高中數(shù)學教案集合
通過編寫教案,教師可以整合教學計劃、教學重點、難點以及教學方法等,從而形成一套完整的教學內(nèi)容體系。寫好高中數(shù)學教案集合有什么技巧?這里給大家整理高中數(shù)學教案集合,方便大家學習。
高中數(shù)學教案集合篇1
一、教學背景
《同角三角函數(shù)基本關系式》是人教版高中數(shù)學必修第四冊第一章第二節(jié)中的內(nèi)容。本節(jié)課的內(nèi)容在教材中有著承上啟下的作用,是在學習了任意角和弧度,并了解正弦、余弦、正切的基本概念之后進行教學的,同時同角三角函數(shù)的基本關系也為之后學習兩角和差公式奠定了基礎,起著銜接作用。運用同角三角函數(shù)關系,能夠更好的解決有關三角函數(shù)中求同角的其他三角函數(shù)值使解題更方便。學生在獲得三角函數(shù)定義的過程中已經(jīng)充分認識到了借助單位圓、利用數(shù)形結(jié)合思想是研究三角函數(shù)的重要工具。本節(jié)課內(nèi)容中所體現(xiàn)的數(shù)學思想與方法在整個中學數(shù)學學習中起重要作用。
高中學生已經(jīng)具備了初等代數(shù)、初等幾何的相關知識,以及一定的抽象思維能力和邏輯推理能力。學生已經(jīng)比較熟練的掌握了三角函數(shù)定義的兩種推導方法,從方法上看,學生已經(jīng)對數(shù)形結(jié)合,猜想證明有所了解。從學習情感方面看,大部分學生愿意主動學習。從能力上看,學生主動學習能力、探究能力較弱。因而通過本節(jié)課的學習,學生能較好地培養(yǎng)學生的思維能力、推理能力、探究能力及創(chuàng)新意識。
根據(jù)新課標的要求,以及對教材和學情的分析,我確立了如下三維教學目標:
1、知識與技能目標:掌握三種基本關系式之間的聯(lián)系,熟練掌握已知一個角的三角函數(shù)值求其它三角函數(shù)值的方法。
2、過程與方法目標:牢固掌握同角三角函數(shù)的八個關系式,并能靈活運用于解題,提高學生分析、解決三角的思維能力,能靈活運用同角三角函數(shù)關系式的不同變形,提高三角恒等變形的能力。
3、情感與態(tài)度目標:通過用數(shù)學知識解決實際問題,讓學生體會數(shù)學與自然及人類社會的密切聯(lián)系,激發(fā)學生學習數(shù)學的興趣,增強學生學習數(shù)學的信心。
根據(jù)本節(jié)課的地位和作用以及新課程標準的具體要求,確定本節(jié)課的重點為:同角三角函數(shù)基本關系式sin2α+cos2α=1;tanα=sinα/cosα的運用。教學難點為:理三角函數(shù)值的符號的確定,同角三角函數(shù)的基本關系式的變式應用。
二、活動評價
在課堂教學過程中,我將對學生的學習情況進行及時而有效的評價。注重課程中的過程性評價,無論是在學生開始遇到問題、產(chǎn)生疑惑、給出猜想的時候,還是在逐步思考、交流、探索的教學過程中,我都會注重對于學生學習成果的評價。比如,在課堂討論較難理解的問題時,我將先請一位平時善于解決數(shù)學問題的學生來回答,并請其他同學對其進行評價,然后再請大家給出不同的意見,從而形成良性的互動,在學生們的思維碰撞之中,正確、完善的結(jié)論將自然形成。從始至終,我都將貫徹以學生為主體、教師為主導的教學思想。
三、課程設計
在新課改理念的指導下,針對本課的教學目標和重難點,我將采用故事法、探究法、自主學習和合作探究等教學法,先從一個情境問題出發(fā),然后引導學生循序漸進地對一組問題進行思考和探究,逐步歸納總結(jié)出同角三角函數(shù)的基本關系式,并在期間采用學生自評、小組互評、教師評價等多種方式,培養(yǎng)學生積極主動參與學習的興趣。下面我將詳細闡述本節(jié)課的教學過程。
1、趣味導入:上課伊始,我會通過多媒體講述“蝴蝶效應”的故事,引導學生理解事物是普遍聯(lián)系的觀點,如果說南美亞馬遜雨林中的一只蝴蝶與北美德克薩斯的龍卷風這兩種看來是毫不相干的事物,都會有這樣的聯(lián)系,那么同一個角的三角函數(shù)應當也會有著非常密切的關系。通過這樣的故事導入,能夠激發(fā)學生的學習興趣和探索熱情,活躍其思維,為本節(jié)課的學習埋下伏筆。
2、溫故知新:在這一環(huán)節(jié),我將引導學生回顧三種常見三角函數(shù)的概念,單位圓中的任意角概念,以及初中學段學習的同角三角函數(shù)的兩個基本關系式,進而引導學生思考如何證明任意角的三角函數(shù)也具備相應的基本關系。在這個過程中,我會請不同層次的學生起來回答,并請其他學生進行補充,引導全體學生進行復習和思考。學生依據(jù)以往證明三角函數(shù)平方關系的思路,能夠較快想到利用單位圓中的勾股定理關系,證明得到sin2α+cos2α=1,同樣的,根據(jù)任意角的正切函數(shù)定義,得到tanα=sinα/cosα。
接下來,我將引導學生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)學生可能會躍躍欲試,先用平方關系式計算余弦值,但卻會遇到開方時判別正負號的問題,于是才會根據(jù)α是第二象限角這個條件進行判斷。這時我將會引導學生學會先判斷任意角的區(qū)間及其三角函數(shù)的符號,再利用公式進行計算的解題思路。這樣學生就能夠更輕松地探索出例2的解答方法。例2當中,由于根據(jù)余弦值的范圍,確定α可能在第二或第三象限出現(xiàn),于是學生就能夠想到采用分類思想進行解答。通過學生的自主思考和我的適當引導,可以自然而然地突破本課的難點。
3、歸納總結(jié)
經(jīng)過前面的師生共同參與的探究討論,就逐步歸納總結(jié)出了同角三角函數(shù)的基本關系式。在這個過程中,我會根據(jù)不同學生的特點,分別請他們發(fā)言,并請其他同學進行補充,在師生互動中,共同推導出結(jié)論,這種方法既可以有效地突出本課的重點,又自然而然地突破了本課的難點。
4、實踐應用
為鞏固所學知識,我會從教材中分梯度選取習題,給學生進行課堂練習,并請2-3位同學在黑板上完成,在練習后我會進行及時講解。
在布置作業(yè)時,為了使所有學生都能夠根據(jù)自身情況鞏固所學知識,我將布置一類“必做題”和一類“探究題”,其中“探究題”是提供給那些學有余力的學生在課余時間完成的,幫助其拓展思維,培養(yǎng)興趣。
5、課程總結(jié)
本節(jié)課的內(nèi)容是極富探索性,我通過提問式復習和情境問題導入,學生產(chǎn)生好奇心和探索熱情。接著,以學生為主體,我來引導學生根據(jù)已學的知識和方法,循序漸進地進行探究,逐步歸納總結(jié)出同角三角函數(shù)的基本關系式,從而自然地完成本課的教學過程,同時幫助學生體會數(shù)形結(jié)合的思想方法。
在板書設計方面,我會用簡潔、工整的方式給出相關探究問題,同時以多媒體輔助展示平移動畫,便于學生進行觀察和探究。
四、教學體會
本節(jié)課我主要采用的是“引導發(fā)現(xiàn)、合作探究”的教學方法,以學生熟知的足球運動為情境引入新課,以問題為載體,以師生合作探究為主線,以思維訓練為核心,以能力發(fā)展為目標,充分調(diào)動一切可利用的因素,激發(fā)學生的參與意識,使學生經(jīng)歷知識的形成、發(fā)展和應用的過程,在和諧、愉悅的氛圍中獲取知識,掌握方法。整個教學中既突出了學生的主體地位,又發(fā)揮了教師的指導作用。在課堂隨機提問以及討論結(jié)果的過程中,我采用多層次多角度的評價方式,不僅能促使學生思考問題,掌握學習知識的技巧和方法,還能調(diào)動學生積極性,激發(fā)課堂氣氛。
高中數(shù)學教案集合篇2
一:說教材
平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標表示把向量之間的運算轉(zhuǎn)化為數(shù)之間的運算。本節(jié)內(nèi)容是在平面向量的坐標表示以及平面向量的數(shù)量積及其運算律的基礎上,介紹了平面向量數(shù)量積的坐標表示,平面兩點間的距離公式,和向量垂直的坐標表示的充要條件。為解決直線垂直問題,三角形邊角的有關問題提供了很好的辦法。本節(jié)內(nèi)容也是全章重要內(nèi)容之一。
二:說學習目標和要求
通過本節(jié)的學習,要讓學生掌握
(1):平面向量數(shù)量積的坐標表示。
(2):平面兩點間的距離公式。
(3):向量垂直的坐標表示的充要條件。
以及它們的一些簡單應用,以上三點也是本節(jié)課的重點,本節(jié)課的難點是向量垂直的坐標表示的充要條件以及它的靈活應用。
三:說教法
在教學過程中,我主要采用了以下幾種教學方法:
(1)啟發(fā)式教學法
因為本節(jié)課重點的坐標表示公式的推導相對比較容易,所以這節(jié)課我準備讓學生自行推導出兩個向量數(shù)量積的坐標表示公式,然后引導學生發(fā)現(xiàn)幾個重要的結(jié)論:如模的計算公式,平面兩點間的距離公式,向量垂直的坐標表示的充要條件。
(2)講解式教學法
主要是講清概念,解除學生在概念理解上的疑惑感;例題講解時,演示解題過程!
主要輔助教學的手段(powerpoint)
(3)討論式教學法
主要是通過學生之間的相互交流來加深對較難問題的理解,提高學生的自學能力和發(fā)現(xiàn)、分析、解決問題以及創(chuàng)新能力。
四:說學法
學生是課堂的主體,一切教學活動都要圍繞學生展開,借以誘發(fā)學生的學習興趣,增強課堂上和學生的交流,從而達到及時發(fā)現(xiàn)問題,解決問題的目的。通過精講多練,充分調(diào)動學生自主學習的積極性。如讓學生自己動手推導兩個向量數(shù)量積的坐標公式,引導學生推導4個重要的結(jié)論!并在具體的問題中,讓學生建立方程的思想,更好的解決問題!
五:說教學過程
這節(jié)課我準備這樣進行:
首先提出問題:要算出兩個非零向量的數(shù)量積,我們需要知道哪些量?
繼續(xù)提出問題:假如知道兩個非零向量的坐標,是不是可以用這兩個向量的坐標來表示這兩個向量的數(shù)量積呢?
引導學生自己推導平面向量數(shù)量積的坐標表示公式,在此公式基礎上還可以引導學生得到以下幾個重要結(jié)論:
(1) 模的計算公式
(2)平面兩點間的距離公式。
(3)兩向量夾角的余弦的坐標表示
(4)兩個向量垂直的標表示的充要條件
第二部分是例題講解,通過例題講解,使學生更加熟悉公式并會加以應用。
例題1是書上122頁例1,此題是直接用平面向量數(shù)量積的坐標公式的題,目的是讓學生熟悉這個公式,并在此題基礎上,求這兩個向量的夾角?目的是讓學生熟悉兩向量夾角的余弦的坐標表示公式例題2是直接證明直線垂直的題,雖然比較簡單,但體現(xiàn)了一種重要的證明方法,這種方法要讓學生掌握,其實這一例題也是兩個向量垂直坐標表示的充要條件的一個應用:即兩個向量的數(shù)量積是否為零是判斷相應的兩條直線是否垂直的重要方法之一。
例題3是在例2的基礎上稍微作了一下改變,目的是讓學生會應用公式來解決問題,并讓學生在這要有建立方程的思想。
再配以練習,讓學生能熟練的應用公式,掌握今天所學內(nèi)容。
高中數(shù)學教案集合篇3
教學過程:
一、復習引入:
1.簡介數(shù)集的發(fā)展,復習最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數(shù)學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)。
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關概念:由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。
定義:一般地,某些指定的對象集在一起就成為一個集合。
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
(1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合,記作N,N={0,1,2,…}
(2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集,記作N__或N+,N__={1,2,3,…}
(3)整數(shù)集:全體整數(shù)的集合,記作Z,Z={0,±1,±2,…}
(4)有理數(shù)集:全體有理數(shù)的集合,記作Q,Q={整數(shù)與分數(shù)}
(5)實數(shù)集:全體實數(shù)的集合,記作R,R={數(shù)軸上所有點所對應的數(shù)}
注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
(2)非負整數(shù)集內(nèi)排除0的集,記作N__或N+
Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z__
3、元素對于集合的隸屬關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA
4、集合中元素的特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈A顛倒過來寫。
高中數(shù)學教案集合篇4
三維目標:
1、知識與技能:正確理解隨機抽樣的概念,掌握抽簽法、隨機數(shù)表法的一般步驟;
2、過程與方法:
(1)能夠從現(xiàn)實生活或其他學科中提出具有一定價值的統(tǒng)計問題;
(2)在解決統(tǒng)計問題的過程中,學會用簡單隨機抽樣的方法從總體中抽取樣本。
3、情感態(tài)度與價值觀:通過對現(xiàn)實生活和其他學科中統(tǒng)計問題的提出,體會數(shù)學知識與現(xiàn)實世界及各學科知識之間的聯(lián)系,認識數(shù)學的重要性。
4、重點與難點:正確理解簡單隨機抽樣的概念,掌握抽簽法及隨機數(shù)法的步驟,并能靈活應用相關知識從總體中抽取樣本。
教學方法:
講練結(jié)合法
教學用具:
多媒體
課時安排:
1課時
教學過程:
一、問題情境
假設你作為一名食品衛(wèi)生工作人員,要對某食品店內(nèi)的一批小包裝餅干進行衛(wèi)生達標檢驗,你準備怎樣做?顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗的樣本。(為什么?)那么,應當怎樣獲取樣本呢?
二、探究新知
1、統(tǒng)計的有關概念:總體:在統(tǒng)計學中,所有考察對象的全體叫做總體、個體:每一個考察的對象叫做個體、樣本:從總體中抽取的一部分個體叫做總體的一個樣本、樣本容量:樣本中個體的數(shù)目叫做樣本的容量、統(tǒng)計的基本思想:用樣本去估計總體、
2、簡單隨機抽樣的概念一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣,這樣抽取的樣本,叫做簡單隨機樣本。
下列抽樣的方式是否屬于簡單隨機抽樣?為什么?
(1)從無限多個個體中抽取50個個體作為樣本。
(2)箱子里共有100個零件,從中選出10個零件進行質(zhì)量檢驗,在抽樣操作中,從中任意取出一個零件進行質(zhì)量檢驗后,再把它放回箱子。
(3)從8臺電腦中,不放回地隨機抽取2臺進行質(zhì)量檢查(假設8臺電腦已編好號,對編號隨機抽取)
3、常用的簡單隨機抽樣方法有:
(1)抽簽法的定義。一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。
思考?你認為抽簽法有什么優(yōu)點和缺點:當總體中的個體數(shù)很多時,用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現(xiàn)要抽取8位同學出來做游戲,請設計一個抽取的方法,要使得每位同學被抽到的機會相等。
分析:可以把57位同學的學號分別寫在大小,質(zhì)地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分攪拌后,在從中個抽出8張紙片,再選出紙片上的學號對應的同學即可、基本步驟:第一步:將總體的所有N個個體從1至N編號;第二步:準備N個號簽分別標上這些編號,將號簽放在容器中攪拌均勻后每次抽取一個號簽,不放回地連續(xù)取n次;第三步:將取出的n個號簽上的號碼所對應的n個個體作為樣本。
(2)隨機數(shù)法的定義:利用隨機數(shù)表、隨機數(shù)骰子或計算機產(chǎn)生的.隨機數(shù)進行抽樣,叫隨機數(shù)表法,這里僅介紹隨機數(shù)表法。怎樣利用隨機數(shù)表產(chǎn)生樣本呢?下面通過例子來說明,假設我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達標,現(xiàn)從800袋牛奶中抽取60袋進行檢驗,利用隨機數(shù)表抽取樣本時,可以按照下面的步驟進行。第一步,先將800袋牛奶編號,可以編為000,001,799。
第二步,在隨機數(shù)表中任選一個數(shù),例如選出第8行第7列的數(shù)7(為了便于說明,下面摘取了附表1的第6行至第10行)。1622779439495443548217379323788442175331572455068877047447676301637859169555671998105071753321123429786456078252420744385760863244094727965449174609628735209643842634916421763350258392120676128673580744395238791551001342996602795490528477270802734328第三步,從選定的數(shù)7開始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個三位數(shù)785,由于785<799,說明號碼785在總體內(nèi),將它取出;
繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,依次下去,直到樣本的60個號碼全部取出,這樣我們就得到一個容量為60的樣本。
三、課堂練習
四、課堂小結(jié)
1、簡單隨機抽樣的概念一般地,設一個總體的個體數(shù)為N,如果通過逐個抽取的方法從中抽取一個樣本,且每次抽取時各個個體被抽到的概率相等,就稱這樣的抽樣為簡單隨機抽樣。
2、簡單隨機抽樣的方法:抽簽法隨機數(shù)表法
五、課后作業(yè)
P57練習1、2
六、板書設計
1、統(tǒng)計的有關概念
2、簡單隨機抽樣的概念
3、常用的簡單隨機抽樣方法有:
(1)抽簽法
(2)隨機數(shù)表法
4、課堂練習
高中數(shù)學教案集合篇5
重點難點教學:
1.正確理解映射的概念;
2.函數(shù)相等的兩個條件;
3.求函數(shù)的定義域和值域。
一.教學過程:
1. 使學生熟練掌握函數(shù)的概念和映射的定義;
2. 使學生能夠根據(jù)已知條件求出函數(shù)的定義域和值域; 3. 使學生掌握函數(shù)的三種表示方法。
二.教學內(nèi)容:
1.函數(shù)的定義
設A、B是兩個非空的數(shù)集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(shù)(function),記作:
(),yfA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數(shù)值,函數(shù)值的集合{()|}fA?叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素 定義域、對應關系和值域。
3、映射的定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。
4. 區(qū)間及寫法:
設a、b是兩個實數(shù),且a
(1) 滿足不等式axb??的實數(shù)x的集合叫做閉區(qū)間,表示為[a,b];
(2) 滿足不等式axb??的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);
5.函數(shù)的三種表示方法 ①解析法 ②列表法 ③圖像法
高中數(shù)學教案集合篇6
一、教學設計
1、教學背景
在近幾年教學實踐中我們發(fā)現(xiàn)這樣的怪現(xiàn)象:絕大多數(shù)學生認為數(shù)學很重要,但很難;學得很苦、太抽象、太枯燥,要不是升學,我們才不會去理會,況且將來用數(shù)學的機會很少;許多學生完全依賴于教師的講解,不會自學,不敢提問題,也不知如何提問題,這說明了學生一是不會學數(shù)學,二是對數(shù)學有恐懼感,沒有信心,這樣的心態(tài)怎能對數(shù)學有所創(chuàng)新呢即使有所創(chuàng)新那與學生們所花代價也不成比例,其間扼殺了他們太多的快樂和個性特長。建構(gòu)主義提倡情境式教學,認為多數(shù)學習應與具體情境有關,只有在解決與現(xiàn)實世界相關聯(lián)的問題中,所建構(gòu)的知識才將更豐富、更有效和易于遷移。我們在2009級進行了“創(chuàng)設數(shù)學情境與提出數(shù)學問題”的以學生為主的“生本課堂”教學實驗,通過一段時間的教學實驗,多數(shù)同學已能適應這種學習方式,平時能主動思考,敢于提出自己關心的問題和想法,從過去被動的接受知識逐步過渡到主動探究、索取知識,增強了學習數(shù)學的興趣。
2、教材分析
“余弦定理”是高中數(shù)學的主要內(nèi)容之一,是解決有關斜三角形問題的兩個重要定理之一,也是初中“勾股定理”內(nèi)容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉(zhuǎn)化為三角形計算問題的其它數(shù)學問題及生產(chǎn)、生活實際問題的重要工具,因此具有廣泛的應用價值。本節(jié)課是“正弦定理、余弦定理”教學的第二節(jié)課,其主要任務是引入并證明余弦定理。布魯納指出,學生不是被動的、消極的知識的接受者,而是主動的、積極的知識的探究者。教師的作用是創(chuàng)設學生能夠獨立探究的情境,引導學生去思考,參與知識獲得的過程。因此,做好“余弦定理”的教學,不僅能復習鞏固舊知識,使學生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,而且能培養(yǎng)學生的應用意識和實踐操作能力,以及提出問題、解決問題等研究性學習的能力。
3、設計思路
建構(gòu)主義強調(diào),學生并不是空著腦袋走進教室的。在日常生活中,在以往的學習中,他們已經(jīng)形成了豐富的經(jīng)驗,小到身邊的衣食住行,大到宇宙、星體的運行,從自然現(xiàn)象到社會生活,他們幾乎都有一些自己的看法。而且,有些問題即使他們還沒有接觸過,沒有現(xiàn)成的經(jīng)驗,但當問題一旦呈現(xiàn)在面前時,他們往往也可以基于相關的經(jīng)驗,依靠他們的認知能力,形成對問題的某種解釋。而且,這種解釋并不都是胡亂猜測,而是從他們的經(jīng)驗背景出發(fā)而推出的合乎邏輯的假設。所以,教學不能無視學生的這些經(jīng)驗,另起爐灶,從外部裝進新知識,而是要把學生現(xiàn)有的知識經(jīng)驗作為新知識的生長點,引導學生從原有的知識經(jīng)驗中“生長”出新的知識經(jīng)驗。
為此我們根據(jù)“情境—問題”教學模式,沿著“設置情境—提出問題—解決問題—反思應用”這條主線,把從情境中探索和提出數(shù)學問題作為教學的出發(fā)點,以“問題”為紅線組織教學,形成以提出問題與解決問題相互引發(fā)攜手并進的“情境—問題”學習鏈,使學生真正成為提出問題和解決問題的主體,成為知識的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學過程成為學生主動獲取知識、發(fā)展能力、體驗數(shù)學的過程。根據(jù)上述精神,做出了如下設計:
①創(chuàng)設一個現(xiàn)實問題情境作為提出問題的背景;
②啟發(fā)、引導學生提出自己關心的現(xiàn)實問題,逐步將現(xiàn)實問題轉(zhuǎn)化、抽象成過渡性數(shù)學問題,解決問題時需要使用余弦定理,借此引發(fā)學生的認知沖突,揭示解斜三角形的必要性,并使學生產(chǎn)生進一步探索解決問題的動機。然后引導學生抓住問題的數(shù)學實質(zhì),引伸成一般的數(shù)學問題:已知三角形的兩條邊和他們的夾角,求第三邊。
③為了解決提出的問題,引導學生從原有的知識經(jīng)驗中“生長”出新的知識經(jīng)驗,通過作邊BC的垂線得到兩個直角三角形,然后利用勾股定理和銳角三角函數(shù)得出余弦定理的表達式,進而引導學生進行嚴格的邏輯證明。證明時,關鍵在于啟發(fā)、引導學生明確以下兩點:一是證明的起點;二是如何將向量關系轉(zhuǎn)化成數(shù)量關系。
④由學生獨立使用已證明的結(jié)論去解決中所提出的問題。
二、教學反思
本課中,教師立足于所創(chuàng)設的情境,通過學生自主探索、合作交流,親身經(jīng)歷了提出問題、解決問題、應用反思的過程,學生成為余弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的苦和樂,知識目標、能力目標、情感目標均得到了較好的落實,為今后的“定理教學”提供了一些有用的借鑒。
例如,新課的引入,我引導學生從向量的模下手思考:
生:利用向量的模并借助向量的數(shù)量積。
教師:正確!由于向量的模長,夾角已知,只需將向量用向量來表示即可。易知,接下來只要把這個向量等式數(shù)量化即可。如何實現(xiàn)呢
學生8:通過向量數(shù)量積的運算。
通過教師的引導,學生不難發(fā)現(xiàn)還可以寫成,不共線,這是平面向量基本定理的一個運用。因此在一些解三角形問題中,我們還可以利用平面向量基本定理尋找向量等式,再把向量等式化成數(shù)量等式,從而解決問題。
(從學生的“最近發(fā)展區(qū)”出發(fā),證明方法層層遞進,激發(fā)學生探求新知的欲望,從而感受成功的喜悅。)
創(chuàng)設數(shù)學情境是“情境·問題·反思·應用”教學的基礎環(huán)節(jié),教師必須對學生的身心特點、知識水平、教學內(nèi)容、教學目標等因素進行綜合考慮,對可用的情境進行比較,選擇具有較好的教育功能的情境。
從應用需要出發(fā),創(chuàng)設認知沖突型數(shù)學情境,是創(chuàng)設情境的常用方法之一。“余弦定理”具有廣泛的應用價值,故本課中從應用需要出發(fā)創(chuàng)設了教學中所使用的數(shù)學情境。該情境源于教材解三角形應用舉例的例1實踐說明,這種將教材中的例題、習題作為素材改造加工成情境,是創(chuàng)設情境的一條有效途徑。只要教師能對教材進行深入、細致、全面的研究,便不難發(fā)現(xiàn)教材中有不少可用的素材。
“情境·問題·反思·應用”教學模式主張以問題為“紅線”組織教學活動,以學生作為提出問題的主體,如何引導學生提出問題是教學成敗的關鍵,教學實驗表明,學生能否提出數(shù)學問題,不僅受其數(shù)學基礎、生活經(jīng)歷、學習方式等自身因素的影響,還受其所處的環(huán)境、教師對提問的態(tài)度等外在因素的制約。因此,教師不僅要注重創(chuàng)設適宜的數(shù)學情境(不僅具有豐富的內(nèi)涵,而且還具有“問題”的誘導性、啟發(fā)性和探索性),而且要真正轉(zhuǎn)變對學生提問的態(tài)度,提高引導水平,一方面要鼓勵學生大膽地提出問題,另一方面要妥善處理學生提出的問題。關注學生學習的結(jié)果,更關注學生學習的過程;關注學生數(shù)學學習的水平,更關注學生在數(shù)學活動中所表現(xiàn)出來的情感與態(tài)度;關注是否給學生創(chuàng)設了一種情境,使學生親身經(jīng)歷了數(shù)學活動過程。把“質(zhì)疑提問”,培養(yǎng)學生的數(shù)學問題意識,提高學生提出數(shù)學問題的能力作為教與學活動的起點與歸宿。
高中數(shù)學教案集合篇7
如何在高二這一關鍵性的一年中與這些同學一齊共同進步縮小差距,我選取了從課堂教學、作業(yè)布置、評價方式這三個方面入手,激發(fā)學生的學習用心性,盡量向?qū)W生帶給從事數(shù)學活動的機會,幫忙他們在自主探索和合作交流的過程中真正理解和掌握基礎的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗。
第一,用多變的課堂教學,充分調(diào)動學生的主動性
我認為數(shù)學教學是教師思維與學生思維相互溝通的過程。從信息論的角度看,這種溝通就是指數(shù)學信息的理解、加工、傳遞的動態(tài)過程,在這個過程中充滿了師生之間的數(shù)學交流和信息的轉(zhuǎn)換,離開了學生的參與,整個過程就難以暢通。北京師范大學曹才翰教授指出“數(shù)學學習是再創(chuàng)造再發(fā)現(xiàn)的過程,務必要主體的用心參與才能實現(xiàn)這個過程”;從當前全面實施素質(zhì)教育的要求來看,激發(fā)學生用心參與課堂教學,就是為了提高課堂教學效率,培養(yǎng)學生的學習潛力和創(chuàng)造思維潛力,這與以培養(yǎng)創(chuàng)造型人才為目的的素質(zhì)教育完全一致,因此,在數(shù)學課堂教學中提高學生的參與度,不僅僅具有提高數(shù)學教學質(zhì)量的近期作用,而且具有提高學生素質(zhì)的遠期功效。
若要實現(xiàn)這個目標,在教學引入時我常常以問題作為出發(fā)點,選取的素材密切聯(lián)系學生的現(xiàn)實生活,運用學生的求知欲,使學生感到數(shù)學就在他們身邊,與現(xiàn)實世界聯(lián)系緊密,同時問題情景的設置又具有必須的挑戰(zhàn)性,引發(fā)了學生的思考。
如人教版初二幾何《三角形》的《關于三角形的一些概念》在引入時我提出了以下幾個問題:你能舉出生活中一些有關三角形的實例嗎?你能一筆畫一個三角形嗎?你能用語言敘述你的畫圖過程嗎?
如人教版初二幾何《三角形》的《三角形全等的判定(一)》在引入時我提出了這樣一個問題:請你任意畫一個三角形,你能否再畫一個與其全等的三角形。畫好后請你剪下來驗證一下。學生的用心性被激發(fā),熱烈的討論,課堂上出現(xiàn)了許多狀況
有的學生用的是先確定一角再確定兩邊的畫法;有的一個學生是利用尺規(guī)根據(jù)三邊關系畫的(這正是后面所要學的一個三角形全等的判定公理);有的學生是利用了垂直、平行、對頂角來省去作圖中使用量角器的麻煩,學生充分利用已有的數(shù)學知識,利用自己對數(shù)學圖形的感知,很好的解決了這個問題,透過剪一剪試一試從直觀上驗證了自己的畫法。
如《相似形》的《相似三角形的性質(zhì)》在引入時我提出了這樣的問題:提到與我國并稱為世界四大禮貌古國的埃及你會想到什么?學生們說到了法老、金字塔、木乃伊等等,說到金字塔你能測量出埃及大金字塔的高度嗎?學生幾乎是異口同聲地告訴我用影長,當時我稱贊他們與我們的幾何學之父古希臘人歐幾里得的測量方法一樣,并講述了歐幾里得的故事,他等到自己在陽光下的影長與他的身高正好相等的時候,測量了金字塔的塔影的長度,這時,他宣布,“這就是大金字塔的高度。”從而激發(fā)了學生探索相似三角形的其它性質(zhì)的興趣。
我在課堂教學的過程中,為了使成績較差同學減少對于數(shù)學的恐懼感,課堂上放慢教學速度,變換教學方法,如人教版初二幾何《三角形》的《關于三角形的一些概念》我是這樣處理的:1、請學生講解三角形的有關概念;2、請學生用折紙的方法講解角平分線和中線,折紙的過程中你還發(fā)現(xiàn)了什么?3、請學生任意作一個三角形,并做出這個三角形的一條角平分線和一條中線。三個要求層層深入了學生對于基本概念的理解,變教師講為學生講,取得了較好的效果。
我在課堂上放慢教學速度是能夠照顧到大部分學生的,但一小批優(yōu)等生就會出現(xiàn)沒事做的狀況,這時學習小組就是他們發(fā)揮余熱的地方,在具體的教學過程中給學生建立了數(shù)學學習小組,讓學生在各自的小組中相互幫忙,讓每一個學生都能從事小組中不同的工作,并最終完成一個共同的目標。透過小組學習,使學生樹立正確的團隊觀,尊重他人、尊重自己,敢于發(fā)表自己的觀點,又不固執(zhí)己見,對同學的見解,既要樂于理解合理成分,又要勇于表達自己不同的看法。在具體實施的過程中,我越發(fā)的認識到討論的重要性,我鼓勵學生質(zhì)疑,質(zhì)疑教師,質(zhì)疑教科書,鼓勵學生爭論,有些知識點在學生的爭論中被突破,知識在爭論中被融會貫通,我發(fā)現(xiàn)學生之間的語言他們更容易理解,于是我開始嘗試讓學生講課,講過三角形的分類等。又如學習基本作圖時,教科書就如一本說明書,讓學生以學習小組為單位,閱讀、畫圖,互教互學,實際教學時取得了很好的效果。讓各層次的學生都能有所知,有所得。在認知效果和記憶效果方面比教師直接給出要好。
第二,布置多樣的作業(yè),引導學生的用心性
讓學生作業(yè)的目的在于鞏固和消化所學的知識,并使知識轉(zhuǎn)化為技能技巧。正確組織好學生作業(yè),對于培養(yǎng)學生的獨立學習的潛力和習慣,發(fā)展學生的智力和創(chuàng)造潛力有著重大好處。因此,教師應重視作業(yè)的布置,《數(shù)學課程標準》中明確指出:“義務教育階段的數(shù)學課程應突出體現(xiàn)基礎性、普及性和發(fā)展性,使數(shù)學教育面向全體學生,實現(xiàn)人人學有價值的數(shù)學,人人都能獲得必需的數(shù)學,不同的人在數(shù)學上得到不同的發(fā)展。”作業(yè)布置如何體現(xiàn)這一基本理念,如何調(diào)整作業(yè)在學生學習活動中的位置,也是提高課堂教學效率的關鍵。
課堂結(jié)束新課后,我透過作業(yè)的布置滲透數(shù)學學習方法如自學,這樣才能真正提高學生數(shù)學學習的水平,開始時每一天的第一樣作業(yè)是復習,最后一項作業(yè)是預習,而且把具體的頁數(shù)寫清楚提出具體的預習提綱,加強學生看書的針對性,開始時還帶有必須的強制性如讓家長簽字,從而提高學生閱讀理解的潛力。
對數(shù)學的興趣能激發(fā)學生的學習動機,富有情境的作業(yè)具有必須吸引力,能使學生充分發(fā)揮自己的智力水平去完成。趣味性要體現(xiàn)出題型多樣,方式新穎,資料有創(chuàng)造性,如課本習題、自編習題、計算類題目、表述類題目(如單元小結(jié)、學習體會、數(shù)學故事、小論文等)互相穿插,讓學生感受到作業(yè)資料和形式的豐富多采,使之情緒高昂,樂于思考,從而感受作業(yè)的樂趣。
根據(jù)上課資料所需經(jīng)常讓學生動手做教具如剪鈍角三角形、銳角三角形、直角三角形,做教具說明三角形具有穩(wěn)定性而四邊形沒有此特性等,這種做法不但能夠提高學生學習的興趣,而且會有一些意想不到的事情。如:學生做教具說明三角形具有穩(wěn)定性而四邊形沒有此特性時,有的學生用線繩打結(jié)連接四邊,有的學生為了省事用訂書釘訂的,而訂的不同方法得到有的四邊形能動而有的不能,經(jīng)過學生的討論得出關鍵在于連接處是一個點還是兩個點的問題,學生很受啟發(fā)。
高中數(shù)學教案集合篇8
教學內(nèi)容:
簡單的排列組合
教學目標:
1.使學生通過觀察、猜測、實驗、驗證等活動,找出簡單事件的排列數(shù)或組合數(shù)。
2.培養(yǎng)學生有序地、全面地思考問題的意識和習慣。
教學過程:
1.借助操作活動或?qū)W生易于理解的事例來幫助學生找出組合數(shù)。師生共同分析練習二十五第1題。讓學生小組討論,充分發(fā)表自己的意見。
2.利用直觀圖示幫助學生有序地、不重不漏地找出早餐搭配的組合數(shù)。
3、出示練習二十五第3題。
學生看題后,四人小組討論出有多少種求組合數(shù)的方法。
4、學生匯報。
(1)圖示表示法(兩種)。引導學生用畫簡圖的方式來表示抽象的數(shù)學知識。
(2)其他的方法,例如聰聰或明明分別可以和每一個小朋友合影(分步時,可以把確定聰聰作為第一步,也可以把確定明明作為第一步),教學時充分發(fā)揮學生的創(chuàng)造性。至于學生用哪種方法求出來,都沒關系。但要引導學生思考如何才能不重不漏,發(fā)展學生有序地思考問題的意識和能力。
(3)學生自己用圖示表示時,可以很開放,比如,可以用正方形表示聰聰,圓形表示明明,并分別在正方形和圓形里標上序號。實際這是發(fā)展學生用數(shù)學化的符號表示具體事件的能力的一個體現(xiàn)。
(4)如果學生用簡圖的方式來表示有困難,也可以讓學生回憶一下二年級上冊的例子或借助學具卡片擺一擺。
2.“做一做”
(1)練習二十五第7題。
通過活動的方式讓學生不重不漏地把所有取錢的情況寫出來。
(2)練習二十五第9題。
用兩種圖示法表示兩兩組合的方式(比較簡單的兩種方式)。在教學中也要允許有的學生把所有的情況逐一羅列出來,只要他通過自己的方法探索出所有的組合數(shù),都是應該鼓勵的。
高中數(shù)學教案集合篇9
人教版高中數(shù)學必修5教案
(一)課標要求
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應用上。通過本章學習,學生應當達到以下學習目標:
(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的生活實際問題。
(二)編寫意圖與特色
1.數(shù)學思想方法的重要性
數(shù)學思想方法的教學是中學數(shù)學教學中的重要組成部分,有利于學生加深數(shù)學知識的理解和掌握。
本章重視與內(nèi)容密切相關的數(shù)學思想方法的教學,并且在提出問題、思考解決問題的策略等方面對學生進行具體示范、引導。本章的兩個主要數(shù)學結(jié)論是正弦定理和余弦定理,它們都是關于三角形的邊角關系的結(jié)論。在初中,學生已經(jīng)學習了相關邊角關系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應邊及其所夾的角相等,那么這兩個三角形全”等。
教科書在引入正弦定理內(nèi)容時,讓學生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題。”設置這些問題,都是為了加強數(shù)學思想方法的教學。
2.注意加強前后知識的聯(lián)系
加強與前后各章教學內(nèi)容的聯(lián)系,注意復習和應用已學內(nèi)容,并為后續(xù)章節(jié)教學內(nèi)容做好準備,能使整套教科書成為一個有機整體,提高教學效益,并有利于學生對于數(shù)學知識的學習和鞏固。
本章內(nèi)容處理三角形中的邊角關系,與初中學習的三角形的邊與角的基本關系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時,讓學生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的`問題。”這樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎上,形成良好的知識結(jié)構(gòu)。
《課程標準》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學五的第一部分內(nèi)容,
位置相對靠后,在此內(nèi)容之前學生已經(jīng)學習了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關系,余弦定理則指出了一般三角形中三邊平方之間的關系,如何看這兩個定理之間的關系?”,并進而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
3.重視加強意識和數(shù)學實踐能力
學數(shù)學的最終目的是應用數(shù)學,而如今比較突出的兩個問題是,學生應用數(shù)學的意識不強,創(chuàng)造能力較弱。學生往往不能把實際問題抽象成數(shù)學問題,不能把所學的數(shù)學知識應用到實際問題中去,對所學數(shù)學知識的實際背景了解不多,雖然學生機械地模仿一些常見數(shù)學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數(shù)學課題,最后把數(shù)學知識應用于實際問題。
高中數(shù)學教案集合篇10
高中數(shù)學的內(nèi)容多,抽象性、理論性強,高中很注重自學能力的培養(yǎng),誰的自學能力強,那么在一定程度上影響著你的成績以及將來你發(fā)展的前途。同時還要注意以下幾點:
第一、對數(shù)學學科特點有清楚的認識
數(shù)學的概念、方法、思想都是人類長期實踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實數(shù)再到復數(shù),都是由自然的認知沖突引起的。因此,在學習過程中我們有必要了解知識產(chǎn)生的背景,它的形成過程以及它的應用,讓數(shù)學顯得合情合理,渾然天成。數(shù)學中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數(shù)學規(guī)則去學去想就能融會貫通,但是如果不把來龍去脈想清楚而是“想當然”的`話,那就學不下去了。
第二、要改變一個觀念。
有人會說自己的基礎不好。那什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎,
所以只要學好每一天的內(nèi)容,那么你打的基礎就是最扎實的了。所以現(xiàn)在你們是在同一個起跑線上的,無所謂基礎好不好。
第三、學數(shù)學要摸索自己的學習方法
學習重在方法,好的學習方法讓學生事半功倍。學習、掌握并能靈活應用數(shù)學的途徑有很多,做習題、用數(shù)學知識解決各種問題是必需的,理解、學會證明、領會思想、掌握方法也是必需的。同時,要注意前后知識的銜接,類比地學、聯(lián)系地學,既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。
相關文章推薦:
1.高中開學第一周教學反思
2.開學第一課教學反思精選
3.20--初中開學第一課教學反思【精選】
4.高三開學教學反思
5.高一信息技術教學反思
6.開學第一課語文教學反思
7.幼兒園開學第一課反思
8.高中英語教學反思精選
9.高中生物教育反思
10.20--開學第一課教學反思
高中數(shù)學教案集合篇11
教學內(nèi)容
義務教育課程標準實驗教科書(人教版)二年級上冊第八單元第一課時
教學目標:
知識目標:
使學生通過觀察、猜測、實驗等活動,找出簡單事物的排列數(shù)和組合數(shù)。
能力目標:
培養(yǎng)學生有順序地、全面地思考問題的意識。
情感目標:
使學生感受到數(shù)學在現(xiàn)實生活中的應用價值,嘗試用數(shù)學的方法來解決實際生活中的問題。
教學重點:
經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。教學難點:初步理解簡單事物排列與組合的不同。教學環(huán)節(jié)
一、創(chuàng)設情境,導入新課
今天,我們來上一節(jié)數(shù)學活動課,大家樂意嗎?(板書課題)現(xiàn)在大家來看一下我們的活動目標。(課件出示活動目標)
師:老師給大家?guī)砹艘粋€新朋友,課件出示圣誕老人畫面,圣誕老人過生日了,想請大家參加他的生日聚會,但是他有要求。通過圣誕老人提出本節(jié)課任務。
二、合作學習,構(gòu)建模型
(一)初步感知。課件出示:
第一關:擺一擺,猜密碼。(用數(shù)字卡片
1、2能排成幾個兩位數(shù)自己動手擺一擺)讓學生自己動手擺卡片后,指名匯報。
(二)合作探究。課件出示:
第二關:擺一擺,比一比(用數(shù)字卡片1、2、3能擺成幾個不同的兩位數(shù))比比看,哪個組找的最多。
小組探討,組長把大家的討論結(jié)果記錄在練習本上。(活動開始,教師巡視。)
以組為單位派代表匯報。
師:有的組擺出了4個不同的兩位數(shù),有的組擺出了6個不同的兩位數(shù),你們是怎么擺的?有什么好辦法?
(鼓勵方法的多樣化,對各組的不同方法進行肯定和表揚。)結(jié)合發(fā)言,引導學生進行評價,選出優(yōu)勝組。
師生共同歸納:用數(shù)字排列組成數(shù),要按照一定的順序確定十位上的數(shù),然后考慮個位上有哪些數(shù)可以與其搭配。
(三)握一握。課件出示:小精靈說的話。
恭喜你們成功的度過了前兩關,現(xiàn)在,我們握手祝賀一下。師:每兩人握一次手,三人一共握幾次手?(小組活動,教師巡視)活動后,小組指名匯報。
師:究竟是幾次呢?請大家互相握握看吧!請一個組的同學上臺演示,其他同學一起數(shù)數(shù)。
(四)課件出示:
師:圣誕老人決定獎勵你們兩件上衣、兩條褲子,那么一共有幾種搭配方法呢?(課件出示圖片。)
學生拿出學具卡片,小組活動解決問題。匯報交流,說說自己為什么這樣設計。
三、分層練習,鞏固新知
(一)付錢問題。
課件出示:99頁做一做2題
小組討論,小組長統(tǒng)計本組學生答題情況,并由小組代表匯報。
(二)拍照站法。
小麗、小芳、小美在風景如畫的郊外游玩,三人想站成一排拍照留念,她們有幾種站法?
小組討論后,由一組學生上臺演示,其他學生數(shù)一數(shù)。
高中數(shù)學教案集合篇12
教學目標
1、了解基底的含義,理解并掌握平面向量基本定理。會用基底表示平面內(nèi)任一向量。
2、掌握向量夾角的定義以及兩向量垂直的定義。
學情分析
前幾節(jié)課已經(jīng)學習了向量的基本概念和基本運算,如共線向量、向量的加法、減法和數(shù)乘運算及向量共線的充要條件等;另外學生對向量的物理背景有了初步的了解。如:力的合成與分解、位移、速度的合成與分解等,都為學習這節(jié)課作了充分準備
重點難點
重點:對平面向量基本定理的探究
難點:對平面向量基本定理的理解及其應用
教學過程
4.1第一學時教學活動
活動1【導入】情景設置
火箭在升空的某一時刻,速度可以分解成豎直向上和水平向前的兩個分速度v=vx+vy=6i+4j。
活動2【活動】探究
已知平面中兩個不共線向量e1,e2,c是平面內(nèi)任意向量,求向量
c=___e1+___e2(課堂上準備好幾張帶格子的紙張,上面有三個向量,e1,e2,c)
做法:
作OA=e1,OB=e2,OC=c,過點C作平行于OB的直線,交直線OA于M;過點C作平行于OA的直線,交OB于N,則有且只有一對實數(shù)l1,l2,使得OM=l1e1,ON=l2e2。
因為OC=OM+ON,所以c=6e1+6e2。
向量c=__6__e1+___6__e2
活動3【練習】動手做一做
請同學們自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____
(做完后,思考一下,這樣的一組實數(shù)是否是唯一的呢?)(是唯一的)
由剛才的幾個實例,可以得出結(jié)論:如果給定向量e1,e2,平面內(nèi)的任一向量a,都可以表示成a=入1e1+入2e2。
活動4【活動】思考
問題2:如果e1,e2是平面內(nèi)任意兩向量,那么平面內(nèi)的任一向量a還可以表示成a=入1e1+入2e2的形式嗎?
生:不行,e1,e2必須是平面內(nèi)兩不共線向量
活動5【講授】平面向量基本定理
平面向量基本定理:如果e1,e2是平面內(nèi)兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)l1,l2,使a=l1e1+l2e2。我們把不共線向量e1,e2叫做這一平面內(nèi)所有向量的一組基底。一個平面向量用一組基底e1,e2表示成a=l1e1+l2e2的形式,我們稱它為向量的分解。當e1,e2互相垂直時,就稱為向量的正交分解。
說明:
(1)基底不惟一,關鍵是作為基底的兩個向量不共線。
(2)由定理可將任一向量a在給出基底e1,e2的條件下進行分解,基底給定時,分解形式惟一,即l1,l2是被a,e1,e2惟一確定的數(shù)量。
活動6【講授】平面向量基底運用
例1.如圖所示,平行四邊形ABCD的對角線AC和BD交于點M,AB=a,AD=b,試用基底a,b表示MC,MA,MB和MD
活動7【講授】向量夾角的定義
閱讀教材P94,回答如下問題:
1、兩個向量夾角是如何形成的?,必須要滿足什么條件才是它們的夾角。
2、有向量夾角范圍是多少?有夾角大小來描述一下向量同向,反向,垂直?
活動8【練習】完成《聚焦課堂》活動9【講授】課后小結(jié)
1、平面向量基本定理
2、平面向量基本定理的運用
3、向量夾角的定義。
活動10【作業(yè)】課后作業(yè)
1、已知向量e1,e2,求做:-3e1+2e2
2、做育才報第八期專項訓練1
高中數(shù)學教案集合篇13
一、教學內(nèi)容
本節(jié)主要內(nèi)容為:經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。
二、教學目標
1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關推理,進一步體會三角函數(shù)的意義。
2、能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。
3、能夠根據(jù)30°、45°、60°角的三角函數(shù)值,說出相應的銳角的大小。
三、過程與方法
通過進行有關推理,探索30°、45°、60°角的三角函數(shù)值。在具體教學過程中,教師可在教材的基礎上適當拓展,使得內(nèi)容更為豐富.教師可以運用和學生共同探究式的教學方法,學生可以采取自主探討式的學習方法.
四、教學重點和難點
重點:進行含有30°、45°、60°角的三角函數(shù)值的計算
難點:記住30°、45°、60°角的三角函數(shù)值
五、教學準備
教師準備
預先準備教材、教參以及多媒體課件
學生準備
教材、同步練習冊、作業(yè)本、草稿紙、作圖工具等
六、教學步驟
教學流程設計
教師指導學生活動
1.新章節(jié)開場白.1.進入學習狀態(tài).
2.進行教學.2.配合學習.
3.總結(jié)和指導學生練習.3記錄相關內(nèi)容,完成練習.
教學過程設計
1、從學生原有的認知結(jié)構(gòu)提出問題
2、師生共同研究形成概念
3、隨堂練習
4、小結(jié)
5、作業(yè)
板書設計
1、敘述三角函數(shù)的意義
2、30°、45°、60°角的三角函數(shù)值
3、例題
七、課后反思
本節(jié)課基本上能夠突出重點、弱化難點,在時間上也能掌控得比較合理,學生也比較積極投入學習中,但是學生好像并不是掌握得很好,在今后的教學中應該再加強關于這方面的學習。
高中數(shù)學教案集合篇14
高中數(shù)學數(shù)列知識點
數(shù)列的函數(shù)理解:
①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域為正整數(shù)集N_或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。②用函數(shù)的觀點認識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。
通項公式:數(shù)列的第N項an與項的序數(shù)n之間的關系可以用一個公式an=f(n)來表示,這個公式就叫做這個數(shù)列的通項公式(注:通項公式不)。
數(shù)列通項公式的特點:
(1)有些數(shù)列的通項公式可以有不同形式,即不。
(2)有些數(shù)列沒有通項公式(如:素數(shù)由小到大排成一列2,3,5,7,11,...)。
遞推公式:如果數(shù)列{an}的第n項與它前一項或幾項的關系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的遞推公式。
數(shù)列遞推公式特點:
(1)有些數(shù)列的遞推公式可以有不同形式,即不。
(2)有些數(shù)列沒有遞推公式。
有遞推公式不一定有通項公式。
注:數(shù)列中的項必須是數(shù),它可以是實數(shù),也可以是復數(shù)。
等差數(shù)列通項公式
an=a1+(n-1)d
n=1時a1=S1
n≥2時an=Sn-Sn-1
an=kn+b(k,b為常數(shù))推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
等差中項
由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。
有關系:A=(a+b)÷2
前n項和
倒序相加法推導前n項和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)
∴Sn=n(a1+an)÷2
等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
等差數(shù)列性質(zhì)
一、任意兩項am,an的關系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項公式。
二、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_
三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq
四、對任意的k∈N_,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。
怎么樣提高數(shù)學成績
首先想要提升數(shù)學成績,成為數(shù)學學霸的前提是要對數(shù)學有良好的學習興趣。其次要學會課前預習,方便自己能夠更加深入的吃透課堂上的知識點。然后還要學會總結(jié)復習,總結(jié)自己課堂上的問題,復習課堂上的重要知識點,從而提高自己的數(shù)學成績。
提升數(shù)學成績還要擁有一個錯題本,和數(shù)學資料。認真對待自己的學習工具,多做練習題,找出自己的薄弱環(huán)節(jié)和自己常犯的題型,記在錯題本上,常練習,常鞏固。在自己的數(shù)學資料中摸索出適合自己的解題技巧,反復練習加以運用,一定會提升你的數(shù)學成績。
學會聽課,在課堂上勇于提問。數(shù)學最重要的部分都是在課本上,所以必須要掌握好課堂的45分鐘。把握好數(shù)學課本,為自己打下一個好基礎,這樣才能更有效的提升你的數(shù)學成績。學會做課堂筆記,把每節(jié)課的重要知識點記下來,以便接下來的復習。
學好數(shù)學的方法技巧整理
預習的方法
上課之前一定要抽時間進行預習,有時預習比做作業(yè)更重要,因為通過預習我們可以初步掌握課程的大致內(nèi)容,聽課就能夠把握好重點,針對性比較強,還會帶著問題去聽課,聽課效率就會比較高,上課聽明白了,完成作業(yè)也會更好更快,最終會形成良性循環(huán)。
聽懂課的習慣
注意聽教師每節(jié)課強調(diào)的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節(jié)課最后的小結(jié),這樣,抓住重、難點,沿著知識的發(fā)生發(fā)展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉(zhuǎn)變?yōu)椤皶牎薄?/p>
不斷練習
不斷練習是指多做數(shù)學練習題。希望學好數(shù)學,多做練習是必不可少的。做練習的原因有以下三點:第一,熟練和鞏固學到的數(shù)學知識;二,引導同學靈活運用所學知識點以及獨立思考獨立做題的水平;第三,融會貫通。通過做題將所學的所有知識點結(jié)合起來,加深同學對數(shù)學體系化的理解。
高中數(shù)學教案集合篇15
一、教材分析
1、從在教材中的地位與作用來看
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng)。
2、從學生認知角度看
從學生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質(zhì)的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。
3、學情分析
教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。
4、重點、難點
教學重點:公式的推導、公式的特點和公式的運用。
教學難點:公式的推導方法和公式的靈活運用。
公式推導所使用的“錯位相減法”是高中數(shù)學數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學思想,所以既是重點也是難點。
二、目標分析
知識與技能目標:
理解并掌握等比數(shù)列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。
過程與方法目標:
通過對公式推導方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)
化、分類討論等數(shù)學思想,培養(yǎng)學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價值觀:
通過對公式推導方法的探索與發(fā)現(xiàn),優(yōu)化學生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。
三、過程分析
學生是認知的主體,設計教學過程必須遵循學生的認知規(guī)律,盡可能地讓學生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設計了如下的教學過程:
1、創(chuàng)設情境,提出問題
在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚。為什么呢?
設計意圖:設計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調(diào)動學習的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點。
此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數(shù)。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。
設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的`認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉(zhuǎn)過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆、
2、師生互動,探究問題
在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數(shù)列?有何特征?應歸結(jié)為什么數(shù)學問題呢?
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學生會發(fā)現(xiàn),后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
設計意圖:留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養(yǎng)學生的辯證思維能力的良好契機。
經(jīng)過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù)學的信心。
3、類比聯(lián)想,解決問題
這時我再順勢引導學生將結(jié)論一般化,
這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。
設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)
設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結(jié)構(gòu),另一方面使學生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。
4、討論交流,延伸拓展
在此基礎上,我提出:探究等比數(shù)列前n項和公式,還有其它方法嗎?我們知道,
那么我們能否利用這個關系而求出sn呢?根據(jù)等比數(shù)列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?
設計意圖:以疑導思,激發(fā)學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關于的一個遞推式,遞推數(shù)列有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發(fā)展有促進作用、
5、變式訓練,深化認識
首先,學生獨立思考,自主解題,再請學生上臺來幻燈演示他們的解答,其它同學進行評價,然后師生共同進行總結(jié)。
設計意圖:采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數(shù)學認知結(jié)構(gòu)的形成。通過以上形式,讓全體學生都參與教學,以此培養(yǎng)學生的參與意識和競爭意識。
6、例題講解,形成技能
設計意圖:解題時,以學生分析為主,教師適時給予點撥,該題有意培養(yǎng)學生對含有參數(shù)的問題進行分類討論的數(shù)學思想。
7、總結(jié)歸納,加深理解
以問題的形式出現(xiàn),引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數(shù)學思想方法兩方面總結(jié)。
設計意圖:以此培養(yǎng)學生的口頭表達能力,歸納概括能力。
8、故事結(jié)束,首尾呼應
最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。
設計意圖:把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續(xù)積極思維。
9、課后作業(yè),分層練習
必做:P129練習1、2、3、4
選作:
(2)“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”這首中國古詩的答案是多少?
設計意圖:出選作題的目的是注意分層教學和因材施教,讓學有余力的學生有思考的空間。
四、教法分析
對公式的教學,要使學生掌握與理解公式的來龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學中,我采用“問題――探究”的教學模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應用規(guī)律四個階段。
利用多媒體輔助教學,直觀地反映了教學內(nèi)容,使學生思維活動得以充分展開,從而優(yōu)化了教學過程,大大提高了課堂教學效率。
五、評價分析
本節(jié)課通過三種推導方法的研究,使學生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實。學生從中深刻地領會到推導過程中所蘊含的數(shù)學思想,培養(yǎng)了學生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學,使學生既鞏固了知識,又形成了技能。在此基礎上,通過民主和諧的課堂氛圍,培養(yǎng)了學生自主學習、合作交流的學習習慣,也培養(yǎng)了學生勇于探索、不斷創(chuàng)新的思維品質(zhì)。
高中數(shù)學教案集合篇16
橢圓的簡單幾何性質(zhì)中的考查點:
(一)、對性質(zhì)的考查:
1、范圍:要注意方程與函數(shù)的區(qū)別與聯(lián)系;與橢圓有關的求最值是變量的取值范圍;作橢圓的草圖。
2、對稱性:橢圓的中心及其對稱性;判斷曲線關于x軸、y軸及原點對稱的依據(jù);如果曲線具有關于x軸、y軸及原點對稱中的任意兩種,那么它也具有另一種對稱性;注意橢圓不因坐標軸改變的固有性質(zhì)。
3、頂點:橢圓的頂點坐標;一般二次曲線的頂點即是曲線與對稱軸的交點;橢圓中a、b、c的幾何意義(橢圓的特征三角形及離心率的三角函數(shù)表示)。
4、離心率:離心率的定義;橢圓離心率的取值范圍:(0,1);橢圓的離心率的變化對橢圓的影響:當e趨向于1時:c趨向于a,此時,橢圓越扁平;當e趨向于0時:c趨向于0,此時,橢圓越接近于圓;當且僅當a=b時,c=0,兩焦點重合,橢圓變成圓。
(二)、課本例題的變形考查:
1、近日點、遠日點的概念:橢圓上任意一點p(x,y)到橢圓一焦點距離的最大值:a+c與最小值:a-c及取最值時點p的坐標;
2、橢圓的第二定義及其應用;橢圓的準線方程及兩準線間的距離、焦準距:焦半徑公式。
3、已知橢圓內(nèi)一點m,在橢圓上求一點p,使點p到點m與到橢圓準線的距離的和最小的求法。
4、橢圓的參數(shù)方程及橢圓的離心角:橢圓的參數(shù)方程的簡單應用:
5、直線與橢圓的位置關系,直線與橢圓相交時的弦長及弦中點問題。
高中數(shù)學教案集合篇17
一 教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學目標:
認知目標:在創(chuàng)設的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養(yǎng)學生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標:面向全體學生,創(chuàng)造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調(diào)動學生的主動性和積極性,給學生成功的體驗,激發(fā)學生學習的興趣。
教學重點:正弦定理的內(nèi)容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二 教法
根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學業(yè)生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發(fā)他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當?shù)奶崾竞椭笇АM黄齐y點的方法:抓住學生的能力線聯(lián)系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點
三 學法:
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質(zhì)的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學生的主體地位,增強學生由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度,增強了鍥而不舍的求學精神。
四 教學過程
第一:創(chuàng)設情景,大概用2分鐘
第二:實踐探究,形成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
(一)創(chuàng)設情境,布疑激趣
“興趣是的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)探尋特例,提出猜想
1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結(jié)實驗結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關系
這為下一步證明樹立信心,不斷的使學生對結(jié)論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標法來證明
(四)歸納總結(jié),簡單應用
1.讓學生用文字敘述正弦定理,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關三角形的問題。
3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結(jié)果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想。
2.它表述了三角形的邊與對角的正弦值的關系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學習方法,注重學生的主體地位,調(diào)動學生積極性,使數(shù)學教學成為數(shù)學活動的教學。)
(八)任務后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預習下一節(jié)內(nèi)容。
五 板書設計
板書設計可以讓學生一目了然本節(jié)課所學的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。