高中數學教案表格模板下載
教案可以幫助教師提高教學質量,從而更好地提高學生的學習成績。怎樣才能寫好高中數學教案表格模板下載?這里給大家提供高中數學教案表格模板下載,方便大家學習。
高中數學教案表格模板下載篇1
教學目標:
1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數和組合數。
2、經歷探索簡單事物排列與組合規律的過程。
3、培養學生有序地全面地思考問題的意識。
4、感受數學與生活的緊密聯系,培養學生學習數學的興趣和用數學方法解決問題的意識。
教學重點:經歷探索簡單事物排列與組合規律的過程。
教學難點:初步理解簡單事物排列與組合的不同。
教具準備:乒乓球、衣服圖片、紙箱、每組三張數字卡片、吹塑紙數字卡片。
一、情境導入,展開教學
今天,王老師要帶大家去“數學廣角”里做游戲,可是,我把游戲要用的材料都放在這個密碼包里。你們想解開密碼取出游戲材料嗎?(想)我給大家提供解碼的3個信息。
1、好,接下來老師提供解碼的第一個信息:密碼是一個兩位數。(學生在兩位數里猜)(你們猜的對不對呢?請聽第二個解碼信息)
2、下面,提供解碼的第二個信息:密碼是由2和7組成的(學生說出27和72)。能說說看你是怎么想的嗎?
3、下面,提供解碼的第三個信息:剛才說了密碼可能是27也可能是72。其實這個密碼和老師的年齡有關。哪個才是真正的密碼是?(學生說出是27)到底是不是27呢?請看(教師出示密碼)。真的是27,恭喜大家解碼成功!
二、多種活動,體驗新知
1、感知排列
師:請小朋友先到“數字宮”做個排數字游戲,好嗎?這有兩張數字卡片(1、2)(老師從密碼包里拿出),你能擺出幾個兩位數?(用數字卡擺一擺)
生:我擺了兩個不同的數字12和21。(教師板書)
師:同學們想得真好。我又請來了一位好朋友數字3,現在有三個數字1、2、3,讓大家寫兩位數,你們不會了吧?(會)別吹牛!(真的會)好,下面大家分組合作,組長記錄。看看你們能夠寫出幾個不同的兩位數,注意不要重復,如果你覺得直接寫有困難的話可以借助手中的數字卡片擺一擺。好,開始。
學生活動教師巡視并參與學生活動。(學生所寫的個數可能不一樣,有多有少,找幾份重復的或個數少的展示。)哪組同學來給大家匯報一下。(教師板書結果。)有沒有需要補充的呀?
2、探討排列方法。
有的小組擺出4個不同的兩位數,有的小組擺出6個不同的兩位數,有什么好的方法能保證既不重復,也不漏掉數呢?還請大家分組討論。看一看哪組同學的方法最好!(小組討論,分組交流,學生總結方法。)哪組同學來給大家匯報一下你們的想法?
方法1:我擺出12,然后再顛倒就是21,再擺23,顛倒后就是32,再擺13,顛倒后就是31,一共可以擺出6個兩位數。
方法2:我先把數字1放在十位上,然后把數字2和3分別放在個位組成12和13;我再把數字2放在十位上,然后把數字1和3分別放在個位組成21和23;我再把數字3放在十位上,然后把數字1和2分別放在個位上組成31和32,一共擺出了6個兩位數。3、老師和學生共同評議方法:讓學生選擇自己喜歡的方法再擺一擺,學生試著總結。(如果學生說不出方法2,老師就直接告訴學生)
3、感知組合。
①師:你們真是一群善于動腦的好孩子。來,咱們握握手,祝賀祝賀!加油!123
②提出問題:從大家剛才握手,老師想出了一個數學問題:三個小朋友,每兩個人只能握一次手,一共要握幾次手呢?想一想!
生1:6次!
生2:4次!
師:到底是幾次呢?請小組長作裁判,小組內的三個同學,試一試,到底是幾次?
③學生匯報表演。小組長指揮說明。哪組同學愿意給大家表演一下?他們握手,咱們一起來數吧!教師引導學生一起數握手的次數。(注意握過小朋友一邊休息)
④師問:A和B握手了嗎?B和A握手了嗎?這算一次還是兩次呀?
⑤小結:看來,兩個人相互握手,只能算一次,和順序無關。剛才排數,交換數的位置,就變成另一個數了,這和順序有關。
三、反饋練習,加深理解
下面大家看這是什么呀?(老師從密碼包里拿出一個乒乓球)(乒乓球)這個是我昨天專門買來的。定價5角。當時我的口袋里有1張5角的、2張2角,還有5個1角的硬幣。(師出示所述人民幣)大家想一想我有多少種方法付給老板錢呢?(老師引導學生有序的說出付錢的四種方法)
有了乒乓球,老師就可以教大家打乒乓球了。不過我要先考考大家。每兩個人進行一場比賽,三個人要比幾場?(指名答。)好的,大家真能干。下課老師就教你們的乒乓球好嗎?(好)。
今天是幾月幾日?(12月1日)哦!快到元旦了。小明準備在數學廣角舉辦的元旦晚會上露一手。來一個時裝表演。他準備了4件衣服(教師貼出2件上衣和2件褲子),請你幫他設計一下,有幾種穿法?誰來說一說?(指名答出四種穿法并演示)
大家感覺一下只有4種穿法,是不是有點少了呀?(是)小明也和大家想到一塊去了。于是他又用自己的零花錢買了一條黑褲子(貼出)。大家再想一想現在一共有多少種穿法了呀?(6種)除了剛才的4種,還有哪2種,誰來說一說?(生答完后,老師再引導學生有序地回憶6種穿法)同學們真聰明。我在這里代表小明向大家說一聲:謝謝了!(沒關系)。對了。到時候我們一定要去看小明的精彩表演!好不好?(好)
四、游戲活動,拓展應用
1、老師看大家學得這么開心,我們來做個抽獎游戲,想參加嗎?每個小朋友都有中獎的機會哦。
①教師出示4個號球:老師這這里有四個號球:2、5、7、8。
②什么樣的號碼能中獎呢?我給你們透露點信息:中獎號碼就是從這4個數中選出的兩個數組成的兩位數。猜猜,什么號碼可能中獎?這個號碼可能中獎。再猜?你這個號碼也可能中獎。看來,可能中獎的號碼有很多個。有什么好辦法肯定能中獎?(把你認為能中獎的號碼都寫出來吧)(把用這四個數能組成的所有兩位數都寫出來,教師巡視,有的孩子寫出來8個兩位數,她還在繼續寫,看來不止8個。你寫得越多你中獎的可能就越大)
③寫好了嗎?大家推舉一個人來摸獎吧。老師來當公證員行不行?學生先摸出一個球。中獎號碼的最前面一個數出來了,是2,那中獎號碼可能是?25、27、28。再摸一個球。中獎號碼是?
④你中獎了嗎?把你寫出的這個數圈出來。同桌互相看看,如果你同位中獎了,請你給他畫一面小紅旗。
⑤出示所有結果:孩子們,你剛才一共寫出了多少個兩位數?用2、5、7、8能組成的兩位數究竟有多少個呢?咱們用剛才先固定最前面一位數的辦法把這些數都排出來吧!老師寫,你們說,好嗎?
2、老師給今天這節課表現最好的三位同學一張合影,請同學們想一想,三個人站成一行,一共有多少種不同的排法?(指名答,教師總結)
這種排法剛才有沒有呀?我也糊涂了。怎樣才能搞清楚呢?對了,我們也可以用剛才先固定最前面一位數的方法來排一排。(教師引導學生有順序的排一排)這樣有順序的排一下,我們都清楚了。看來我們以后,不管在生活和學習中,做什么事情,想什么問題都要有順序的思考,這樣才能考慮全面。其實生活中有許多有趣的數學問題,不管有多難,只要大家肯動腦筋,就一定能解決。對不對?(對)
五、全課總結,升華情感
在數學廣角中還有許多地方等著大家去游玩,由于時間關系,今天我們大家就玩到這里。今天你這節課最高興的是什么事?
高中數學教案表格模板下載篇2
一 教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。
二 教法
根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點
三 學法:
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四 教學過程
第一:創設情景,大概用2分鐘
第二:實踐探究,形成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
(一)創設情境,布疑激趣
“興趣是的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)探尋特例,提出猜想
1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。
2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結實驗結果,得出猜想:
在三角形中,角與所對的邊滿足關系
這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明
(四)歸納總結,簡單應用
1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。
2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。
3.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發現問題,并解答。
(七)小結反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現了數形結合的數學思想。
2.它表述了三角形的邊與對角的正弦值的關系。
3.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。
(從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)
(八)任務后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發現正弦定理不適用了,那么自然過渡到下一節內容,余弦定理。布置作業,預習下一節內容。
五 板書設計
板書設計可以讓學生一目了然本節課所學的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。
高中數學教案表格模板下載篇3
授課時間:08年9月12日
授課年級、科目、課題:高一數學集合的概念
使用教材:必修1(人教版)
說課教師:劉華
各位老師同學們,大家好!今天我說課的課題是“集合的概念”,本節內容選自高中數學必修1(人教版),下面我將主要從六個方面介紹我的教學方案。
一、教材分析:
教材的地位和作用:
集合是學習高中數學的重要工具之一,起著承前啟后的作用。本小節首先從初中代數與幾何涉及的集合實例人手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明.然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子.從教材我歸納出本節內容的教學重點和難點。
(一)教學重點:集合的基本概念和表示方法,集合元素的特征
(二)教學難點:運用集合的三種常用表示方法、列舉法與描述法,正確表示一些簡單的集合
二、教學目標:
(一)知識目標:
(1)使學生初步理解集合的概念,知道常用數集的概念及其記法;
(2)使學生初步了解“屬于”關系的意義;
(3)使學生初步了解有限集、無限集、空集的意義
(二)能力目標:
(1)重視基礎知識的教學、基本技能的訓練和能力的培養;
(2)啟發學生能夠發現問題和提出問題,善于獨立思考,學會分析問題和創造地解決問題;
(3)通過教師指導,發現知識結論,培養學生抽象概括能力和邏輯思維能力;
(三)德育目標:激發學生學習數學的興趣和積極性,陶冶學生的情
操,培養學生堅忍不拔的意志,實事求是的科學學習態度和勇于創新的精神。
三、學情分析:
針對現在的學生知識遷移能力差、計算能力差的特點,第一節課的內容不要求學生太多的計算,通過大量的舉例讓學生充分掌握集合的基礎知識。
四、教法分析:
為了突出重點、突破難點,本節課主要采用觀察、分析、類比、歸納的方法讓學生參與學習,將學生置于主體位置,發揮學生的主觀能動性,將知識的形成過程轉化為學生親自探索類比的過程,使學生獲得發現的成就感。在這個過程中力求把握好以下幾點:
(1)通過實例,讓學生去發現規律。讓學生在問題情景中,經歷知識的形成和發展,力求使學生學會用類比的思想去看待問題。
(2)營造民主的教學氛圍,使學生參與教學全過程。
(3)力求反饋的全面性、及時性,通過精心設計的提問,讓學生的思維動起來,針對學生回答的問題,老師進行適當的點評。
(4)給學生思考的時間和空間,不急于把結果拋給學生,讓學生自己去觀察,分析,類比得出結果,提高學生的推理能力。
五、教學過程
(一)復習導入
(1)簡介數集的發展,復習最大公約數和最小公倍數,質數與和數;
(2)教材中的章頭引言;
(3)教材中例子(P4)。
(二)講解新課
(1)集合的有關概念
(2)常用集合及表示方法
(3)元素對于集合的隸屬關系
(4)集合中元素的特性
(三)課堂練習
1下列各組對象能確定一個集合嗎?
(1)所有很大的實數的集合(不確定)
(2)好心的人的集合(不確定)
(3){1,2,2,3,4,5}(有重復)
(4)所有直角三角形的集合(是的)
(5)高一(12)班全體同學的集合(是的)
(6)參加20--年奧運會的中國代表團成員的集合(是的)
2、教材P5練習1、2
六:總結
1.本節主要學習了集合的基本概念、表示符號;一些常用數集及其記法;集合的元素與集合之間的關系;以及集合元素具有的特征.
2.我們在進一步復習鞏固集合有關概念的基礎上,又學習了集合的表示方法和有限集、無限集、空集的概念,同學們要熟練掌握.
高中數學教案表格模板下載篇4
教學目標
知識目標等差數列定義等差數列通項公式
能力目標掌握等差數列定義等差數列通項公式
情感目標培養學生的觀察、推理、歸納能力
教學重難點
教學重點等差數列的概念的理解與掌握
等差數列通項公式推導及應用教學難點等差數列“等差”的理解、把握和應用
教學過程
由__《紅高粱》主題曲“酒神曲”引入等差數列定義
問題:多媒體演示,觀察————發現?
一、等差數列定義:
一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。這個常數叫做等差數列的公差,通常用字母d表示。
例1:觀察下面數列是否是等差數列:…。
二、等差數列通項公式:
已知等差數列{an}的首項是a1,公差是d。
則由定義可得:
a2—a1=d
a3—a2=d
a4—a3=d
……
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差數列的首項a1是3,公差d是2,求它的通項公式。
分析:知道a1,d,求an。代入通項公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差數列10,8,6,4…的第20項。
分析:根據a1=10,d=—2,先求出通項公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差數列{an}中,已知a6=12,a18=36,求通項an。
分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數組成方程組,可解出a1與d。
解:由題意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
練習
1、判斷下列數列是否為等差數列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
2、等差數列{an}的前三項依次為a—6,—3a—5,—10a—1,則a等于
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在數列{an}中a1=1,an=an+1+4,則a10=。
提示:d=an+1—an=—4
教師繼續提出問題
已知數列{an}前n項和為……
作業
P116習題3。21,2
高中數學教案表格模板下載篇5
教學內容背景材料:
義務教育課程標準實驗教科書(人教版)二年級上冊第八單元的排列與組合
教學目標:
1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數和組合數。
2、經歷探索簡單事物排列與組合規律的過程。
3、培養學生有序地全面地思考問題的意識。
4、感受數學與生活的緊密聯系,培養學生學習數學的興趣和用數學方法解決問題的意識。
教學重點:
經歷探索簡單事物排列與組合規律的過程。
教學難點:
初步理解簡單事物排列與組合的不同。
教具準備:
乒乓球、衣服圖片、紙箱、每組三張數字卡片、吹塑紙數字卡片。
一、情境導入,展開教學
今天,王老師要帶大家去“數學廣角”里做游戲,可是,我把游戲要用的材料都放在這個密碼包里。你們想解開密碼取出游戲材料嗎?(想)我給大家提供解碼的3個信息。
1.好,接下來老師提供解碼的第一個信息:密碼是一個兩位數。(學生在兩位數里猜)(你們猜的對不對呢?請聽第二個解碼信息)
2.下面,提供解碼的第二個信息:密碼是由2和7組成的(學生說出27和72)。能說說看你是怎么想的嗎?
3.下面,提供解碼的第三個信息:剛才說了密碼可能是27也可能是72。其實這個密碼和老師的年齡有關。哪個才是真正的密碼是?(學生說出是27)到底是不是27呢?請看(教師出示密碼)。真的是27,恭喜大家解碼成功!
二、多種活動,體驗新知
1、感知排列
師:請小朋友先到“數字宮”做個排數字游戲,好嗎?這有兩張數字卡片(1、2)(老師從密碼包里拿出),你能擺出幾個兩位數?(用數字卡擺一擺)
生:我擺了兩個不同的數字12和21。(教師板書)
師:同學們想得真好。我又請來了一位好朋友數字3,現在有三個數字1、2、3,讓大家寫兩位數,你們不會了吧?(會)別吹牛!(真的會)好,下面大家分組合作,組長記錄。看看你們能夠寫出幾個不同的兩位數,注意不要重復,如果你覺得直接寫有困難的話可以借助手中的數字卡片擺一擺。好,開始。
學生活動教師巡視并參與學生活動。(學生所寫的個數可能不一樣,有多有少,找幾份重復的或個數少的展示。)哪組同學來給大家匯報一下。(教師板書結果。)有沒有需要補充的呀?
2、探討排列方法。
有的小組擺出4個不同的兩位數,有的小組擺出6個不同的兩位數,有什么好的方法能保證既不重復,也不漏掉數呢?還請大家分組討論。看一看哪組同學的方法最好!(小組討論,分組交流,學生總結方法。)哪組同學來給大家匯報一下你們的想法?
方法1:我擺出12,然后再顛倒就是21,再擺23,顛倒后就是32,再擺13,顛倒后就是31,一共可以擺出6個兩位數。
方法2:我先把數字1放在十位上,然后把數字2和3分別放在個位組成12和13;我再把數字2放在十位上,然后把數字1和3分別放在個位組成21和23;我再把數字3放在十位上,然后把數字1和2分別放在個位上組成31和32,一共擺出了6個兩位數。3、老師和學生共同評議方法:讓學生選擇自己喜歡的方法再擺一擺,學生試著總結。(如果學生說不出方法2,老師就直接告訴學生)
3、感知組合。
①師:你們真是一群善于動腦的好孩子。來,咱們握握手,祝賀祝賀!加油!123
②提出問題:從大家剛才握手,老師想出了一個數學問題:三個小朋友,每兩個人只能握一次手,一共要握幾次手呢?想一想!
生1:6次!
生2:4次!
師:到底是幾次呢?請小組長作裁判,小組內的三個同學,試一試,到底是幾次?
③學生匯報表演。小組長指揮說明。哪組同學愿意給大家表演一下?他們握手,咱們一起來數吧!教師引導學生一起數握手的次數。(注意握過小朋友一邊休息)
④師問:A和B握手了嗎?B和A握手了嗎?這算一次還是兩次呀?
⑤小結:看來,兩個人相互握手,只能算一次,和順序無關。剛才排數,交換數的位置,就變成另一個數了,這和順序有關。
三、反饋練習,加深理解
下面大家看這是什么呀?(老師從密碼包里拿出一個乒乓球)(乒乓球)這個是我昨天專門買來的。定價5角。當時我的口袋里有1張5角的、2張2角,還有5個1角的硬幣。(師出示所述人民幣)大家想一想我有多少種方法付給老板錢呢?(老師引導學生有序的說出付錢的四種方法)
有了乒乓球,老師就可以教大家打乒乓球了。不過我要先考考大家。每兩個人進行一場比賽,三個人要比幾場?(指名答。)好的,大家真能干。下課老師就教你們的乒乓球好嗎?(好)。
今天是幾月幾日?(12月1日)哦!快到元旦了。小明準備在數學廣角舉辦的元旦晚會上露一手。來一個時裝表演。他準備了4件衣服(教師貼出2件上衣和2件褲子),請你幫他設計一下,有幾種穿法?誰來說一說?(指名答出四種穿法并演示)
大家感覺一下只有4種穿法,是不是有點少了呀?(是)小明也和大家想到一塊去了。于是他又用自己的零花錢買了一條黑褲子(貼出)。大家再想一想現在一共有多少種穿法了呀?(6種)除了剛才的4種,還有哪2種,誰來說一說?(生答完后,老師再引導學生有序地回憶6種穿法)同學們真聰明。我在這里代表小明向大家說一聲:謝謝了!(沒關系)。對了。到時候我們一定要去看小明的精彩表演!好不好?(好)
四、游戲活動,拓展應用
1、老師看大家學得這么開心,我們來做個抽獎游戲,想參加嗎?每個小朋友都有中獎的機會哦。
①教師出示4個號球:老師這這里有四個號球:2、5、7、8。
②什么樣的號碼能中獎呢?我給你們透露點信息:中獎號碼就是從這4個數中選出的兩個數組成的兩位數。猜猜,什么號碼可能中獎?這個號碼可能中獎。再猜?你這個號碼也可能中獎。看來,可能中獎的號碼有很多個。有什么好辦法肯定能中獎?(把你認為能中獎的號碼都寫出來吧)(把用這四個數能組成的所有兩位數都寫出來,教師巡視,有的孩子寫出來8個兩位數,她還在繼續寫,看來不止8個。你寫得越多你中獎的可能就越大)
③寫好了嗎?大家推舉一個人來摸獎吧。老師來當公證員行不行?學生先摸出一個球。中獎號碼的最前面一個數出來了,是2,那中獎號碼可能是?25、27、28。再摸一個球。中獎號碼是?
④你中獎了嗎?把你寫出的這個數圈出來。同桌互相看看,如果你同位中獎了,請你給他畫一面小紅旗。
⑤出示所有結果:孩子們,你剛才一共寫出了多少個兩位數?用2、5、7、8能組成的兩位數究竟有多少個呢?咱們用剛才先固定最前面一位數的辦法把這些數都排出來吧!老師寫,你們說,好嗎?
2、老師給今天這節課表現最好的三位同學一張合影,請同學們想一想,三個人站成一行,一共有多少種不同的排法?(指名答,教師總結)
這種排法剛才有沒有呀?我也糊涂了。怎樣才能搞清楚呢?對了,我們也可以用剛才先固定最前面一位數的方法來排一排。(教師引導學生有順序的排一排)這樣有順序的排一下,我們都清楚了。看來我們以后,不管在生活和學習中,做什么事情,想什么問題都要有順序的思考,這樣才能考慮全面。其實生活中有許多有趣的數學問題,不管有多難,只要大家肯動腦筋,就一定能解決。對不對?(對)
五、全課總結,升華情感
在數學廣角中還有許多地方等著大家去游玩,由于時間關系,今天我們大家就玩到這里。今天你這節課最高興的是什么事?
六、板書設計
排列組合
121232578
1221122331252728
213213525758
727578
828587
高中數學教案表格模板下載篇6
一、教學內容分析
二面角是我們日常生活中經常見到的一個圖形,它是在學生學過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進一步完善了空間角的概念。掌握好本節課的知識,對學生系統地理解直線和平面的知識、空間想象能力的培養,乃至創新能力的培養都具有十分重要的意義。
二、教學目標設計
理解二面角及其平面角的概念;能確認圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運用它們解決相關問題。
三、教學重點及難點
二面角的平面角的概念的形成以及二面角的平面角的作法。
四、教學流程設計
五、教學過程設計
一、新課引入
1。復習和回顧平面角的有關知識。
平面中的角
定義從一個頂點出發的兩條射線所組成的圖形,叫做角
圖形
結構射線點射線
表示法AOB,O等
2。復習和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征。(空間角轉化為平面角)
3。觀察:陡峭與否,跟山坡面與水平面所成的角大小有關,而山坡面與水平面所成的角就是兩個平面所成的角。在實際生活當中,能夠轉化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關。)從而,引出二面角的定義及相關內容。
二、學習新課
(一)二面角的定義
平面中的角二面角
定義從一個頂點出發的兩條射線所組成的圖形,叫做角課本P17
圖形
結構射線點射線半平面直線半平面
表示法AOB,O等二面角a或—AB—
(二)二面角的圖示
1。畫出直立式、平臥式二面角各一個,并分別給予表示。
2。在正方體中認識二面角。
(三)二面角的平面角
平面幾何中的角可以看作是一條射線繞其端點旋轉而成,它有一個旋轉量,它的大小可以度量,類似地,二面角也可以看作是一個半平面以其棱為軸旋轉而成,它也有一個旋轉量,那么,二面角的大小應該怎樣度量?
1。二面角的平面角的定義(課本P17)。
2。AOB的大小與點O在棱上的位置無關。
[說明]①平面與平面的位置關系,只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,有必要來研究二面角的度量問題。
②與兩條異面直線所成的角、直線和平面所成的角做類比,用平面角去度量。
③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內;角的兩邊分別與棱垂直。
3。二面角的平面角的范圍:
(四)例題分析
例1一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個的二面角,求此時B、C兩點間的距離。
[說明]①檢查學生對二面角的平面角的定義的掌握情況。
②翻折前后應注意哪些量的位置和數量發生了變化,哪些沒變?
例2如圖,已知邊長為a的等邊三角形所在平面外有一點P,使PA=PB=PC=a,求二面角的大小。
[說明]①求二面角的步驟:作證算答。
②引導學生掌握解題可操作性的通法(定義法和線面垂直法)。
例3已知正方體,求二面角的大小。(課本P18例1)
[說明]使學生進一步熟悉作二面角的平面角的方法。
(五)問題拓展
例4如圖,山坡的傾斜度(坡面與水平面所成二面角的度數)是,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是,沿這條路上山,行走100米后升高多少米?
[說明]使學生明白數學既來源于實際又服務于實際。
三、鞏固練習
1。在棱長為1的正方體中,求二面角的大小。
2。若二面角的大小為,P在平面上,點P到的距離為h,求點P到棱l的距離。
四、課堂小結
1。二面角的定義
2。二面角的平面角的定義及其范圍
3。二面角的平面角的常用作圖方法
4。求二面角的大小(作證算答)
五、作業布置
1。課本P18練習14。4(1)
2。在二面角的一個面內有一個點,它到另一個面的距離是10,求它到棱的距離。
3。把邊長為a的正方形ABCD以BD為軸折疊,使二面角A—BD—C成的二面角,求A、C兩點的距離。
六、教學設計說明
本節課的設計不是簡單地將概念直接傳受給學生,而是考慮到知識的形成過程,設法從學生的數學現實出發,調動學生積極參與探索、發現、問題解決全過程。二面角及二面角的平面角這兩大概念的引出均運用了類比的手段和方法。教學過程中通過教師的層層鋪墊,學生的主動探究,使學生經歷概念的形成、發展和應用過程,有意識地加強了知識形成過程的教學。
高中數學教案表格模板下載篇7
學習目標
明確排列與組合的聯系與區別,能判斷一個問題是排列問題還是組合問題;能運用所學的排列組合知識,正確地解決的實際問題.
學習過程
一、學前準備
復習:
(課本P28A13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數是;
(2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數是;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數是;
(4)集合A有個元素,集合B有個元素,從兩個集合中各取1個元素,不同方法的種數是;
二、新課導學
探究新知(復習教材P14~P25,找出疑惑之處)
問題1:判斷下列問題哪個是排列問題,哪個是組合問題:
(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?
(2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?
應用示例:
例1:從10個不同的文藝節目中選6個編成一個節目單,如果某女演員的獨唱節目一定不能排在第二個節目的位置上,則共有多少種不同的排法?
例2:7位同學站成一排,分別求出符合下列要求的不同排法的種數.
(1)甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
反饋練習
1、(課本P40A4)某學生邀請10位同學中的6位參加一項活動,其中兩位同學要么都請,要么都不請,共有多少種邀請方法?
2、5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列
3、馬路上有12盞燈,為了節約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種.
當堂檢測
1、某班新年聯歡會原定的5個節目已排成節目單,開演前又增加了兩個新節目.如果將這兩個節目插入原節目單中,那么不同插法的種數為()
A.42B.30C.20D.12
2、(課本P40A7)書架上有4本不同的數學書,5本不同的物理書,3本不同的化學書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?
課后作業
1、(課本P41B2)用數字0,1,2,3,4,5組成沒有重復數字的數,問:(1)能夠組成多少個六位奇數?(2)能夠組成多少個大于201345的正整數?
2、(課本P41B4)某種產品的加工需要經過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?
高中數學教案表格模板下載篇8
一、說教材
等差數列為人教版必修5第二章第二節的內容。數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的性質與應用等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
二、說學情
對于我校的高中學生,知識經驗比較貧乏,雖然他們的智力發展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。
三、說教學目標
【知識與技能】能夠準確的說出等差數列的特點;能夠推導出等差數列的通項公式,并可以利用等差數列解決些簡單的實際問題。
【過程與方法】在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,鍛煉知識、方法遷移能力;通過階梯性練習,提高分析問題和解決問題的能力。
【情感態度價值觀】通過對等差數列的研究,激發主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。
四、說教學重難點
【重點】等差數列的概念,等差數列的通項公式的推導過程及應用。
【難點】等差數列通項公式的推導,用“數學建模”的思想解決實際問題。
五、說教法與學法
數學教學是師生之間交往活動共同發展的課程,結合本節課的特點,我采取指導自主學習方法,并在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
六、說教學過程
(一)復習導入
類比函數,復習提問數列的函數意義,即數列可看作是定義域為正整數對應的一列函數值,從而數列的通項公式也就是相應函數的解析式。
設計意圖:通過復習,為本節課用函數思想研究數列問題作準備,將課堂設置成為階梯型教學,消除學生的畏難情緒。
(二)新課教學
教師創設具體情境,從具體事例中抽象出數學概念。
1.小明目前會100個單詞,他打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92
2.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25
通過練習1和2引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。
接下來由學生嘗試總結歸納等差數列的定義:
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,
這個常數叫做等差數列的公差,通常用字母d來表示。
(三)深化概念
教師請學生深度剖析等差數列的概念,進一步強調
①“從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(強調“同一個常數”);
在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:an+1-an=d(n≥1)
同時為配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。其中第一個數列公差小于0,第二個數列公差大于0,第三個數列公差等于0。由此強調:公差可以是正數、負數,也可以是0。
(四)歸納通項公式
在歸納等差數列通項公式中,我采用討論式的教學方法。由學生研究,分組討論上述四個等差數列的通項公式。通過總結對比找出共同點猜想一般等差數列的通向公式應為怎樣的形式整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。
猜想等差數列的通項公式:an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法---迭加法:
在迭加法的證明過程中,我采用啟發式教學方法。
利用等差數列概念啟發學生寫出n-1個等式。
對照已歸納出的通項公式啟發學生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想”的教學要求
接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)×2,
即an=2n-1,以此來鞏固等差數列通項公式的運用。
同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。
(五)應用舉例
這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。
先讓學生求等差數列的第20項、30項等。向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。
此外還可以聯系實際建模問題,如建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發式和討論式相結合的教學方法。啟發學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型--等差數列。
設置此題的目的:
1.加強同學們對應用題的綜合分析能力;
2.通過數學實際問題引出等差數列問題,激發了學生的興趣;
3.再者通過數學實例展示了“從實際問題出發經抽象概括建立數學模型,最后還原說明實際問題的“數學建模”的數學思想方法。
(六)小結作業
小結:(由學生總結這節課的收獲)
1.等差數列的概念及數學表達式。
強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數。
2.等差數列的通項公式:an=a1+(n-1),會知三求一。
3.用“數學建模”思想方法解決實際問題
作業:現實生活中還有哪些等差數列的實際應用呢?根據實際問題自己編寫兩道等差數列的題目并進行求解。
激發學生學習數學的興趣,以及認識到學習數學的重要性,將數學知識應用于實際問題的解決不僅回顧加深了本堂課的教學內容,開闊學生思維,還鍛煉了學生學以致用、觀察分析問題解決問題的能力。
七、說板書設計
在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。
高中數學教案表格模板下載篇9
教學內容背景材料:
義務教育課程標準實驗教科書(人教版)二年級上冊第八單元的排列與組合
教學目標:
1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數和組合數。
2、經歷探索簡單事物排列與組合規律的過程。
3、培養學生有順序地全面地思考問題的意識。
4、感受數學與生活的緊密聯系,激發學生學好數學的信心。
教學重點:經歷探索簡單事物排列與組合規律的過程
教學難點:初步理解簡單事物排列與組合的不同
教具準備:教學課件
學具準備:每生準備3張數字卡片,學具袋
教學過程:
一、創設問題情境:
師:森林學校的數學課上,猴博士出了這樣一道題(課件出示)用數字1、2能寫出幾個兩位數?問題剛說完小動物們都紛紛舉手說能寫成兩個數:12、21。接著猴博士又加上了一個數字3,問:“用數字1、2、3能寫出幾個兩位數呢?”小豬站起來說能寫成3個,小熊說5個,小狗說7個,到底能寫出幾個呢?用學生感興趣的童話故事引入,易于激發起學生探究的興趣,同時也向學生滲透助人為樂的品德教育。
1.自主合作探索新知
試一試
師:請同學們也試著寫一寫,如果你覺得直接寫有困難的話可以借助手中的數字卡片擺一擺。
學生活動教師巡視。(學生所寫的個數可能不一樣,有多有少,找幾份重復的或個數少的展示。)引導學生根據自己的實際情況選擇不同的方法探究新知,體現了不同的孩子用不同的方式學習數學這一新的教學理念,易于吸引不同層次的學生積極主動的參與到活動中來。
2.發現問題
學生匯報所寫個數,教師根據巡視的情況重點展示幾份,引導學生發現問題:有的重復寫了,有的漏寫了。
引導學生發現寫數過程中出現的問題,并就此展開討論、交流,遵循了學生的認知特點。學生在交流的過程中體驗到解決問題方法的多樣性,并根據自己的實際選擇不同的方法,尊重了學生的主體地位。在此過程中學生收獲的不僅是知識本身,更多的是能力、情感。
3.小組討論
師:每個同學寫出的個數不同,怎樣才能很快寫出所有的用數字1、2、3組成的兩位數,并做到不重復不遺漏呢?
學生以小組為單位交流討論。
4.小組匯報
匯報時可能會出現下面幾種情況:
1、無序的。
2、先寫出1在十位上的有12、13;再寫出2在十位上的有21、23;再寫出3在十位上的有31、32。
3、用數字1、2能寫出12、21;用數字2、3能寫出23、32;用數字1、3能寫出13、31。
4、引導學生及時評價每一種方法的優缺點,使其把適合自己的方法掌握起來。
5.小結
教師簡單小結學生所想方法引出練習內容。
6、拓展應用
數字2、3、4、5、出個兩位數?寫完交流。(或者也可用這樣一道題:用△○□能擺成6種排法,例如:□○△
請你試著擺出其他幾種排法。學習的目的是為了應用,讓學生自主的選擇方法進行練習,有利于培養學生的自主學習的能力。
二、組合
故事引入
師:下課了小狗、小熊、小豬做“找朋友”的游戲,好朋友見面之后要握握手,每兩只小動物握一次手,小狗、小熊、小豬一共握幾次手?怎樣握?用同一條故事主線貫穿整節課的始終,以問題串的形式展開全課,能讓學生始終保持濃厚的學習興趣,充分體驗到數學與生活的聯系。
探索新知
學生在充分獨立思考的基礎上展開小組交流,并3人一組親身實踐一下。
匯報思考的過程。
三、比較
師:剛才我們幫森林學校的小動物們解決了用數字1、2、3能寫幾個兩位數;3只小動物每兩個握一次手共握幾次手的問題,森林學校的小動物們直夸同學們聰明呢!通過解決這兩個問題你發現了什么?
生可能說用3個數字能寫出6個兩位數,3只小動物每兩人握一次手共握3次。
引導學生明確排列與順序有關而組合與順序無關。兩只小動物握一次手個?通過比較明確兩種問題的同與不同,便于建立起清晰的知識結構,進一步深化學生的認識。
四、拓展應用
1.小狗要參加學校的時裝表演,媽媽為它準備了4件衣服(課件出示2件上衣、2件褲子的圖片),請你幫小狗設計一下共有多少種穿法。如果需要的話可以用學具擺一擺。
交流想法。在兒童的生活經驗里積累了一些搭配衣服,購物花錢的知識經驗,所以學生樂于參與。
2.完成課本99頁的第2題
五、課堂總結
高中數學教案表格模板下載篇10
一、教學內容分析
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象,恰當地利用定義解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率。
四、教學目標
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3、借助多媒體輔助教學,激發學習數學的興趣。
五、教學重點與難點:
教學重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義解題
六、教學過程設計
【設計思路】
(一)開門見山,提出問題
一上課,我就直截了當地給出例題1:
(1)已知A(-2,0),B(2,0)動點M滿足MA+MB=2,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知動點M(x,y)滿足(x1)2(y2)23x4y,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學情預設】
估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25
這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子3x4y5入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。
在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。
(二)理解定義、解決問題
例2:
(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2),求PA
【設計意圖】
運用圓錐曲線定義中的數量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。
【學情預設】
根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯系起來,這樣就容易和第二定義聯系起來,從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會。
練習:
設點Q是圓C:(x1)2225AB的最小值。3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。
引申:若將點A移到圓C外,點M的軌跡會是什么?
【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導學生對自己的結論進行驗證。
【知識鏈接】
(一)圓錐曲線的定義
1、圓錐曲線的第一定義
2、圓錐曲線的統一定義
(二)圓錐曲線定義的應用舉例
1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。
2、PF1PF22P為等軸雙曲線x2y2a2上一點,F1、F2為兩焦點,O為雙曲線的中心,求的PO取值范圍。
3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。
4、例題:
(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求MA+MF的最小值。
(2)已知A(,3)為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當AMMF最小時,求M點的坐標。
(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使PM+FM最小。
5、已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求MA+MB的最小值與最大值。
七、教學反思
1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。
2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。
總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。
高中數學教案表格模板下載篇11
高中數學的內容多,抽象性、理論性強,高中很注重自學能力的培養,誰的自學能力強,那么在一定程度上影響著你的成績以及將來你發展的前途。同時還要注意以下幾點:
第一、對數學學科特點有清楚的認識
數學的概念、方法、思想都是人類長期實踐中自然發展形成的,以數域的發展為例,從自然數到有理數到實數再到復數,都是由自然的認知沖突引起的。因此,在學習過程中我們有必要了解知識產生的背景,它的形成過程以及它的應用,讓數學顯得合情合理,渾然天成。數學中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數學規則去學去想就能融會貫通,但是如果不把來龍去脈想清楚而是“想當然”的`話,那就學不下去了。
第二、要改變一個觀念。
有人會說自己的基礎不好。那什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎,
所以只要學好每一天的內容,那么你打的基礎就是最扎實的了。所以現在你們是在同一個起跑線上的,無所謂基礎好不好。
第三、學數學要摸索自己的學習方法
學習重在方法,好的學習方法讓學生事半功倍。學習、掌握并能靈活應用數學的途徑有很多,做習題、用數學知識解決各種問題是必需的,理解、學會證明、領會思想、掌握方法也是必需的。同時,要注意前后知識的銜接,類比地學、聯系地學,既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。
相關文章推薦:
1.高中開學第一周教學反思
2.開學第一課教學反思精選
3.20--初中開學第一課教學反思【精選】
4.高三開學教學反思
5.高一信息技術教學反思
6.開學第一課語文教學反思
7.幼兒園開學第一課反思
8.高中英語教學反思精選
9.高中生物教育反思
10.20--開學第一課教學反思
高中數學教案表格模板下載篇12
一、說教材
1、從在教材中的地位與作用來看
《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。
2、從學生認知角度看
從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。
3、學情分析
教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。
4、重點、難點
教學重點:公式的推導、公式的特點和公式的運用。
教學難點:公式的推導方法和公式的靈活運用。
公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。
二、說目標
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。
過程與方法目標:
通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態度價值觀:
通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點。
三、說過程
學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:
1。創設情境,提出問題
在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。為什么呢?
設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性。故事內容緊扣本節課的主題與重點。
此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。
設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆。
2、師生互動,探究問題
在肯定他們的思路后,我接著問:1,2,22,…,263是什么數列?有何特征?應歸結為什么數學問題呢?
探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發現?
設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機。
經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心。
3、類比聯想,解決問題
這時我再順勢引導學生將結論一般化,
這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。
設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。
對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)
再次追問:結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)
設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力。這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。
4、討論交流,延伸拓展
高中數學教案表格模板下載篇13
說教材:
1、地位、作用和特點:
《》是高中數學課本第冊(修)的第章“”的第節內容,高中數學課本說課稿。
本節是在學習了之后編排的。通過本節課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎,所以是本章的重要內容。此外,《》的知識與我們日常生活、生產、科學研究有著密切的聯系,因此學習這部分有著廣泛的現實意義。
教學目標:
根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:
(1)知識目標:A、B、C
(2)能力目標:A、B、C
(3)德育目標:A、B
教學的重點和難點:
(1)教學重點:
(2)教學難點:
二、說教法:
基于上面的教材分析,我根據自己對研究性學習“啟發式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創設問題情景,充分調動學生求知欲,并以此來激發學生的探究心理。二是運用啟發式教學方法,就是把教和學的各種方法綜合起來統一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規律,觸發學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數學思考方法(聯想法、類比法、數形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數學思想方法,培養學生的探索能力和創造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節課設計如下教學程序:
導入新課新課教學
反饋發展
三、說學法:
學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優化教學程序來增強學法指導的目的性和實效性。在本節課的教學中主要滲透以下幾個方面的學法指導。
1、培養學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。
本節教師通過列舉具體事例來進行分析,歸納出,并依
據此知識與具體事例結合、推導出,這正是一個分析和推理的全過程。
2、讓學生親自經歷運用科學方法探索的過程。主要是努力創設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過
演示,創設探索規律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。
3、讓學生在探索性實驗中自己摸索方法,觀察和分析現象,從而發現“新”的問題或探索出“新”的規律。從而培養學生的發散思維和收斂思維能力,激發學生的創造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。
4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發現等探究環節選擇合適的概念、規律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養成認真分析過程、善于比較的好習慣,又有利于培養學生通過現象發掘知識內在本質的能力。
四、教學過程:
(一)、課題引入:
教師創設問題情景(創設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數學科學史上的有關情況。)激發學生的探究欲望,引導學生提出接下去要研究的問題。
(二)、新課教學:
1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。
2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。
(三)、實施反饋:
1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現知識的升華、實現學生的再次創新。
2、課后反饋,延續創新。通過課后練習,學生互改作業,課后研實驗,實現課堂內外的綜合,實現創新精神的延續。
五、板書設計:
在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。
六、說課綜述:
以上是我對《》這節教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。
總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創造能力為指導思想。并且能從各種實際出發,充分利用各種教學手段來激發學生的學習興趣,體現了對學生創新意識的培養。
高中數學教案表格模板下載篇14
一.教學目標:
1.知識與技能:認識正弦、余弦定理,了解三角形中的邊與角的關系。
2.過程與方法:通過具體的探究活動,了解正弦、余弦定理的內容,并從具體的實例掌握正弦、余弦定理的應用。
3.情感態度與價值觀:通過對實例的探究,體會到三角形的和諧美,學會穩定性的重要。
二.教學重、難點:
重點:
正弦、余弦定理應用以及公式的變形
難點:
運用正、余弦定理解決有關斜三角形問題。
知識梳理
1.正弦定理和余弦定理
在△ABC中,若角A,B,C所對的邊分別是a,b,c,則
(1)S=2ah(h表示邊a上的高)
(2)S=2bcsinA=2sinC=2acsinB
(3)S=2r(a+b+c)(r為△ABC內切圓半徑)
問題1:在△ABC中,a=3,b2,A=60°求c及BC問題2在△ABC中,c=6A=30°B=120°求ab及C
問題3在△ABC中,a=5,c=4,cosA=16,則b=
通過對上述三個較簡單問題的解答指導學生總結正余弦定理的應用;正弦定理可以解決
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊和其他兩角
余弦定理可以解決
(1)已知三邊,求三個角;
(2)已知兩邊和它們的夾角,求第三邊和其他兩角
我們不難發現利用正余弦定理可以解決三角形中“知三求三”知三中必須要有一邊
應用舉例
【例1】(1)(2013·湖南卷)在銳角△ABC中,角A,B所對的邊長分別為a,b.若2asinB3b,則角A等于()
A.3B.4C.6
(2)(20__·杭州模擬)在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=1,c=2,B=45°,則sinC=______.
解析(1)在△ABC中,由正弦定理及已知得2sinA·sinB=3sinB,∵B為△ABC的內角,∴sinB≠0.3
∴sinA=2又∵△ABC為銳角三角形,
∴A∈02,∴A=3
(2)由余弦定理,得b2=a2+c2-2accosB=1+32-2×2=25,即b=5.c·sinB
所以sinCb4
答案(1)A(2)5
【訓練1】(1)在△ABC中,a=3,c=2,A=60°,則C=
A.30°B.45°C.45°或135°D.60°
(2)在△ABC中,內角A,B,C的對邊分別是a,b,c,若a2-b2=3bc,sinC=3sinB,則A=
A.30°B.60°C.120°D.150°
解析(1)由正弦定理,得sin60°sinC,解得:sinC=2,又c<a,所以C<60°,所以C=45°
(2)∵sinC=23sinB,由正弦定理,得c=23b,b2+c2-a2-3bc+c2-3bc+3bc3∴cosA=2bc==2bc2bc2,又A為三角形的內角,∴A=30°.
答案(1)B(2)A
規律方法
已知兩角和一邊,該三角形是確定的,其解是唯一的;
已知兩邊和一邊的對角,該三角形具有不唯一性,通常根據三角函數值的有界性和大邊對大角定理進行判斷。
【例2】(20__·臨沂一模)在△ABC中,a,b,c分別為內角A,B,C的對邊,且2asinA=(2b-c)sinB+(2c-b)sinC.(1)求角A的大小;
(2)若sinB+sinC=3,試判斷△ABC的形狀。
解(1)由2asinA=(2b-c)sinB+(2c-b)sinC,
得2a2=(2b-c)b+(2c-b)c,
即bc=b2+c2-a2,b2+c2-a21
∴cosA=2bc=2,
∴A=60°.
(2)∵A+B+C=180°,
∴B+C=180°-60°=120°
由sinB+sinC=3,
得sinB+sin(120°-B)=3,
∴sinB+sin120°cosB-cos120°sinB=3.33
∴2sinB+2B=3,
即sin(B+30°)=1.∵0°<b<120°,<p="">
∴30°<b+30°<150°.<p="">
∴B+30°=90°,B=60°.
∴A=B=C=60°,
△ABC為等邊三角形.
規律方法
解決判斷三角形的形狀問題,一般將條件化為只含角的三角函數的關系式,然后利用三角恒等變換得出內角之間的關系式;
或將條件化為只含有邊的關系式,然后利用常見的化簡變形得出三邊的關系。另外,在變形過程中要注意A,B,C的范圍對三角函數值的影響。
課堂小結
1.在解三角形的問題中,三角形內角和定理起著重要作用,在解題時要注意根據這個定理確定角的范圍及三角函數值的符號,防止出現增解或漏解。
2.正、余弦定理在應用時,應注意靈活性,尤其是其變形應用時可相互轉化.如a2=b2+c2-2bccosA可以轉化為sin2A=sin2B+sin2C-2sinBsinCcosA,利用這些變形可進行等式的化簡與證明。
高中數學教案表格模板下載篇15
一、教學目標
掌握用向量方法建立兩角差的余弦公式.通過簡單運用,使學生初步理解公式的結構及其功能,為建立其它和(差)公式打好基礎.
二、教學重、難點
1.教學重點:通過探索得到兩角差的余弦公式;
2.教學難點:探索過程的組織和適當引導,這里不僅有學習積極性的問題,還有探索過程必用的基礎知識是否已經具備的問題,運用已學知識和方法的能力問題,等等.
三、學法與教學用具
1.學法:啟發式教學
2.教學用具:多媒體
四、教學設想:
(一)導入:我們在初中時就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?
根據我們在第一章所學的&39;知識可知我們的猜想是錯誤的!下面我們就一起探討兩角差的余弦公式
(二)探討過程:
在第一章三角函數的學習當中我們知道,在設角的終邊與單位圓的交點為,等于角與單位圓交點的橫坐標,也可以用角的余弦線來表示,大家思考:怎樣構造角和角?(注意:要與它們的正弦線、余弦線聯系起來.)
展示多媒體動畫課件,通過正、余弦線及它們之間的幾何關系探索與__之間的關系,由此得到,認識兩角差余弦公式的結構.
思考:我們在第二章學習用向量的知識解決相關的幾何問題,兩角差余弦公式我們能否用向量的知識來證明?
提示:
1、結合圖形,明確應該選擇哪幾個向量,它們是怎樣表示的?
2、怎樣利用向量的數量積的概念的計算公式得到探索結果?
展示多媒體課件
比較用幾何知識和向量知識解決問題的不同之處,體會向量方法的作用與便利之處.
思考:再利用兩角差的余弦公式得出
(三)例題講解
例1、利用和、差角余弦公式求、的值.
解:分析:把、構造成兩個特殊角的和、差.
點評:把一個具體角構造成兩個角的和、差形式,有很多種構造方法,例如:,要學會靈活運用.
例2、已知,是第三象限角,求的值.
解:因為,由此得
又因為是第三象限角,所以
所以
點評:注意角、的象限,也就是符號問題.
(四)小結:本節我們學習了兩角差的余弦公式,首先要認識公式結構的特征,了解公式的推導過程,熟知由此衍變的兩角和的余弦公式.在解題過程中注意角、的象限,也就是符號問題,學會靈活運用.
高中數學教案表格模板下載篇16
一、教學目標設計
通過實例理解充分條件、必要條件的意義。
能夠在簡單的問題情境中判斷條件的充分性、必要性。
二、教學重點及難點
充分條件、必要條件的判斷;
充分條件、必要條件的判斷方法。
三、教學流程設計
四、教學過程設計
一、概念引入
早在戰國時期,《墨經》中就有這樣一段話有之則必然,無之則未必不然,是為大故無之則必不然,有之則未必然,是為小故。
今天,在日常生活中,常聽人說:這充分說明,沒有這個必要等,在數學中,也講充分和必要,這節課,我們就來學習教材第一章第五節充分條件與必要條件。
二、概念形成
1、 首先請同學們判斷下列命題的真假
(1)若兩三角形全等,則兩三角形的面積相等。
(2)若三角形有兩個內角相等,則這個三角形是等腰三角形。
(3)若某個整數能夠被4整除,則這個整數必是偶數。
(4) 若ab=0,則a=0。
解答:命題(2)、(3)、(4)為真。命題(4)為假;
2、請同學用推斷符號寫出上述命題。
解答:(1)兩三角形全等 兩三角形的面積相等。
(2) 三角形有兩個內角相等 三角形是等腰三角形。
(3) 某個整數能夠被4整除則這個整數必是偶數;
(4)ab=0 a=0。
3、充分條件與必要條件
繼續結合上述實例說明什么是充分條件、什么是必要條件。
若某個整數能夠被4整除則這個整數必是偶數中,我們稱某個整數能夠被4整除是這個整數必是偶數的充分條件,可以解釋為:只要某個整數能夠被4整除成立,這個整數必是偶數就一定成立;而稱這個整數必是偶數是某個整數能夠被4整除的必要條件,可以解釋成如果某個整數能夠被4整除 成立,就必須要這個整數必是偶數成立
充分條件:一般地,用、分別表示兩件事,如果這件事成立,可以推出這件事也成立,即,那么叫做的充分條件。[說明]:①可以解釋為:為了使成立,具備條件就足夠了。②可進一步解釋為:有它即行,無它也未必不行。③結合實例解釋為: x = 0 是 xy = 0 的充分條件,xy = 0不一定要 x = 0。)
必要條件:如果,那么叫做的必要條件。
[說明]:①可以解釋為若,則叫做的必要條件,是的充分條件。②無它不行,有它也不一定行③結合實例解釋為:如 xy = 0是 x = 0的必要條件,若xy0,則一定有 x若xy = 0也不一定有 x = 0。
回答上述問題(1)、(2)中的條件關系。
(1)中:兩三角形全等是兩三角形的面積相等的充分條件;兩三角形的面積相等是兩三角形全等的必要條件。
(2)中:三角形有兩個內角相等是三角形是等腰三角形的充分條件;三角形是等腰三角形是三角形有兩個內角相等的必要條件。
4、拓廣引申
把命題:若某個整數能夠被4整除,則這個整數必是偶數中的條件與結論分別記作與,那么,原命題與逆命題的真假同與之間有什么關系呢?
關系可分為四類:
(1)充分不必要條件,即,而
(2)必要不充分條件,即,而
(3)既充分又必要條件,即,又有
(4)既不充分也不必要條件,即,又有。
三、典型例題(概念運用)
例1:(1)已知四邊形ABCD是凸四邊形,那么AC=BD是四邊形ABCD是矩形的什么條件?為什么?(課本例題p22例4)
(2) 是 的什么條件。
(3)a+b是1,b什么條件。
解:(1)AC=BD是四邊形ABCD是矩形的必要不充分條件。
(2)充分不必要條件。
(3)必要不充分條件。
[說明]①如果把命題條件與結論分別記作與,則既要對進行判斷,又要對進行判斷。②要否定條件的充分性、必要性,則只需舉一反例即可。
例2:判斷下列電路圖中p與q的充要關系。其中p:開關閉合;q:
燈亮。(補充例題)
[說明]①圖中含有兩個開關時,p表示其中一個閉合,另一個情況不確定。②加強學科之間的橫向溝通,通過圖示,深化概念認識。
例3、探討下列生活中名言名句的充要關系。(補充例題)
(1)頭發長,見識短。 (2)驕兵必敗。
(3)有志者事竟成。 (4)春回大地,萬物復蘇。
(5)不入虎穴、焉得虎子 (6)四肢發達,頭腦簡單
[說明]通過本例,充分調動學生生活經驗,使得抽象概念形象化。從而激發學生學習熱情。
四、鞏固練習
1、課本P/22練習1。5(1)
2:填表(補充)
p q p是q的
什么條件 q是p的
什么條件
兩個角相等 兩個角是對頂角
內錯角相等 兩直線平行
四邊形對角線相等 四邊形是平行邊形
a=b ac=bc
[說明]通過練習,及時鞏固所學新知,反饋教學效果。
五、課堂小結
1、本節課主要研究的內容:
推斷符號,
充分條件的意義 命題充分性、必要性的判斷。
必要條件的意義
2、 充分條件、必要條件判別步驟:
① 認清條件和結論。
② 考察p q和q p的真假。
3、充分條件、必要條件判別技巧:
① 可先簡化命題。
② 否定一個命題只要舉出一個反例即可。
③ 將命題轉化為等價的逆否命題后再判斷。
六、課后作業
書面作業:課本P/24習題1。51,2,3。
五、教學設計說明
1、充分條件、必要條件以及下節課中充要條件與集合的概念一樣涉及到數學的各個分支,用推出關系的形式給出它的定義,對高一學生只要求知道它的意義,并能判斷簡單的充分條件與必要條件。
2、由于充要條件與命題的真假、命題的條件與結論的相互關系緊密相關,為此,教學時可以從判斷命題的真假入手,來分析命題的條件對于結論來說,是否充分,從而引入充分條件的概念,進而引入必要條件的概念。
3、教材中對充分條件、必要條件的定義沒有作過多的解釋說明,為了讓學生能理解定義的合理性,在教學過程中,教師可以從一些熟悉的命題的條件與結論之間的關系來認識充分條件的概念,從互為逆否命題的等價性來引出必要條件的概念。
4、由于這節課概念性、理論性較強,一般的教學使學生感到枯燥乏味,為此,激發學生的學習興趣是關鍵。教學中始終要注意以學生為主,結合相關學科及學生生活經驗讓學生在自我思考、相互交流中去給概念下定義,去體會概念的本質屬性。
高中數學教案表格模板下載篇17
說課內容:普通高中課程標準實驗教科書(人教A版)《數學必修4》第二章第四節“平面向量的數量積”的第一課時---平面向量數量積的物理背景及其含義。
下面,我從背景分析、教學目標設計、課堂結構設計、教學過程設計、教學媒體設計及教學評價設計六個方面對本節課的思考進行說明。
一、背景分析
1、學習任務分析
平面向量的數量積是繼向量的線性運算之后的又一重要運算,也是高中數學的一個重要概念,在數學、物理等學科中應用十分廣泛。本節內容教材共安排兩課時,其中第一課時主要研究數量積的概念,第二課時主要研究數量積的坐標運算,本節課是第一課時。
本節課的主要學習任務是通過物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質與運算律,使學生體會類比的思想方法,進一步培養學生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質和運算律的基礎。同時也因為在這個概念中,既有長度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點,不僅應用廣泛,而且很好的體現了數形結合的數學思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學的重點。
2、學生情況分析
學生在學習本節內容之前,已熟知了實數的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發,在與實數運算類比的基礎上研究性質和運算律。這為學生學習數量積做了很好的鋪墊,使學生倍感親切。但也正是這些干擾了學生對數量積概念的理解,一方面,相對于線性運算而言,數量積的結果發生了本質的變化,兩個有形有數的向量經過數量積運算后,形卻消失了,學生對這一點是很難接受的;另一方面,由于受實數乘法運算的影響,也會造成學生對數量積理解上的偏差,特別是對性質和運算律的理解。因而本節課教學的難點數量積的概念。
二、教學目標設計
《普通高中數學課程標準(實驗)》對本節課的要求有以下三條:
(1)通過物理中“功”等事例,理解平面向量數量積的含義及其物理意義。
(2)體會平面向量的數量積與向量投影的關系。
(3)能用運數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。
從以上的背景分析可以看出,數量積的概念既是本節課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應用過程中,物理中“功”的實例都發揮了重要作用。其次,作為數量積概念延伸的性質和運算律,不僅能夠使學生更加全面深刻地理解概念,同時也是進行相關計算和判斷的理論依據。最后,無論是數量積的性質還是運算律,都希望學生在類比的基礎上,通過主動探究來發現,因而對培養學生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。
綜上所述,結合“課標”要求和學生實際,我將本節課的教學目標定為:
1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;
2、體會平面向量的數量積與向量投影的關系,掌握數量積的性質和運算律,
并能運用性質和運算律進行相關的運算和判斷;
3、體會類比的數學思想和方法,進一步培養學生抽象概括、推理論證的能力。
三、課堂結構設計
本節課從總體上講是一節概念教學,依據數學課程改革應關注知識的發生和發展過程的理念,結合本節課的知識的邏輯關系,我按照以下順序安排本節課的教學:
即先從數學和物理兩個角度創設問題情景,通過歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質和運算律,使學生進一步加深對概念的理解,然后通過例題和練習使學生鞏固概念,加深印象,最后通過課堂小結提高學生認識,形成知識體系。
四、教學媒體設計
和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來分兩節課完成的內容合并成一節,相比較而言本節課的教學任務加重了許多。為了保證教學任務的完成,順利實現本節課的教學目標,考慮到本節課的實際特點,在教學媒體的使用上,我的設想主要有以下兩點:
1、制作高效實用的電腦多媒體課件,主要作用是改變相關內容的呈現方式,以此來節約課時,增加課堂容量。
2、設計科學合理的板書(見下),一方面使學生加深對主要知識的印象,另一方面使學生清楚本節內容知識間的邏輯關系,形成知識網絡。
平面向量數量積的物理背景及其含義
一、數量積的概念二、數量積的性質四、應用與提高
1、概念:例1:
2、概念強調(1)記法例2:
(2)“規定”三、數量積的運算律例3:
3、幾何意義:
4、物理意義:
五、教學過程設計
課標指出:數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下六個活動:
活動一:創設問題情景,激發學習興趣
正如教材主編寄語所言,數學是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線性運算一樣,也有其數學背景和物理背景,為了體現這一點,我設計以下幾個問題:
問題1:我們已經研究了向量的哪些運算?這些運算的結果是什么?
問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?
期望學生回答:物理模型→概念→性質→運算律→應用
問題3:如圖所示,一物體在力F的作用下產生位移S,
(1)力F所做的功W=。
(2)請同學們分析這個公式的特點:
W(功)是量,
F(力)是量,
S(位移)是量,
α是。
問題1的設計意圖在于使學生了解數量積的數學背景,讓學生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線性運算相比,數量積運算又有其特殊性,那就是其結果發生了本質的變化。
問題2的設計意圖在于使學生在與向量加法類比的基礎上明了本節課的研究方法和順序,為教學活動指明方向。
問題3的設計意圖在于使學生了解數量積的物理背景,讓學生知道,我們研究數量積絕不僅僅是為了數學自身的完善,而是有其客觀背景和現實意義的,從而產生了進一步研究這種新運算的愿望。同時,也為抽象數量積的概念做好鋪墊。
活動二:探究數量積的概念
1、概念的抽象
在分析“功”的計算公式的基礎上提出問題4
問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?
學生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學生事實上已經得到數量積概念的文字表述了,在此基礎上,我進一步明晰數量積的概念。
2、概念的明晰
已知兩個非零向量
與
,它們的夾角為
,我們把數量︱
︱·︱
︱cos
叫做
與
的數量積(或內積),記作:
·
,即:
·
=︱
︱·︱
︱cos
在強調記法和“規定”后,為了讓學生進一步認識這一概念,提出問題5
問題5:向量的數量積運算與線性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:
角
的范圍0°≤
<90°
=90°0°<
≤180°
·
的符號
通過此環節不僅使學生認識到數量積的結果與線性運算的結果有著本質的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質和運算律做好鋪墊。
3、探究數量積的幾何意義
這個問題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問題5。
如圖,我們把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,記做:OB1=│
│cos
問題6:數量積的幾何意義是什么?
這樣做不僅讓學生從“形”的角度重新認識數量積的概念,從中體會數量積與向量投影的關系,同時也更符合知識的連貫性,而且也節約了課時。
4、研究數量積的物理意義
數量積的概念是由物理中功的概念引出的,學習了數量積的概念后,學生就會明白功的數學本質就是力與位移的數量積。為此,我設計以下問題一方面使學生嘗試計算數量積,另一方面使學生理解數量積的物理意義,同時也為數量積的性質埋下伏筆。
問題7:
(1)請同學們用一句話來概括功的數學本質:功是力與位移的數量積。
(2)嘗試練習:一物體質量是10千克,分別做以下運動:
①、在水平面上位移為10米;
②、豎直下降10米;
③、豎直向上提升10米;
④、沿傾角為30度的斜面向上運動10米;
分別求重力做的功。
活動三:探究數量積的運算性質
1、性質的發現
教材中關于數量積的三條性質是以探究的形式出現的,為了很好地完成這一探究活動,在完成上述練習后,我不失時機地提出問題8:
(1)將嘗試練習中的①②③的結論推廣到一般向量,你能得到哪些結論?
(2)比較︱
·
︱與︱
︱×︱
︱的大小,你有什么結論?
在學生討論交流的基礎上,教師進一步明晰數量積的性質,然后再由學生利用數量積的定義給予證明,完成探究活動。
2、明晰數量積的性質
3、性質的證明
這樣設計體現了教師只是教學活動的引領者,而學生才是學習活動的主體,讓學生成為學習的研究者,不斷地體驗到成功的喜悅,激發學生參與學習活動的熱情,不僅使學生獲得了知識,更培養了學生由特殊到一般的思維品質。
活動四:探究數量積的運算律
1、運算律的發現
關于運算律,教材仍然是以探究的形式出現,為此,首先提出問題9
問題9:我們學過了實數乘法的哪些運算律?這些運算律對向量是否也適用?
通過此問題主要是想使學生在類比的基礎上,猜測提出數量積的運算律。
學生可能會提出以下猜測:①
·
=
·
②(
·
)
=
(
·
)③(
+
)·
=
·
+
·
猜測①的正確性是顯而易見的。
關于猜測②的正確性,我提示學生思考下面的問題:
猜測②的左右兩邊的結果各是什么?它們一定相等嗎?
學生通過討論不難發現,猜測②是不正確的。
這時教師在肯定猜測③的基礎上明晰數量積的運算律:
2、明晰數量積的運算律
3、證明運算律
學生獨立證明運算律(2)
我把運算運算律(2)的證明交給學生完成,在證明時,學生可能只考慮到λ>0的情況,為了幫助學生完善證明,提出以下問題:
當λ<0時,向量
與λ
,
與λ
的方向的關系如何?此時,向量λ
與
及
與λ
的夾角與向量
與
的夾角相等嗎?
師生共同證明運算律(3)
運算律(3)的證明對學生來說是比較困難的,為了節約課時,這個證明由師生共同完成,我想這也是教材的本意。
在這個環節中,我仍然是首先為學生創設情景,讓學生在類比的基礎上進行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學生推理論證的能力,同時也增強了學生類比創新的意識,將知識的獲得和能力的培養有機的結合在一起。
活動五:應用與提高
例1、(師生共同完成)已知︱
︱=6,︱
︱=4,
與
的夾角為60°,求
(
+2
)·(
-3
),并思考此運算過程類似于哪種運算?
例2、(學生獨立完成)對任意向量
,b是否有以下結論:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(師生共同完成)已知︱
︱=3,︱
︱=4,且
與
不共線,k為何值時,向量
+k
與
-k
互相垂直?并思考:通過本題你有什么收獲?
本節教材共安排了四道例題,我根據學生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質和運算律的綜合應用,教學時,我重點從對運算原理的分析和運算過程的規范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學生在類比多項式乘法的基礎上自己猜測提出例2給出的.兩個公式,再由學生獨立完成證明,一方面這并不困難,另一方面培養了學生通過類比這一思維模式達到創新的目的。例3的主要作用是,在繼續鞏固性質和運算律的同時,教給學生如何利用數量積來判斷兩個向量的垂直,是平面向量數量積的基本應用之一,教學時重點給學生分析數與形的轉化原理。
為了使學生更好的理解數量積的含義,熟練掌握性質及運算律,并能夠應用數量積解決有關問題,再安排如下練習:
1、下列兩個命題正確嗎?為什么?
①、若
≠0,則對任一非零向量
,有
·
≠0.
②、若
≠0,
·
=
·
,則
=
.
2、已知△ABC中,
=
,
=
,當
·
<0或
·
=0時,試判斷△ABC的形狀。
安排練習1的主要目的是,使學生在與實數乘法比較的基礎上全面認識數量積這一重要運算,
通過練習2使學生學會用數量積表示兩個向量的夾角,進一步感受數量積的應用價值。
活動六:小結提升與作業布置
1、本節課我們學習的主要內容是什么?
2、平面向量數量積的兩個基本應用是什么?
3、我們是按照怎樣的思維模式進行概念的歸納和性質的探究?在運算律的探究過程中,滲透了哪些數學思想?
4、類比向量的線性運算,我們還應該怎樣研究數量積?
通過上述問題,使學生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時也為下
一節做好鋪墊,繼續激發學生的求知欲。
布置作業:
1、課本P121習題2.4A組1、2、3。
2、拓展與提高:
已知
與
都是非零向量,且
+3
與7
-5
垂直,
-4
與7
-2
垂直求
與
的夾角。
在這個環節中,我首先考慮檢測全體學生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學生繼續加深對數量積概念的理解和應用,為后續學習打好基礎。其次,為了能讓不同的學生在數學領域得到不同的發展,我又安排了一道有一定難度的問題供學有余力的同學選做。
六、教學評價設計
評價方式的轉變是新課程改革的一大亮點,課標指出:相對于結果,過程更能反映每個學生的發展變化,體現出學生成長的歷程。因此,數學學習的評價既要重視結果,也要重視過程。結合“課標”對數學學習的評價建議,對本節課的教學我主要通過以下幾種方式進行:
1、通過與學生的問答交流,發現其思維過程,在鼓勵的基礎上,糾正偏差,并對其進行定
性的評價。
2、在學生討論、交流、協作時,教師通過觀察,就個別或整體參與活動的態度和表現做出評價,以此來調動學生參與活動的積極性。
3、通過練習來檢驗學生學習的效果,并在講評中,肯定優點,指出不足。
4、通過作業,反饋信息,再次對本節課做出評價,以便查漏補缺。