案
由上式可知:曲線f(x)在點(x0,f(x0))處的切線的斜率就是y=f(x)在點x0處的導數(shù)f'(x0).今天我們就來探究導數(shù)的幾何意義。
C類學生回答第1題,A,B類學生回答第2題在學生回答基礎(chǔ)上教師重點講評第3題,然后逐步引入導數(shù)的幾何意義.
二、新課
1、導數(shù)的幾何意義:
函數(shù)y=f(x)在點x0處的導數(shù)f'(x0)的幾何意義,就是曲線y=f(x)在點(x0,f(x0))處切線的斜率.
即:導數(shù)的幾何意義教案
口答練習:
(1)如果函數(shù)y=f(x)在已知點x0處的導數(shù)分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數(shù)圖像在對應(yīng)點的切線的傾斜角,并說明切線各有什么特征。
(C層學生做)
(2)已知函數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數(shù)在各點的導數(shù).(A、B層學生做)
導數(shù)的幾何意義教案
2、如何用導數(shù)研究函數(shù)的增減?
小結(jié):附近:瞬時,增減:變化率,即研究函數(shù)在該點處的瞬時變化率,也就是導數(shù)。導數(shù)的正負即對應(yīng)函數(shù)的增減。作出該點處的切線,可由切線的升降趨勢,得切線斜率的正負即導數(shù)的正負,就可以判斷函數(shù)的增減性,體會導數(shù)是研究函數(shù)增減、變化快慢的有效工具。
同時,結(jié)合以直代曲的思想,在某點附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數(shù)的增減性。都反應(yīng)了導數(shù)是研究函數(shù)增減、變化快慢的有效工具。
例1 函數(shù)導數(shù)的幾何意義教案上有一點導數(shù)的幾何意義教案,求該點處的導數(shù)導數(shù)的幾何意義教案,并由此解釋函數(shù)的增減情況。
導數(shù)的幾何意義教案
函數(shù)在定義域上任意點處的瞬時變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時任意點處的切線就是直線本身,斜率就是變化率)
3、利用導數(shù)求曲線y=f(x)在點(x0,f(x0))處的切線方程.
例2 求曲線y=x2在點M(2,4)處的切線方程.
解:導數(shù)的幾何意義教案
∴y'|x=2=2×2=4.
∴點M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.
由上例可歸納出求切線方程的兩個步驟:
(1)先求出函數(shù)y=f(x)在點x0處的導數(shù)f'(x0).
(2)根據(jù)直線方程的點斜式,得切線方程為 y-y0=f'(x0)(x-x0).
提問:若在點(x0,f(x0))處切線PT的傾斜角為導數(shù)的幾何意義教案導數(shù)的幾何意義教案,求切線方程。(因為這時切線平行于y軸,而導數(shù)不存在,不能用上面方法求切線方程。根據(jù)切線定義可直接得切線方程導數(shù)的幾何意義教案)
(先由C類學生來回答,再由A,B補充.)
例3 已知曲線導數(shù)的幾何意義教案上一點導數(shù)的幾何意義教案,求:(1)過P點的切線的斜率;
(2)過P點的切線的方程。
解:(1)導數(shù)的幾何意義教案,
導數(shù)的幾何意義教案
y'|x=2=22=4. ∴ 在點P處的切線的斜率等于4.
(2)在點P處的切線方程為導數(shù)的幾何意義教案 即 12x-3y-16=0.
練習:求拋物線y=x2+2在點M(2,6)處的切線方程.
(答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).
B類學生做題,A類學生糾錯。
三、小結(jié)
1.導數(shù)的幾何意義.(C組學生回答)
2.利用導數(shù)求曲線y=f(x)在點(x0,f(x0))處的切線方程的步驟.
(B組學生回答)
四、布置作業(yè)
1. 求拋物線導數(shù)的幾何意義教案在點(1,1)處的切線方程。
2.求拋物線y=4x-x2在點A(4,0)和點B(2,4)處的切線的斜率,切線的方程.
3. 求曲線y=2x-x3在點(-1,-1)處的切線的傾斜角
4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點的坐標; (2)拋物線在交點處的切線方程;
(C組學生完成1,2題;B組學生完成1,2,3題;A組學生完成2,3,4題)
教學反思:
本節(jié)內(nèi)容是在學習了“變化率問題、導數(shù)的概念”等知識的基礎(chǔ)上,研究導數(shù)的幾何意義,由于新教材未設(shè)計極限,于是我盡量采用形象直觀的方式,讓學生通過動手作圖,自我感受整個逼近的過程,讓學生更加深刻地體會導數(shù)的幾何意義及“以直代曲”的思想。
本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導數(shù)的幾何意義”和“利用導數(shù) 的幾何意義解釋實際問題”兩個教學重心展開。 先回憶導數(shù)的實際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導數(shù)的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運用逼近的思想定義了曲線上某點的切線,再引導學生從數(shù)形結(jié)合的角度思考,獲得導數(shù)的幾何意義——“導數(shù)是曲線上某點處切線的斜率”。
完成本節(jié)課第一階段的內(nèi)容學習后,教師點明,利用導數(shù)的幾何意義,在研究實際問題時,某點附近的曲線可以用過此點的切線近似代替,即“以直代曲”,從而達到“以簡單的對象刻畫復雜對象”的目的,并通過兩個例題的研究,讓學生從不同的角度完整地體驗導數(shù)與切線斜率的關(guān)系,并感受導數(shù)應(yīng)用的廣泛性。 本節(jié)課注重以學生為主體,每一個知識、每一個發(fā)現(xiàn),總設(shè)法由學生自己得出,課堂上給予學生充足的思考時間和空間,讓學生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關(guān)鍵處加以引導。從學生的作業(yè)看來,效果較好。
高中數(shù)學等差數(shù)列教案4
一、教學內(nèi)容分析
向量作為工具在數(shù)學、物理以及實際生活中都有著廣泛的應(yīng)用.
本小節(jié)的重點是結(jié)合向量知識證明數(shù)學中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學中的應(yīng)用.
二、教學目標設(shè)計
1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會從不同角度去看待一些數(shù)學問題,使一些數(shù)學知識有機聯(lián)系,拓寬解決問題的思路.
2、了解構(gòu)造法在解題中的運用.
三、教學重點及難點
重點:平面向量知識在各個領(lǐng)域中應(yīng)用.
難點:向量的構(gòu)造.
四、教學流程設(shè)計
五、教學過程設(shè)計
一、復習與回顧
1、提問:下列哪些量是向量?
(1)力 (2)功 (3)位移 (4)力矩
2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?
[說明]復習數(shù)量積的有關(guān)知識.
二、學習新課
例1(書中例5)
向量作為一種工具,不僅在物理學科中有廣泛的應(yīng)用,同時它在數(shù)學學科中也有許多妙用!請看
例2(書中例3)
證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立.
證法(二)向量法
[說明]本例關(guān)鍵引導學生觀察不等式結(jié)構(gòu)特點,構(gòu)造向量,并發(fā)現(xiàn)(等號成立的充要條件是)
例3(書中例4)
[說明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個公式得到證明.
二、鞏固練習
1、如圖,某人在靜水中游泳,速度為 km/h.
(1)如果他徑直游向河對岸,水的流速為4 km/h,他實際沿什么方向前進?速度大小為多少?
答案:沿北偏東方向前進,實際速度大小是8 km/h.
(2) 他必須朝哪個方向游才能沿與水流垂直的方向前進?實際前進的速度大小為多少?
答案:朝北偏西方向前進,實際速度大小為km/h.
三、課堂小結(jié)
1、向量在物理、數(shù)學中有著廣泛的應(yīng)用.
2、要學會從不同的角度去看一個數(shù)學問題,是數(shù)學知識有機聯(lián)系.
四、作業(yè)布置
1、書面作業(yè):課本P73, 練習8.4 4
高中數(shù)學等差數(shù)列教案5
教學目標:
(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.
(2)進一步理解曲線的方程和方程的曲線.
(3)初步掌握求曲線方程的方法.
(4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.
教學重點、難點:求曲線的方程.
教學用具:計算機.
教學方法:啟發(fā)引導法,討論法.
教學過程:
【引入】
1.提問:什么是曲線的方程和方程的曲線.
學生思考并回答.教師強調(diào).
2.坐標法和解析幾何的意義、基本問題.
對于一個幾何問題,在建立坐標系的基礎(chǔ)上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程.
(2)通過方程,研究平面曲線的性質(zhì).
事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.
【問題】
如何根據(jù)已知條件,求出曲線的方程.
【實例分析】
例1:設(shè) 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.
首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.
解法一:易求線段 的中點坐標為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
①
分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?
(通過教師引導,是學生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).
證明:(1)曲線上的點的坐標都是這個方程的解.
設(shè) 是線段 的垂直平分線上任意一點,則
即
將上式兩邊平方,整理得
這說明點 的坐標 是方程 的解.
(2)以這個方程的解為坐標的點都是曲線上的點.
設(shè)點 的坐標 是方程①的任意一解,則
到 、 的距離分別為
所以 ,即點 在直線 上.
綜合(1)、(2),①是所求直線的方程.
至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設(shè) 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:
解法二:設(shè) 是線段 的垂直平分線上任意一點,也就是點 屬于集合
由兩點間的距離公式,點所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想.因此是個好方法.
讓我們用這個方法試解如下問題:
例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.
分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.
求解過程略.
【概括總結(jié)】通過學生討論,師生共同總結(jié):
分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:
首先應(yīng)有坐標系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:
(1)建立適當?shù)淖鴺讼?,用有序?qū)崝?shù)對例如 表示曲線上任意一點 的坐標;
(2)寫出適合條件 的點 的集合
;
(3)用坐標表示條件 ,列出方程 ;
(4)化方程 為最簡形式;
(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.
一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.
上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正.
下面再看一個問題:
例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.
【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.
解:設(shè)點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合
由距離公式,點 適合的條件可表示為
①
將①式 移項后再兩邊平方,得
化簡得
由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.
【練習鞏固】
題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.
分析、略解:首先應(yīng)建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設(shè) 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .
根據(jù)條件 ,代入坐標可得
化簡得
①
由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進一步求出 、 的范圍,最后曲線方程可表示為
【小結(jié)】師生共同總結(jié):
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應(yīng)注意什么?
【作業(yè)】課本第72頁練習1,2,3;