小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高中必修一數(shù)學(xué)教案

時間: 新華 數(shù)學(xué)教案

在一年的數(shù)學(xué)教學(xué)工作中,作為高中數(shù)學(xué)老師的你知道如何寫高中必修一數(shù)學(xué)教案嗎?來寫一篇高中必修一數(shù)學(xué)教案吧,它會對你的教學(xué)工作起到不菲的幫助。下面是小編為大家收集有關(guān)于高中必修一數(shù)學(xué)教案,希望你喜歡。

高中必修一數(shù)學(xué)教案1

一、教材分析

1.教材所處的地位和作用

在學(xué)習(xí)了隨機事件、頻率、概率的意義和性質(zhì)及用概率解決實際問題和古典概型的概念后,進一步體會用頻率估計概率思想。它是對古典概型問題的一種模擬,也是對古典概型知識的深化,同時它也是為了更廣泛、高效地解決一些實際問題、體現(xiàn)信息技術(shù)的優(yōu)越性而新增的內(nèi)容。

2.教學(xué)的重點和難點

重點:正確理解隨機數(shù)的概念,并能應(yīng)用計算器或計算機產(chǎn)生隨機數(shù)。

難點:建立概率模型,應(yīng)用計算器或計算機來模擬試驗的方法近似計算概率,解決一些較簡單的現(xiàn)實問題。

二、教學(xué)目標(biāo)分析

1、知識與技能:

(1)了解隨機數(shù)的概念;

(2)利用計算機產(chǎn)生隨機數(shù),并能直接統(tǒng)計出頻數(shù)與頻率。

2、過程與方法:

(1)通過對現(xiàn)實生活中具體的概率問題的探究,感知應(yīng)用數(shù)學(xué)解決問題的方法,體會數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系,培養(yǎng)邏輯推理能力;

(2)通過模擬試驗,感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動手、動腦的良好習(xí)慣

3、情感態(tài)度與價值觀:

通過數(shù)學(xué)與探究活動,體會理論來源于實踐并應(yīng)用于實踐的辯證唯物主義觀點.

三、教學(xué)方法與手段分析

1、教學(xué)方法:本節(jié)課我主要采用啟發(fā)探究式的教學(xué)模式。

2、教學(xué)手段:利用多媒體技術(shù)優(yōu)化課堂教學(xué)

四、教學(xué)過程分析

㈠創(chuàng)設(shè)情境、引入新課

情境1:假設(shè)你作為一名食品衛(wèi)生工作人員,要對某超市內(nèi)的80袋小包裝餅干中抽取10袋進行衛(wèi)生達(dá)標(biāo)檢驗,你打算如何操作?

預(yù)設(shè)學(xué)生回答:

⑴采用簡單隨機抽樣方法(抽簽法)

⑵采用簡單隨機抽樣方法(隨機數(shù)表法)

教師總結(jié)得出:隨機數(shù)就是在一定范圍內(nèi)隨機產(chǎn)生的數(shù),并且得到這個范圍內(nèi)每一數(shù)的機會一樣。(引入課題)

「設(shè)計意圖」(1)回憶統(tǒng)計知識中利用隨機抽樣方法如抽簽法、隨機數(shù)表法等進行抽樣的步驟和特征;(2)從具體試驗中了解隨機數(shù)的含義。

情境2:在拋硬幣和擲骰子的試驗中,是用頻率估計概率。假如現(xiàn)在要作10000次試驗,你打算怎么辦?大家可能覺得這樣做試驗花費時間太多了,有沒有其他方法可以代替試驗?zāi)?

「設(shè)計意圖」當(dāng)需要隨機數(shù)的量很大時,用手工試驗產(chǎn)生隨機數(shù)速度太慢,從而說明利用現(xiàn)代信息技術(shù)的重要性,體現(xiàn)利用計算器或計算機產(chǎn)生隨機數(shù)的必要性。

㈡操作實踐、了解新知

教師:向?qū)W生介紹計算器的操作,讓他們了解隨機函數(shù)的原理。可事先編制幾個小問題,在課堂上帶著學(xué)生用計算器(科學(xué)計算器或圖形計算器)操作一遍,讓學(xué)生熟悉如何用計算器產(chǎn)生隨機數(shù)。

「設(shè)計意圖」通過操作熟悉計算器操作流程,在明白原理后,通過讓學(xué)生自己按照規(guī)則操作,熟悉計算器產(chǎn)生隨機數(shù)的操作流程,了解隨機數(shù)。

問題1:拋一枚質(zhì)地均勻的硬幣出現(xiàn)正面向上的概率是50,你能設(shè)計一種利用計算器模擬擲硬幣的試驗來驗證這個結(jié)論嗎?

思考:隨著模擬次數(shù)的不同,結(jié)果是否有區(qū)別,為什么?

「設(shè)計意圖」⑴設(shè)計概率模型是解決概率問題的難點,也是能解決概率問題的關(guān)鍵,是數(shù)學(xué)建模的第一步。⑵拋硬幣是最熟悉、最簡單的問題,很自然會想到把正面向上、反面向上這兩個基本事件用兩個隨機數(shù)來代替。(題目讓學(xué)生通過熟悉50想到用隨機數(shù)0,1來模擬,為后面問題4每天下雨的概率為40的概率建模作第一次小鋪墊。)⑶熟悉利用計算器模擬試驗的操作流程,為解決后面例題模擬下雨作好鋪墊。

問題2:(1)剛才我們利用了計算器來產(chǎn)生隨機數(shù),我們知道計算機有許多軟件有統(tǒng)計功能,你知道哪些軟件具有隨機函數(shù)這個功能?

(2)你會利用統(tǒng)計軟件Excel來產(chǎn)生隨機數(shù)0,1嗎?你能設(shè)計一種利用計算機模擬擲硬幣的試驗嗎?

「設(shè)計意圖」⑴了解有許多統(tǒng)計軟件都有隨機函數(shù)這個功能,并與前面第一章所學(xué)的用程序語言編寫程序相聯(lián)系;⑵Excel是學(xué)生比較熟悉的統(tǒng)計軟件,也可讓學(xué)生回顧初中用Excel畫統(tǒng)計圖的一些功能和知識,其次讓學(xué)生掌握多種隨機模擬試驗方法。

問題3:(1)你能在Excel軟件中畫試驗次數(shù)從1到100次的頻率分布折線圖嗎?

(2)當(dāng)試驗次數(shù)為1000,1500時,你能說說出現(xiàn)正面向上的頻率有些什么變化?

「設(shè)計意圖」⑴應(yīng)用隨機模擬方法估計古典概型中隨機事件的概率值;

⑵體會頻率的隨機性與相對穩(wěn)定性,經(jīng)歷用計算機產(chǎn)生數(shù)據(jù),整理數(shù)據(jù),分析數(shù)據(jù),畫統(tǒng)計圖的全過程,使學(xué)生相信統(tǒng)計結(jié)果的真實性、隨機性及規(guī)律性。

㈢講練結(jié)合、鞏固新知

問題4:天氣預(yù)報說,在今后的三天中,每一天下雨的概率均為40,這三天中恰有兩天下雨的概率是多少?

問1:能用古典概型的計算公式求解嗎?

你能說明一下這為什么不是古典概型嗎?

問2:你如何模擬每一天下雨的概率為40?

「設(shè)計意圖」⑴問題分層提出,降低本題難度。如何模擬每一天下雨的概率40是解決這道題的關(guān)鍵,是隨機模擬方法應(yīng)用的重點,也是難點之一。

⑵鞏固用隨機模擬方法估計未知量的基本思想,明確利用隨機模擬方法也可解決不是古典概型而比較復(fù)雜的概率應(yīng)用題。

歸納步驟:第一步,設(shè)計概率模型;

第二步,進行模擬試驗;

方法一:(隨機模擬方法--計算器模擬)利用計算器隨機函數(shù);

方法二:(隨機模擬方法--計算機模擬)

第三步,統(tǒng)計試驗的結(jié)果。

課堂檢測將一枚質(zhì)地均勻的硬幣連擲三次,出現(xiàn)"2個正面朝上、1個反面朝上"和"1個正面朝上、2個反面朝上"的概率各是多少?并用隨機模擬的方法做100次試驗,計算各自的頻數(shù)。

「設(shè)計意圖」通過練習(xí),進一步鞏固學(xué)生對本節(jié)課知識的掌握。

㈣歸納小結(jié)

(1)你能歸納利用隨機模擬方法估計概率的步驟嗎?

(2)你能體會到隨機模擬的優(yōu)勢嗎?請舉例說說。

「設(shè)計意圖」⑴通過問題的思考和解決,使學(xué)生理解模擬方法的優(yōu)點,并充分利用信息技術(shù)的優(yōu)勢;⑵是對知識的進一步理解與思考,又是對本節(jié)內(nèi)容的回顧與總結(jié)。

㈤布置練習(xí):

課本練習(xí)3、4

「設(shè)計意圖」課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。

[內(nèi)容結(jié)束]

高中必修一數(shù)學(xué)教案2

一 教材分析

本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。

根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習(xí)的興趣。

教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

二 教法

根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學(xué)生原有的認(rèn)知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點

三 學(xué)法:

指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

四 教學(xué)過程

第一:創(chuàng)設(shè)情景,大概用2分鐘

第二:實踐探究,形成概念,大約用25分鐘

第三:應(yīng)用概念,拓展反思,大約用13分鐘

(一)創(chuàng)設(shè)情境,布疑激趣

“興趣是的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進入今天的學(xué)習(xí)課題。

(二)探尋特例,提出猜想

1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。

2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:

在三角形中,角與所對的邊滿足關(guān)系

這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

(三)邏輯推理,證明猜想

1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。

3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

(四)歸納總結(jié),簡單應(yīng)用

1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。

(五)講解例題,鞏固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1簡單,結(jié)果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

(六)課堂練習(xí),提高鞏固

1.在△ABC中,已知下列條件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列條件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

(七)小結(jié)反思,提高認(rèn)識

通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

2.它表述了三角形的邊與對角的正弦值的關(guān)系。

3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

(八)任務(wù)后延,自主探究

如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

五 板書設(shè)計

板書設(shè)計可以讓學(xué)生一目了然本節(jié)課所學(xué)的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。

高中必修一數(shù)學(xué)教案3

教學(xué)目標(biāo)

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學(xué)生掌握組合數(shù)的計算公式、組合數(shù)的性質(zhì)用組合數(shù)與排列數(shù)之間的關(guān)系;

(3)通過學(xué)習(xí)組合知識,讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

(4)通過對排列、組合問題求解與剖析,培養(yǎng)學(xué)生學(xué)習(xí)興趣和思維深刻性,學(xué)生具有嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

教學(xué)建議

一、知識結(jié)構(gòu)

二、重點難點分析

本小節(jié)的重點是組合的定義、組合數(shù)及組合數(shù)的公式,組合數(shù)的性質(zhì)。難點是解組合的應(yīng)用題。突破重點、難點的關(guān)鍵是對加法原理與乘法原理的掌握和應(yīng)用,并將這兩個原理的基本思想貫穿在解決組合應(yīng)用題當(dāng)中。

組合與組合數(shù),也有上面類似的關(guān)系。從n個不同元素中任取m(m≤n)個元素并成一組,叫做從n個不同元素中任取m個元素的一個組合。所有這些不同的組合的個數(shù)叫做組合數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的一個集合(無序集),相當(dāng)于一個組合,而這種集合的個數(shù),就是相應(yīng)的組合數(shù)。

解排列組合應(yīng)用題時主要應(yīng)抓住是排列問題還是組合問題,其次要搞清需要分類,還是需要分步.切記:排組分清(有序排列、無序組合),加乘明確(分類為加、分步為乘).

三、教法設(shè)計

1.對于基礎(chǔ)較好的學(xué)生,建議把排列與組合的概念進行對比的進行學(xué)習(xí),這樣有利于搞請這兩組概念的區(qū)別與聯(lián)系.

2.學(xué)生與老師可以合編一些排列組合問題,如“45人中選出5人當(dāng)班干部有多少種選法?”與“45人中選出5人分別擔(dān)任班長、副班長、體委、學(xué)委、生委有多少種選法?”這是兩個相近問題,同學(xué)們會根據(jù)自己身邊的實際可以編出各種各樣的具有特色的問題,教師要引導(dǎo)學(xué)生辨認(rèn)哪個是排列問題,哪個是組合問題.這樣既調(diào)動了學(xué)生學(xué)習(xí)的積極性,又在編題辨題中澄清了概念.

為了理解排列與組合的概念,建議大家學(xué)會畫排列與組合的樹圖.如,從a,b,c,d 4個元素中取出3個元素的排列樹圖與組合樹圖分別為:

排列樹圖

由排列樹圖得到,從a,b,c,d 取出3個元素的所有排列有24個,它們分別是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.

組合樹圖

由組合樹圖可得,從a,b,c,d中取出3個元素的組合有4個,它們是(abc),(abd),(acd),(bcd).

從以上兩組樹圖清楚的告訴我們,排列樹圖是對稱的,組合圖式不是對稱的,之所以排列樹圖具有對稱性,是因為對于a,b,c,d四個字母哪一個都有在第一位的機會,哪一個都有在第二位的機會,哪一個都有在第三位的機會,而組合只考慮字母不考慮順序,為實現(xiàn)無順序的要求,我們可以限定a,b,c,d的順序是從前至后,固定了死順序等于無順序,這樣組合就有了自己的樹圖.

學(xué)會畫組合樹圖,不僅有利于理解排列與組合的概念,還有助于推導(dǎo)組合數(shù)的計算公式.

3.排列組合的應(yīng)用問題,教師應(yīng)從簡單問題問題入手,逐步到有一個附加條件的單純排列問題或組合問題,最后在設(shè)及排列與組合的綜合問題.

對于每一道題目,教師必須先讓學(xué)生獨立思考,在進行全班討論,對于學(xué)生的每一種解法,教師要先讓學(xué)生判斷正誤,在給予點播.對于排列、組合應(yīng)用問題的解決我們提倡一題多解,這樣有利于培養(yǎng)學(xué)生的分析問題解決問題的能力,在學(xué)生的多種解法基礎(chǔ)上教師要引導(dǎo)學(xué)生選擇方案,總結(jié)解題規(guī)律.對于學(xué)生解題中的常見錯誤,教師一定要講明道理,認(rèn)真分析錯誤原因,使學(xué)生在是非的判斷得以提高.

4.兩個性質(zhì)定理教學(xué)時,對定理1,可以用下例來說明:從4個不同的元素a,b,c,d里每次取出3個元素的組合及每次取出1個元素的組合分別是

這就說明從4個不同的元素里每次取出3個元素的組合與從4個元素里每次取出1個元素的組合是—一對應(yīng)的.

對定理2,可啟發(fā)學(xué)生從下面問題的討論得出.從n個不同元素 , ,…, 里每次取出m個不同的元素( ),問:(1)可以組成多少個組合;(2)在這些組合里,有多少個是不含有 的;  (3)在這些組合里,有多少個是含有 的;(4)從上面的結(jié)果,可以得出一個怎樣的公式.在此基礎(chǔ)上引出定理2.

對于 ,和 一樣,是一種規(guī)定.而學(xué)生常常誤以為是推算出來的,因此,教學(xué)時要講清楚.

教學(xué)設(shè)計示例

教學(xué)目標(biāo)

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學(xué)生掌握組合數(shù)的計算公式;

(3)通過學(xué)習(xí)組合知識,讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

教學(xué)重點難點

重點是組合的定義、組合數(shù)及組合數(shù)的公式;

難點是解組合的應(yīng)用題.

教學(xué)過程設(shè)計

(-)導(dǎo)入新課

(教師活動)提出下列思考問題,打出字幕.

[字幕]一條鐵路線上有6個火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

(學(xué)生活動)討論并回答.

答案提示:(1)排列;(2)組合.

[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

設(shè)計意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.

(二)新課講授

[提出問題 創(chuàng)設(shè)情境]

(教師活動)指導(dǎo)學(xué)生帶著問題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說明一個組合是什么?

3.一個組合與一個排列有何區(qū)別?

(學(xué)生活動)閱讀回答.

(教師活動)對照課文,逐一評析.

設(shè)計意圖:激活學(xué)生的思維,使其將所學(xué)的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.

【歸納概括 建立新知】

(教師活動)承接上述問題的回答,展示下面知識.

[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.

組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .

[評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

(學(xué)生活動)傾聽、思索、記錄.

(教師活動)提出思考問題.

[投影] 與 的關(guān)系如何?

(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:

第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;

第2步,求每一個組合中 個元素的全排列數(shù)為 .

根據(jù)分步計數(shù)原理,得到

[字幕]公式1:

公式2:

(學(xué)生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.

設(shè)計意圖:本著以認(rèn)識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

【例題示范 探求方法】

(教師活動)打出字幕,給出示范,指導(dǎo)訓(xùn)練.

[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.

例2 計算:(1) ;(2) .

(學(xué)生活動)板演、示范.

(教師活動)講評并指出用兩種方法計算例2的第2小題.

[字幕]例3 已知 ,求 的所有值.

(學(xué)生活動)思考分析.

解 首先,根據(jù)組合的定義,有

其次,由原不等式轉(zhuǎn)化為

解得 ②

綜合①、②,得 ,即

[點評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

設(shè)計意圖:例題教學(xué)循序漸進,讓學(xué)生鞏固知識,強化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.

【反饋練習(xí) 學(xué)會應(yīng)用】

(教師活動)給出練習(xí),學(xué)生解答,教師點評.

[課堂練習(xí)]課本P99練習(xí)第2,5,6題.

[補充練習(xí)]

[字幕]1.計算:

2.已知 ,求 .

(學(xué)生活動)板演、解答.

設(shè)計意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

【點評矯正 交流提高】

(教師活動)依照學(xué)生的板演,給予指正并總結(jié).

補充練習(xí)答案:

1.解:原式:

2.解:由題設(shè)得

整理化簡得 ,

解之,得 或 (因 ,舍去),

所以 ,所求

[字幕]小結(jié):

1.前一個公式主要用于計算具體的組合數(shù),而后一個公式則主要用于對含有字母的式子進行化簡和論證.

2.在解含組合數(shù)的方程或不等式時,一定要注意組合數(shù)的上、下標(biāo)的限制條件.

(學(xué)生活動)交流討論,總結(jié)記錄.

設(shè)計意圖:由“實踐——認(rèn)識——一實踐”的認(rèn)識論,教學(xué)時抓住“學(xué)習(xí)—一練習(xí)——反饋———小結(jié)”這些環(huán)節(jié),使教學(xué)目標(biāo)得以強化和落實.

(三)小結(jié)

(師生活動)共同小結(jié).

本節(jié)主要內(nèi)容有

1.組合概念.

2.組合數(shù)計算的兩個公式.

(四)布置作業(yè)

1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

2.思考題:某學(xué)習(xí)小組有8個同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

3.研究性題:

在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?

(五)課后點評

在學(xué)習(xí)了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導(dǎo)出組合數(shù)公式,同時調(diào)控進行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

作業(yè)參考答案

2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.

3.能組成 (注意不能用 點為頂點)個四邊形, 個三角形.

探究活動

同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?

解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.

解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

甲拿乙制作的賀卡時,則賀卡有3種分配方法.

甲拿丙制作的賀卡時,則賀卡有3種分配方法.

甲拿丁制作的賀卡時,則賀卡有3種分配方法.

由加法原理得,賀卡分配方法有3+3+3=9種.

解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時還存在正向與逆向兩種思考途徑.

正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).

逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).

說明(1)對一類元素不太多而利用排列或組合計算公式計算比較復(fù)雜,且容易重復(fù)遺漏計算的排列組合問題,常可采用直接分類后用加法原理進行計算,如本例采用解法一的做法.

(2)設(shè)集合 ,如果S中元素的一個排列 滿足

高中必修一數(shù)學(xué)教案4

教學(xué)分析

本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實數(shù)理論的進一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.

通過本節(jié)課的學(xué)習(xí), 讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點進行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.

在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上 點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.

三維目標(biāo)

1.在學(xué)生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.

2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.

3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.

重點難點

教學(xué)重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.

教學(xué)難點:準(zhǔn)確比較兩個代數(shù)式的大小.

課時安排

1課時

教學(xué)過程

導(dǎo)入新課

思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強烈愿望,自然地引入新課.

思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時間、數(shù)學(xué)成績的多少等現(xiàn)實生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué) 生用數(shù)學(xué)的觀點進行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進入進一步的探究學(xué)習(xí),由此引入新課.

推進新課

新知探究

提出問題

?1?回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?

?2?在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?

?3?數(shù)軸上的任意兩 點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?

?4?任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?

活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強調(diào)的是關(guān)系,可用符號“>”“<”“≠”“≥”“≤”表示,而不等式則是表示兩者的不等關(guān)系,可用“a>b”“a

教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實際背景的前提下,進一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.

實例1:某天的天氣預(yù)報報道,氣溫32 ℃,最低氣溫26 ℃.

實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA

實例3:若一個數(shù)是非負(fù)數(shù),則這個數(shù)大于或等于零.

實例4:兩點之間線段最短.

實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.

實例6:限速40 km/h的路標(biāo)指示司機在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h.

實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.

教師進一步點撥:能夠發(fā)現(xiàn)身 邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點進行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.

教師引導(dǎo)學(xué)生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負(fù)數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.

|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交換被減數(shù)與減數(shù)的位置也可以.

實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學(xué)生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.

對以上問題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個結(jié)論.

討論結(jié)果:

(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.

(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a應(yīng)用示例

例1(教材本節(jié)例1和例2)

活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.

點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.

變式訓(xùn)練

1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是(  )

A.f(x)>g(x)       B.f(x)=g(x)

C.f(x)

答案:A

解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.

解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.

例2比較下列各組數(shù)的大小(a≠b).

(1)a+b2與21a+1b(a>0,b>0);

(2)a4-b4與4a3(a-b).

活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨立完成,但要點撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點.

解:(1)a+b2-21a+1b=a+b2-2aba+b=?a+b?2-4ab2?a+b?=?a-b?22?a+b?.

∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴?a-b?22?a+b?>0,即a+b2>21a+1b.

(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時取等號),

又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.

∴a4-b4<4a3(a-b).

點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.

變式訓(xùn)練

已知x>y,且y≠0,比較xy與1的大小.

活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.

解:xy-1=x-yy.

∵x>y,∴x-y>0.

當(dāng)y<0時,x-yy<0,即xy-1<0. ∴xy<1;

當(dāng)y>0時,x-yy>0,即xy-1>0.∴xy>1.

點評:當(dāng)字母y取不同范圍的值時,差xy-1的正負(fù)情況不同,所以需對y分類討論.

例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積, 住宅的采光條件是變好了,還是變壞了?請說明理由.

活動:解題關(guān)鍵首先是把文 字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.

解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a

由于a+mb+m-ab=m?b-a?b?b+m?>0,于是a+mb+m>ab.又ab≥10%,

因此a+mb+m>ab≥10%.

所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.

點評:一般地,設(shè)a、b為正實數(shù),且a

變式訓(xùn)練

已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則(  )

A.a1+a8>a4+a5        B.a1+a8

C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定

答案:A

解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

∵{an}各項都大于零,∴q>0,即1+q>0.

又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

課堂小結(jié)

1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.

2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進一步的探究.

作業(yè)

習(xí)題3—1A組3;習(xí)題3—1B組2.

設(shè)計感想

1.本節(jié)設(shè)計關(guān)注了教學(xué)方法 的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計最能體現(xiàn)教學(xué)規(guī)律的教學(xué) 過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實驗?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.

2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷 來是高考的重點與熱點.作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.

3.本節(jié)設(shè)計關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點撥反思有助于學(xué)生思維批判性品質(zhì)的提升.

高中必修一數(shù)學(xué)教案5

一、教學(xué)內(nèi)容分析

二面角是我們?nèi)粘I钪薪?jīng)常見到的一個圖形,它是在學(xué)生學(xué)過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進一步完善了空間角的概念.掌握好本節(jié)課的知識,對學(xué)生系統(tǒng)地理解直線和平面的知識、空間想象能力的培養(yǎng),乃至創(chuàng)新能力的培養(yǎng)都具有十分重要的意義.

二、教學(xué)目標(biāo)設(shè)計

理解二面角及其平面角的概念;能確認(rèn)圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運用它們解決相關(guān)問題.

三、教學(xué)重點及難點

二面角的平面角的概念的形成以及二面角的平面角的作法.

四、教學(xué)流程設(shè)計

五、教學(xué)過程設(shè)計

一、 新課引入

1.復(fù)習(xí)和回顧平面角的有關(guān)知識.

平面中的角

定義 從一個頂點出發(fā)的兩條射線所組成的圖形,叫做角圖形

結(jié)構(gòu) 射線—點—射線

表示法 ∠AOB,∠O等

2.復(fù)習(xí)和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征.(空間角轉(zhuǎn)化為平面角)

3.觀察:陡峭與否,跟山坡面與水平面所成的角大小有關(guān),而山坡面與水平面所成的角就是兩個平面所成的角.在實際生活當(dāng)中,能夠轉(zhuǎn)化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現(xiàn)兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關(guān).)從而,引出“二面角”的定義及相關(guān)內(nèi)容.

二、學(xué)習(xí)新課

(一)二面角的定義

平面中的角 二面角

定義 從一個頂點出發(fā)的兩條射線所組成的圖形,叫做角 課本P17

圖形

結(jié)構(gòu) 射線—點—射線 半平面—直線—半平面

表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β

(二)二面角的圖示

1.畫出直立式、平臥式二面角各一個,并分別給予表示.

2.在正方體中認(rèn)識二面角.

(三)二面角的平面角

平面幾何中的“角”可以看作是一條射線繞其端點旋轉(zhuǎn)而成,它有一個旋轉(zhuǎn)量,它的大小可以度量,類似地,"二面角"也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成,它也有一個旋轉(zhuǎn)量,那么,二面角的大小應(yīng)該怎樣度量?

1.二面角的平面角的定義(課本P17).

2.∠AOB的大小與點O在棱上的位置無關(guān).

[說明]①平面與平面的位置關(guān)系,只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,有必要來研究二面角的度量問題.

②與兩條異面直線所成的角、直線和平面所成的角做類比,用“平面角”去度量.

③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內(nèi);角的兩邊分別與棱垂直.

3.二面角的平面角的范圍:

(四)例題分析

例1 一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個 的二面角,求此時B、C兩點間的距離.

[說明] ①檢查學(xué)生對二面角的平面角的定義的掌握情況.

②翻折前后應(yīng)注意哪些量的位置和數(shù)量發(fā)生了變化, 哪些沒變?

例2 如圖,已知邊長為a的等邊三角形 所在平面外有一點P,使PA=PB=PC=a,求二面角 的大小.

[說明] ①求二面角的步驟:作—證—算—答.

②引導(dǎo)學(xué)生掌握解題可操作性的通法(定義法和線面垂直法).

例3 已知正方體 ,求二面角 的大小.(課本P18例1)

[說明] 使學(xué)生進一步熟悉作二面角的平面角的方法.

(五)問題拓展

例4 如圖,山坡的傾斜度(坡面與水平面所成二面角的度數(shù))是 ,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是 ,沿這條路上山,行走100米后升高多少米?

[說明]使學(xué)生明白數(shù)學(xué)既來源于實際又服務(wù)于實際.

三、鞏固練習(xí)

1.在棱長為1的正方體 中,求二面角 的大小.

2. 若二面角 的大小為 ,P在平面 上,點P到 的距離為h,求點P到棱l的距離.

四、課堂小結(jié)

1.二面角的定義

2.二面角的平面角的定義及其范圍

3.二面角的平面角的常用作圖方法

4.求二面角的大小(作—證—算—答)

五、作業(yè)布置

1.課本P18練習(xí)14.4(1)

2.在 二面角的一個面內(nèi)有一個點,它到另一個面的距離是10,求它到棱的距離.

3.把邊長為a的正方形ABCD以BD為軸折疊,使二面角A-BD-C成 的二面角,求A、C兩點的距離.

六、教學(xué)設(shè)計說明

本節(jié)課的設(shè)計不是簡單地將概念直接傳受給學(xué)生,而是考慮到知識的形成過程,設(shè)法從學(xué)生的數(shù)學(xué)現(xiàn)實出發(fā),調(diào)動學(xué)生積極參與探索、發(fā)現(xiàn)、問題解決全過程.“二面角”及“二面角的平面角”這兩大概念的引出均運用了類比的手段和方法.教學(xué)過程中通過教師的層層鋪墊,學(xué)生的主動探究,使學(xué)生經(jīng)歷概念的形成、發(fā)展和應(yīng)用過程,有意識地加強了知識形成過程的教學(xué).

7857 主站蜘蛛池模板: 博医通医疗器械互联网供应链服务平台_博医通 | 撕碎机,撕破机,双轴破碎机-大件垃圾破碎机厂家 | 恒温恒湿试验箱厂家-高低温试验箱维修价格_东莞环仪仪器_东莞环仪仪器 | 十字轴_十字轴万向节_十字轴总成-南京万传机械有限公司 | 陕西视频监控,智能安防监控,安防系统-西安鑫安5A安防工程公司 | 环球周刊网| 团建-拓展-拓展培训-拓展训练-户外拓展训练基地[无锡劲途] | 瓶盖扭矩仪(扭力值检测)-百科| 北京网站建设公司_北京网站制作公司_北京网站设计公司-北京爱品特网站建站公司 | 传动滚筒,改向滚筒-淄博建凯机械科技有限公司 | 东莞市天进机械有限公司-钉箱机-粘箱机-糊箱机-打钉机认准东莞天进机械-厂家直供更放心! | 液压油缸-液压缸厂家价格,液压站系统-山东国立液压制造有限公司 液压油缸生产厂家-山东液压站-济南捷兴液压机电设备有限公司 | 烟气在线监测系统_烟气在线监测仪_扬尘检测仪_空气质量监测站「山东风途物联网」 | 快速门厂家-快速卷帘门-工业快速门-硬质快速门-西朗门业 | 哈尔滨治「失眠/抑郁/焦虑症/精神心理」专科医院排行榜-京科脑康免费咨询 一对一诊疗 | 南京交通事故律师-专打交通事故的南京律师 | 营养师网,营养师考试时间,报名入口—网站首页 | 全温恒温摇床-水浴气浴恒温摇床-光照恒温培养摇床-常州金坛精达仪器制造有限公司 | 臭氧发生器_臭氧消毒机 - 【同林品牌 实力厂家】 | 档案密集架,移动密集架,手摇式密集架,吉林档案密集架-厂家直销★价格公道★质量保证 | 阻燃剂-氢氧化镁-氢氧化铝-沥青阻燃剂-合肥皖燃新材料 | 沈飞防静电地板__机房地板-深圳市沈飞防静电设备有限公司 | 滤芯,过滤器,滤油机,贺德克滤芯,精密滤芯_新乡市宇清流体净化技术有限公司 | 深圳VI设计-画册设计-LOGO设计-包装设计-品牌策划公司-[智睿画册设计公司] | 红立方品牌应急包/急救包加盟,小成本好项目代理_应急/消防/户外用品加盟_应急好项目加盟_新奇特项目招商 - 中红方宁(北京) 供应链有限公司 | 预制围墙_工程预制围墙_天津市瑞通建筑材料有限公司 | 中红外QCL激光器-其他连续-半导体连续激光器-筱晓光子 | 气动隔膜泵厂家-温州永嘉定远泵阀有限公司| 油罐车_加油机_加油卷盘_加油机卷盘_罐车人孔盖_各类球阀_海底阀等车用配件厂家-湖北华特专用设备有限公司 | 退火炉,燃气退火炉,燃气热处理炉生产厂家-丹阳市丰泰工业炉有限公司 | EDLC超级法拉电容器_LIC锂离子超级电容_超级电容模组_软包单体电容电池_轴向薄膜电力电容器_深圳佳名兴电容有限公司_JMX专注中高端品牌电容生产厂家 | 基业箱_环网柜_配电柜厂家_开关柜厂家_开关断路器-东莞基业电气设备有限公司 | 铝板冲孔网,不锈钢冲孔网,圆孔冲孔网板,鳄鱼嘴-鱼眼防滑板,盾构走道板-江拓数控冲孔网厂-河北江拓丝网有限公司 | 高速混合机_锂电混合机_VC高效混合机-无锡鑫海干燥粉体设备有限公司 | 山东石英砂过滤器,除氟过滤器「价格低」-淄博胜达水处理 | 细砂提取机,隔膜板框泥浆污泥压滤机,螺旋洗砂机设备,轮式洗砂机械,机制砂,圆锥颚式反击式破碎机,振动筛,滚筒筛,喂料机- 上海重睿环保设备有限公司 | 无线讲解器-导游讲解器-自助讲解器-分区讲解系统 品牌生产厂家[鹰米讲解-合肥市徽马信息科技有限公司] | 洁净棚-洁净工作棚-无菌室-净化工程公司_北京卫护科技有限公司 | 合肥展厅设计-安徽展台设计-合肥展览公司-安徽奥美展览工程有限公司 | 气体检测仪-氢气检测仪-可燃气体传感器-恶臭电子鼻-深国安电子 | 【MBA备考网】-2024年工商管理硕士MBA院校/报考条件/培训/考试科目/提前面试/考试/学费-MBA备考网 |