小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

高中數學教案怎么

時間: 新華 數學教案

教案編寫的內容包括導入新課、講授新課、鞏固練習、板書設計、教具準備等幾個方面。小編給大家分享高中數學教案怎么參考,方便大家參考高中數學教案怎么怎么寫。

高中數學教案怎么篇1

教學目標:

1、理解流程圖的選擇結構這種基本邏輯結構。

2、能識別和理解簡單的框圖的功能。

3、能運用三種基本邏輯結構設計流程圖以解決簡單的問題。

教學方法:

1、通過模仿、操作、探索,經歷設計流程圖表達求解問題的過程,加深對流程圖的感知。

2、在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構。

教學過程:

一、問題情境

情境:

某鐵路客運部門規定甲、乙兩地之間旅客托運行李的費用為

其中(單位:)為行李的重量。

試給出計算費用(單位:元)的一個算法,并畫出流程圖。

二、學生活動

學生討論,教師引導學生進行表達。

解算法為:

輸入行李的重量;

如果,那么,

否則;

輸出行李的重量和運費。

上述算法可以用流程圖表示為:

教師邊講解邊畫出第10頁圖1-2-6。

在上述計費過程中,第二步進行了判斷。

三、建構數學

1、選擇結構的概念:

先根據條件作出判斷,再決定執行哪一種操作的結構稱為選擇結構。

如圖:虛線框內是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執行,否則執行。

2、說明:

(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判斷的不同情況進行不同的操作,這類問題的實現就要用到選擇結構的設計;

(2)選擇結構也稱為分支結構或選取結構,它要先根據指定的條件進行判斷,再由判斷的結果決定執行兩條分支路徑中的某一條;

(3)在上圖的選擇結構中,只能執行和之一,不可能既執行,又執行,但或兩個框中可以有一個是空的,即不執行任何操作;

(4)流程圖圖框的形狀要規范,判斷框必須畫成菱形,它有一個進入點和兩個退出點。

3、思考:教材第7頁圖所示的算法中,哪一步進行了判斷?

高中數學教案怎么篇2

教學目標:

1·進一步理解對數函數的性質,能運用對數函數的相關性質解決對數型函數的常見問題·

2·培養學生數形結合的思想,以及分析推理的能力·

教學重點:

對數函數性質的應用·

教學難點:

對數函數的性質向對數型函數的演變延伸·

教學過程:

一、問題情境

1·復習對數函數的性質·

2·回答下列問題·

(1)函數y=log2x的值域是;

(2)函數y=log2x(x≥1)的值域是;

(3)函數y=log2x(0

3·情境問題·

函數y=log2(x2+2x+2)的定義域和值域分別如何求呢?

二、學生活動

探究完成情境問題·

三、數學運用

例1求函數y=log2(x2+2x+2)的定義域和值域·

練習:

(1)已知函數y=log2x的值域是[—2,3],則x的范圍是________________·

(2)函數,x(0,8]的值域是·

(3)函數y=log(x2—6x+17)的值域·

(4)函數的.值域是_______________·

例2判斷下列函數的奇偶性:

(1)f(x)=lg(2)f(x)=ln(—x)

例3已知loga0·75>1,試求實數a取值范圍·

例4已知函數y=loga(1—ax)(a>0,a≠1)·

(1)求函數的定義域與值域;

(2)求函數的單調區間·

練習:

1·下列函數(1)y=x—1;(2)y=log2(x—1);(3)y=;(4)y=lnx,其中值域為R的有(請寫出所有正確結論的序號)·

2·函數y=lg(—1)的圖象關于對稱·

3·已知函數(a>0,a≠1)的圖象關于原點對稱,那么實數m=·

4·求函數,其中x[,9]的值域·

四、要點歸納與方法小結

(1)借助于對數函數的性質研究對數型函數的定義域與值域;

(2)換元法;

(3)能畫出較復雜函數的圖象,根據圖象研究函數的性質(數形結合)·

五、作業

課本P70~71—4,5,10,11·

高中數學教案怎么篇3

【學習導航】

(一)兩角和與差公式

(二)倍角公式

2cos2α=1+cos2α 2sin2α=1-cos2α

注意:倍角公式揭示了具有倍數關系的兩個角的三角函數的運算規律,可實現函數式的降冪的變化。

注: (1)兩角和與差的三角函數公式能夠解答的三類基本題型:求值題,化簡題,證明題。

(2)對公式會“正用”,“逆用”,“變形使用”;

(3)掌握“角的演變”規律,

(4)將公式和其它知識銜接起來使用。

重點難點

重點:幾組三角恒等式的應用

難點:靈活應用和、差、倍角等公式進行三角式化簡、求值、證明恒等式

【精典范例】

例1 已知

求證:

例2 已知 求 的取值范圍

分析 難以直接用 的式子來表達,因此設 ,并找出 應滿足的等式,從而求出 的取值范圍.

例3 求函數 的值域.

例4 已知且 、 、 均為鈍角,求角 的值.

分析 僅由 ,不能確定角 的值,還必須找出角 的范圍,才能判斷 的值. 由單位圓中的余弦線可以看出,若 使 的角為 或 若 則 或

【選修延伸】

例5 已知

求 的值.

例6 已知 ,

求 的值.

例7 已知

求 的值.

例8 求值:(1) (2)

【追蹤訓練】

1. 等于 ( )

A. B. C. D.

2.已知 ,且,則 的值等于 ( )

A. B. C. D.

3.求值: = .

4.求證:(1)

高中數學教案怎么篇4

教學目標:

1.了解反函數的概念,弄清原函數與反函數的定義域和值域的關系.

2.會求一些簡單函數的反函數.

3.在嘗試、探索求反函數的過程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學思想方法的認識.

4.進一步完善學生思維的深刻性,培養學生的逆向思維能力,用辯證的觀點分析問題,培養抽象、概括的能力.

教學重點:求反函數的方法.

教學難點:反函數的概念.

教學過程:

教學活動

設計意圖一、創設情境,引入新課

1.復習提問

①函數的概念

②y=f(x)中各變量的意義

2.同學們在物理課學過勻速直線運動的位移和時間的函數關系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數;在t=中,時間t是位移S的函數.在這種情況下,我們說t=是函數S=vt的反函數.什么是反函數,如何求反函數,就是本節課學習的內容.

3.板書課題

由實際問題引入新課,激發了學生學習興趣,展示了教學目標.這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性.

二、實例分析,組織探究

1.問題組一:

(用投影給出函數與;與()的圖象)

(1)這兩組函數的圖像有什么關系?這兩組函數有什么關系?(生答:與的圖像關于直線y=x對稱;與()的圖象也關于直線y=x對稱.是求一個數立方的運算,而是求一個數立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)

(2)由,已知y能否求x?

(3)是否是一個函數?它與有何關系?

(4)與有何聯系?

2.問題組二:

(1)函數y=2x 1(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

(2)函數(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

(3)函數 ()的定義域與函數()的值域有什么關系?

3.滲透反函數的概念.

(教師點明這樣的函數即互為反函數,然后師生共同探究其特點)

從學生熟知的函數出發,抽象出反函數的概念,符合學生的認知特點,有利于培養學生抽象、概括的能力.

通過這兩組問題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發展區"設計問題,使學生對反函數有一個直觀的粗略印象,為進一步抽象反函數的概念奠定基礎.

三、師生互動,歸納定義

1.(根據上述實例,教師與學生共同歸納出反函數的定義)

函數y=f(x)(x∈A) 中,設它的值域為 C.我們根據這個函數中x,y的關系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數.這樣的函數 x = j (y)(y ∈C)叫做函數y=f(x)(x∈A)的反函數.記作: .考慮到"用 x表示自變量, y表示函數"的習慣,將中的x與y對調寫成.

2.引導分析:

1)反函數也是函數;

2)對應法則為互逆運算;

3)定義中的"如果"意味著對于一個任意的函數y=f(x)來說不一定有反函數;

4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;

5)函數y=f(x)與x=f(y)互為反函數;

6)要理解好符號f;

7)交換變量x、y的原因.

3.兩次轉換x、y的對應關系

(原函數中的自變量x與反函數中的函數值y 是等價的,原函數中的函數值y與反函數中的自變量x是等價的.)

4.函數與其反函數的關系

函數y=f(x)

函數

定義域

A

C

值 域

C

A

四、應用解題,總結步驟

1.(投影例題)

【例1】求下列函數的反函數

(1)y=3x-1 (2)y=x 1

【例2】求函數的反函數.

(教師板書例題過程后,由學生總結求反函數步驟.)

2.總結求函數反函數的步驟:

1° 由y=f(x)反解出x=f(y).

2° 把x=f(y)中 x與y互換得.

3° 寫出反函數的定義域.

(簡記為:反解、互換、寫出反函數的定義域)【例3】(1)有沒有反函數?

(2)的反函數是________.

(3)(x<0)的反函數是__________.

在上述探究的基礎上,揭示反函數的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產生矛盾沖突,體會反函數.在剖析定義的過程中,讓學生體會函數與方程、一般到特殊的數學思想,并對數學的符號語言有更好的把握.

通過動畫演示,表格對照,使學生對反函數定義從感性認識上升到理性認識,從而消化理解.

通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養學生分析、思考的習慣,以及歸納總結的能力.

題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進.并體現了對定義的反思理解.學生思考練習,師生共同分析糾正.

五、鞏固強化,評價反饋

1.已知函數 y=f(x)存在反函數,求它的反函數 y =f( x)

(1)y=-2x 3(xR) (2)y=-(xR,且x)

( 3 ) y=(xR,且x)

2.已知函數f(x)=(xR,且x)存在反函數,求f(7)的值.

五、反思小結,再度設疑

本節課主要研究了反函數的定義,以及反函數的求解步驟.互為反函數的兩個函數的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節研究.

(讓學生談一下本節課的學習體會,教師適時點撥)

進一步強化反函數的概念,并能正確求出反函數.反饋學生對知識的掌握情況,評價學生對學習目標的落實程度.具體實踐中可采取同學板演、分組競賽等多種形式調動學生的積極性."問題是數學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂.

六、作業

習題2.4 第1題,第2題

進一步鞏固所學的知識.

教學設計說明

"問題是數學的心臟".一個概念的形成是螺旋式上升的,一般要經過具體到抽象,感性到理性的過程.本節教案通過一個物理學中的具體實例引入反函數,進而又通過若干函數的圖象進一步加以誘導剖析,最終形成概念.

反函數的概念是教學中的難點,原因是其本身較為抽象,經過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質上去把握反函數的概念.為此,我們大膽地使用教材,把互為反函數的兩個函數的圖象關系預先揭示,進而探究原因,尋找規律,程序是從問題出發,研究性質,進而得出概念,這正是數學研究的順序,符合學生認知規律,有助于概念的建立與形成.另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用.通過對函數與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環節,充分調動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養學生的逆向思維.使學生自然成為學習的主人。

高中數學教案怎么篇5

教學目標

1。 理解的定義,初步掌握的圖象,性質及其簡單應用。

2。 通過的圖象和性質的學習,培養學生觀察,分析,歸納的能力,進一步體會數形結合的思想方法。

3。 通過對的研究,使學生能把握函數研究的基本方法,激發學生的學習興趣。

教學重點和難點

重點是理解的定義,把握圖象和性質。

難點是認識底數對函數值影響的認識。

教學用具

投影儀

教學方法

啟發討論研究式

教學過程

一。 引入新課

我們前面學習了指數運算,在此基礎上,今天我們要來研究一類新的常見函數———————。

1。6。(板書)

這類函數之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:

問題1:某種細胞_時,由1個_成2個,2個_成4個,……一個這樣的細胞_ 次后,得到的細胞_的個數 與 之間,構成一個函數關系,能寫出 與 之間的函數關系式嗎?

由學生回答: 與 之間的關系式,可以表示為 。

問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了 次后繩子剩余的長度為 米,試寫出 與 之間的函數關系。

由學生回答: 。

在以上兩個實例中我們可以看到這兩個函數與我們前面研究的函數有所區別,從形式上冪的形式,且自變量 均在指數的位置上,那么就把形如這樣的函數稱為。

一。 的概念(板書)

1。定義:形如 的函數稱為。(板書)

教師在給出定義之后再對定義作幾點說明。

2。幾點說明 (板書)

(1) 關于對 的規定:

教師首先提出問題:為什么要規定底數大于0且不等于1呢?(若學生感到有困難,可將問題分解為若 會有什么問題?如 ,此時 , 等在實數范圍內相應的函數值不存在。

若 對于 都無意義,若 則 無論 取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發生,所以規定 且 。

(2)關于的定義域 (板書)

教師引導學生回顧指數范圍,發現指數可以取有理數。此時教師可指出,其實當指數為無理數時, 也是一個確定的實數,對于無理指數冪,學過的有理指數冪的性質和運算法則它都適用,所以將指數范圍擴充為實數范圍,所以的定義域為 。擴充的另一個原因是因為使她它更具代表更有應用價值。

(3)關于是否是的判斷(板書)

剛才分別認識了中底數,指數的要求,下面我們從整體的角度來認識一下,根據定義我們知道什么樣的函數是,請看下面函數是否是。

(1) , (2) , (3)

(4) , (5) 。

學生回答并說明理由,教師根據情況作點評,指出只有(1)和(3)是,其中(3) 可以寫成 ,也是指數圖象。

最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質。

3。歸納性質

作圖的用什么方法。用列表描點發現,教師準備明確性質,再由學生回答。

函數

1。定義域 :

2。值域:

3。奇偶性 :既不是奇函數也不是偶函數

4。截距:在 軸上沒有,在 軸上為1。

對于性質1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應會證明。對于單調性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數圖象畫圖的依據。(圖象位于 軸上方,且與 軸不相交。)

在此基礎上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故 的值應有正有負,且由于單調性不清,所取點的個數不能太少。

此處教師可利用計算機列表描點,給出十組數據,而學生自己列表描點,至少六組數據。連點成線時,一定提醒學生圖象的變化趨勢(當 越小,圖象越靠近 軸, 越大,圖象上升的越快),并連出光滑曲線。

二。圖象與性質(板書)

1。圖象的畫法:性質指導下的列表描點法。

2。草圖:

當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數的條件是且 ,取值可分為兩段)讓學生明白需再畫第二個,不妨取 為例。

此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是的方法,而圖象變換的方法更為簡單。即 = 與 圖象之間關于 軸對稱,而此時 的圖象已經有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到 的圖象。

最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如 的圖象一起比較,再找共性)

由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:

以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數的性質,即從代數角度的描述,將表中另一部分填滿。

填好后,讓學生仿照此例再列一個 的表,將相應的內容填好。為進一步整理性質,教師可提出從另一個角度來分類,整理函數的性質。

3。性質。

(1)無論 為何值, 都有定義域為 ,值域為 ,都過點 。

(2) 時, 在定義域內為增函數, 時, 為減函數。

(3) 時, , 時, 。

總結之后,特別提醒學生記住函數的圖象,有了圖,從圖中就可以能讀出性質。

三。簡單應用 (板書)

1。利用單調性比大小。 (板書)

一類函數研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。

例1。 比較下列各組數的大小

(1) 與 ; (2) 與 ;

(3) 與1 。(板書)

首先讓學生觀察兩個數的特點,有什么相同?由學生指出它們底數相同,指數不同。再追問根據這個特點,用什么方法來比較它們的大小呢?讓學生聯想,提出構造函數的方法,即把這兩個數看作某個函數的函數值,利用它的單調性比較大小。然后以第(1)題為例,給出解答過程。

解: 在 上是增函數,且< 。(板書)

教師最后再強調過程必須寫清三句話:

(1) 構造函數并指明函數的單調區間及相應的單調性。

(2) 自變量的大小比較。

(3) 函數值的大小比較。

后兩個題的過程略。要求學生仿照第(1)題敘述過程。

例2。比較下列各組數的大小

(1) 與 ; (2) 與 ;

(3) 與 。(板書)

先讓學生觀察例2中各組數與例1中的區別,再思考解決的方法。引導學生發現對(1)來說 可以寫成 ,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說 可以寫成 ,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決。(教師可提示學生的函數值與1有關,可以用1來起橋梁作用)

最后由學生說出 >1,<1,>。

解決后由教師小結比較大小的方法

(1) 構造函數的方法: 數的特征是同底不同指(包括可轉化為同底的)

(2) 搭橋比較法: 用特殊的數1或0。

三。鞏固練習

練習:比較下列各組數的大小(板書)

(1) 與 (2) 與 ;

(3) 與 ; (4) 與 。解答過程略

四。小結

1。的概念

2。的圖象和性質

3。簡單應用

五 。板書設計

高中數學教案怎么篇6

教學準備

教學目標

1·掌握平面向量的數量積及其幾何意義;

2·掌握平面向量數量積的重要性質及運算律;

3·了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;

4·掌握向量垂直的條件·

教學重難點

教學重點:平面向量的數量積定義

教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

教學工具

投影儀

教學過程

一、復習引入:

1·向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ

五,課堂小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

六、課后作業

P107習題2·4A組2、7題

課后小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的.主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

課后習題

作業

P107習題2·4A組2、7題

板書

高中數學教案怎么篇7

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)掌握排列數公式,并能根據具體的問題,寫出符合要求的排列數;

(4)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規律,得出結論,以培養學生嚴謹的學習態度。

教學建議

一、知識結構

二、重點難點分析

本小節的重點是排列的定義、排列數及排列數的公式,并運用這個公式去解決有關排列數的應用問題.難點是導出排列數的公式和解有關排列的應用題.突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中.

從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列.因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同.排列數是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數,只要弄清相同排列、不同排列,才有可能計算相應的排列數.排列與排列數是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數.從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數,就是相應的排列數.

公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.要重點分析好 的推導.

排列的應用題是本節教材的難點,通過本節例題的分析,應注意培養學生解決應用問題的能力.

在分析應用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數,這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用.

在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數,這樣可以培養學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求.

三、教法建議

①在講解排列數的概念時,要注意區分“排列數”與“一個排列”這兩個概念.一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數,而是具體的一件事;排列數是指“從n個不同元素中取出m個元素的所有排列的個數”,它是一個數.例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個排列,共有6種,而數字6就是排列數,符號 表示排列數.

②排列的定義中包含兩個基本內容,一是“取出元素”,二是“按一定順序排列”.

從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列.

在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區別.

在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列.

要特別注意,不加特殊說明,本章不研究重復排列問題.

③關于排列數公式的推導的教學.公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.課本上用的是不完全歸納法,先推導 , ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的.

導出公式 后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯.這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數是n,后面每個因數都比它前面一個因數少1,最后一個因數是 ,共m個因數相乘.”這實際是講三個特點:第一個因數是什么?最后一個因數是什么?一共有多少個連續的自然數相乘.

公式 是在引出全排列數公式 后,將排列數公式變形后得到的公式.對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數的值,常用前一個公式,而要對含有字母的排列數的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規定 ,如同 時 一樣,是一種規定,因此,不能按階乘數的原意作解釋.

④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解.

⑤學生在開始做排列應用題的作業時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數,這樣有利于學生得更加扎實.隨著學生解題熟練程度的提高,可以逐步降低這種要求.

高中數學教案怎么篇8

2。2。1等差數列學案

一、預習問題:

1、等差數列的定義:一般地,如果一個數列從起,每一項與它的前一項的差等于同一個,那么這個數列就叫等差數列,這個常數叫做等差數列的,通常用字母表示。

2、等差中項:若三個數組成等差數列,那么A叫做與的,

即或。

3、等差數列的單調性:等差數列的公差時,數列為遞增數列;時,數列為遞減數列;時,數列為常數列;等差數列不可能是。

4、等差數列的通項公式:。

5、判斷正誤:

①1,2,3,4,5是等差數列;()

②1,1,2,3,4,5是等差數列;()

③數列6,4,2,0是公差為2的等差數列;()

④數列是公差為的等差數列;()

⑤數列是等差數列;()

⑥若,則成等差數列;()

⑦若,則數列成等差數列;()

⑧等差數列是相鄰兩項中后項與前項之差等于非零常數的數列;()

⑨等差數列的公差是該數列中任何相鄰兩項的差。()

6、思考:如何證明一個數列是等差數列。

二、實戰操作:

例1、(1)求等差數列8,5,2,的第20項。

(2)是不是等差數列中的項?如果是,是第幾項?

(3)已知數列的公差則

例2、已知數列的通項公式為,其中為常數,那么這個數列一定是等差數列嗎?

例3、已知5個數成等差數列,它們的和為5,平方和為求這5個數。

高中數學教案怎么篇9

1.1.1任意角

教學目標

(一)知識與技能目標

理解任意角的概念(包括正角、負角、零角)與區間角的概念.

(二)過程與能力目標

會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區間角的集合的書寫.

(三)情感與態度目標

1.提高學生的推理能力;

2.培養學生應用意識.教學重點

任意角概念的理解;區間角的集合的書寫.教學難點

終邊相同角的集合的表示;區間角的集合的書寫.

教學過程

一、引入:

1.回顧角的定義

①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角.

②角的第二種定義是角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形.

二、新課:

1.角的有關概念:

①角的定義:

角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形.

②角的名稱:

③角的分類:A

正角:按逆時針方向旋轉形成的角零角:射線沒有任何旋轉形成的角

負角:按順時針方向旋轉形成的角

④注意:

⑴在不引起混淆的情況下,“角α”或“∠α”可以簡化成“α”;

⑵零角的終邊與始邊重合,如果α是零角α=0°;

⑶角的概念經過推廣后,已包括正角、負角和零角.

⑤練習:請說出角α、β、γ各是多少度?

2.象限角的概念:

①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.

例1.在直角坐標系中,作出下列各角,并指出它們是第幾象限的角.

⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;

答:分別為1、2、3、4、1、2象限角.

3.探究:教材P3面

終邊相同的角的表示:

所有與角α終邊相同的角,連同α在內,可構成一個集合S={ββ=α+

k·360°,

k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的和.注意:⑴k∈Z

⑵α是任一角;

⑶終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差

360°的整數倍;

⑷角α+k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.

例2.在0°到360°范圍內,找出與下列各角終邊相等的角,并判斷它們是第幾象限角.

⑴-120°;

⑵640°;

⑶-950°12’.

答:⑴240°,第三象限角;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示).解:{αα=90°+n·180°,n∈Z}.

例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.

4.課堂小結

①角的定義;

②角的分類:

正角:按逆時針方向旋轉形成的角零角:射線沒有任何旋轉形成的角

負角:按順時針方向旋轉形成的角

③象限角;

④終邊相同的角的表示法.

5.課后作業:

①閱讀教材P2-P5;

②教材P5練習第1-5題;

③教材P.9習題1.1第1、2、3題思考題:已知α角是第三象限角,則2α,

解:??角屬于第三象限,

?k·360°+180°<α<k·360°+270°(k∈Z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k+1)360°<2α<(2k+1)360°+180°(k∈Z)

故2α是第一、二象限或終邊在y軸的非負半軸上的角.又k·180°+90°<

各是第幾象限角?

<k·180°+135°(k∈Z).

<n·360°+135°(n∈Z),

當k為偶數時,令k=2n(n∈Z),則n·360°+90°<此時,

屬于第二象限角

<n·360°+315°(n∈Z),

當k為奇數時,令k=2n+1(n∈Z),則n·360°+270°<此時,

屬于第四象限角

因此

屬于第二或第四象限角.

1.1.2弧度制

(一)

教學目標

(二)知識與技能目標

理解弧度的意義;了解角的集合與實數集R之間的可建立起一一對應的關系;熟記特殊角的弧度數.

(三)過程與能力目標

能正確地進行弧度與角度之間的換算,能推導弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題

(四)情感與態度目標

通過新的度量角的單位制(弧度制)的引進,培養學生求異創新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學生感受弧長及扇形面積公式在弧度制下的簡潔美.教學重點

弧度的概念.弧長公式及扇形的面積公式的推導與證明.教學難點

“角度制”與“弧度制”的區別與聯系.

教學過程

一、復習角度制:

初中所學的角度制是怎樣規定角的度量的?規定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.

二、新課:

1.引入:

由角度制的定義我們知道,角度是用來度量角的`,角度制的度量是60進制的,運用起來不太方便.在數學和其他許多科學研究中還要經常用到另一種度量角的制度—弧度制,它是如何定義呢?

2.定義

我們規定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下,1弧度記做1rad.在實際運算中,常常將rad單位省略.

3.思考:

(1)一定大小的圓心角?所對應的弧長與半徑的比值是否是確定的?與圓的半徑大小有關嗎?

(2)引導學生完成P6的探究并歸納:弧度制的性質:

①半圓所對的圓心角為

②整圓所對的圓心角為

③正角的弧度數是一個正數.

④負角的弧度數是一個負數.

⑤零角的弧度數是零.

⑥角α的弧度數的絕對值α=.

4.角度與弧度之間的轉換:

①將角度化為弧度:

②將弧度化為角度:

5.常規寫法:

①用弧度數表示角時,常常把弧度數寫成多少π的形式,不必寫成小數.

②弧度與角度不能混用.

弧長等于弧所對應的圓心角(的弧度數)的絕對值與半徑的積.

例1.把67°30’化成弧度.

例2.把?rad化成度.

例3.計算:

(1)sin4

(2)tan1.5.

8.課后作業:

①閱讀教材P6–P8;

②教材P9練習第1、2、3、6題;

③教材P10面7、8題及B2、3題.

高中數學教案怎么篇10

教學目標

(1)正確理解加法原理與乘法原理的意義,分清它們的條件和結論;

(2)能結合樹形圖來幫助理解加法原理與乘法原理;

(3)正確區分加法原理與乘法原理,哪一個原理與分類有關,哪一個原理與分步有關;

(4)能應用加法原理與乘法原理解決一些簡單的應用問題,提高學生理解和運用兩個原理的能力;

(5)通過對加法原理與乘法原理的學習,培養學生周密思考、細心分析的良好習慣。

教學建議

一、知識結構

二、重點難點分析

本節的重點是加法原理與乘法原理,難點是準確區分加法原理與乘法原理。

加法原理、乘法原理本身是容易理解的,甚至是不言自明的。這兩個原理是學習排列組合內容的基礎,貫穿整個內容之中,一方面它是推導排列數與組合數的基礎;另一方面它的結論與其思想在方法本身又在解題時有許多直接應用。

兩個原理回答的,都是完成一件事的所有不同方法種數是多少的問題,其區別在于:運用加法原理的前提條件是, 做一件事有n類方案,選擇任何一類方案中的任何一種方法都可以完成此事,就是說,完成這件事的各種方法是相互獨立的;運用乘法原理的前提條件是,做一件事有n個驟,只要在每個步驟中任取一種方法,并依次完成每一步驟就能完成此事,就是說,完成這件事的各個步驟是相互依存的。簡單的說,如果完成一件事情的所有方法是屬于分類的問題,每次得到的是最后結果,要用加法原理;如果完成一件事情的方法是屬于分步的問題,每次得到的該步結果,就要用乘法原理。

三、教法建議

關于兩個計數原理的教學要分三個層次:

第一是對兩個計數原理的認識與理解.這里要求學生理解兩個計數原理的意義,并弄清兩個計數原理的區別.知道什么情況下使用加法計數原理,什么情況下使用乘法計數原理.(建議利用一課時).

第二是對兩個計數原理的使用.可以讓學生做一下習題(建議利用兩課時):

①用0,1,2,……,9可以組成多少個8位號碼;

②用0,1,2,……,9可以組成多少個8位整數;

③用0,1,2,……,9可以組成多少個無重復數字的4位整數;

④用0,1,2,……,9可以組成多少個有重復數字的4位整數;

⑤用0,1,2,……,9可以組成多少個無重復數字的4位奇數;

⑥用0,1,2,……,9可以組成多少個有兩個重復數字的4位整數等等.

第三是使學生掌握兩個計數原理的綜合應用,這個過程應該貫徹整個教學中,每個排列數、組合數公式及性質的推導都要用兩個計數原理,每一道排列、組合問題都可以直接利用兩個原理求解,另外直接計算法、間接計算法都是兩個原理的一種體現.教師要引導學生認真地分析題意,恰當的分類、分步,用好、用活兩個基本計數原理.

教學設計示例

加法原理和乘法原理

教學目標

正確理解和掌握加法原理和乘法原理,并能準確地應用它們分析和解決一些簡單的問題,從而發展學生的思維能力,培養學生分析問題和解決問題的能力.

教學重點和難點

重點:加法原理和乘法原理.

難點:加法原理和乘法原理的準確應用.

教學用具

投影儀.

教學過程設計

(一)引入新課

從本節課開始,我們將要學習中學代數內容中一個獨特的部分——排列、組合、二項式定理.它們研究對象獨特,研究問題的方法不同一般.雖然份量不多,但是與舊知識的聯系很少,而且它還是我們今后學習概率論的基礎,統計學、運籌學以及生物的選種等都與它直接有關.至于在日常的工作、生活上,只要涉及安排調配的問題,就離不開它.

今天我們先學習兩個基本原理.

(二)講授新課

1.介紹兩個基本原理

先考慮下面的問題:

問題1:從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4個班次,汽車有2個班次,輪船有3個班次.那么一天中乘坐這些交通工具從甲地到乙地,共有多少種不同的走法?

因為一天中乘火車有4種走法,乘汽車有2種走法,乘輪船有3種走法,每種走法都可以完成由甲地到乙地這件事情.所以,一天中乘坐這些交通工具從甲地到乙地共有4+2+3=9種不同的走法.

這個問題可以總結為下面的一個基本原理(打出片子——加法原理):

加法原理:做一件事,完成它可以有幾類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么,完成這件事共有N=m1+m2+…+mn種不同的方法.

請大家再來考慮下面的問題(打出片子——問題2):

問題2:由A村去B村的道路有3條,由B村去C村的道路有2條(見下圖),從A村經B村去C村,共有多少種不同的走法?

這里,從A村到B村,有3種不同的走法,按這3種走法中的每一種走法到達B村后,再從B村到C村又各有2種不同的走法,因此,從A村經B村去C村共有3×2=6種不同的走法.

一般地,有如下基本原理(找出片子——乘法原理):

乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有N=m1×m2×…×mn種不同的方法.

2.淺釋兩個基本原理

兩個基本原理的用途是計算做一件事完成它的所有不同的方法種數.

比較兩個基本原理,想一想,它們有什么區別?

兩個基本原理的區別在于:一個與分類有關,一個與分步有關.

看下面的分析是否正確(打出片子——題1,題2):

題1:找1~10這10個數中的所有合數.第一類辦法是找含因數2的合數,共有4個;第二類辦法是找含因數3的合數,共有2個;第三類辦法是找含因數5的合數,共有1個.

1~10中一共有N=4+2+1=7個合數.

題2:在前面的問題2中,步行從A村到B村的北路需要8時,中路需要4時,南路需要6時,B村到C村的北路需要5時,南路需要3時,要求步行從A村到C村的總時數不超過12時,共有多少種不同的走法?

第一步從A村到B村有3種走法,第二步從B村到C村有2種走法,共有N=3×2=6種不同走法.

題2中的合數是4,6,8,9,10這五個,其中6既含有因數2,也含有因數3;10既含有因數2,也含有因數5.題中的分析是錯誤的.

從A村到C村總時數不超過12時的走法共有5種.題2中從A村走北路到B村后再到C村,只有南路這一種走法.

(此時給出題1和題2的目的是為了引導學生找出應用兩個基本原理的注意事項,這樣安排,不但可以使學生對兩個基本原理的理解更深刻,而且還可以培養學生的學習能力)

進行分類時,要求各類辦法彼此之間是相互排斥的,不論哪一類辦法中的哪一種方法,都能單獨完成這件事.只有滿足這個條件,才能直接用加法原理,否則不可以.

如果完成一件事需要分成幾個步驟,各步驟都不可缺少,需要依次完成所有步驟才能完成這件事,而各步要求相互獨立,即相對于前一步的每一種方法,下一步都有m種不同的方法,那么計算完成這件事的方法數時,就可以直接應用乘法原理.

也就是說:類類互斥,步步獨立.

(在學生對問題的分析不是很清楚時,教師及時地歸納小結,能使學生在應用兩個基本原理時,思路進一步清晰和明確,不再簡單地認為什么樣的分類都可以直接用加法,只要分步而不管是否相互聯系就用乘法.從而深入理解兩個基本原理中分類、分步的真正含義和實質)

(三)應用舉例

現在我們已經有了兩個基本原理,我們可以用它們來解決一些簡單問題了.

例1 書架上放有3本不同的數學書,5本不同的語文書,6本不同的英語書.

(1)若從這些書中任取一本,有多少種不同的取法?

(2)若從這些書中,取數學書、語文書、英語書各一本,有多少種不同的取法?

(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法?

(讓學生思考,要求依據兩個基本原理寫出這3個問題的答案及理由,教師巡視指導,并適時口述解法)

(1)從書架上任取一本書,可以有3類辦法:第一類辦法是從3本不同數學書中任取1本,有3種方法;第二類辦法是從5本不同的語文書中任取1本,有5種方法;第三類辦法是從6本不同的英語書中任取一本,有6種方法.根據加法原理,得到的取法種數是

N=m1+m2+m3=3+5+6=14.故從書架上任取一本書的不同取法有14種.

(2)從書架上任取數學書、語文書、英語書各1本,需要分成三個步驟完成,第一步取1本數學書,有3種方法;第二步取1本語文書,有5種方法;第三步取1本英語書,有6種方法.根據乘法原理,得到不同的取法種數是N=m1×m2×m3=3×5×6=90.故,從書架上取數學書、語文書、英語書各1本,有90種不同的方法.

(3)從書架上任取不同科目的書兩本,可以有3類辦法:第一類辦法是數學書、語文書各取1本,需要分兩個步驟,有3×5種方法;第二類辦法是數學書、英語書各取1本,需要分兩個步驟,有3×6種方法;第三類辦法是語文書、英語書各取1本,有5×6種方法.一共得到不同的取法種數是N=3×5+3×6+5×6=63.即,從書架任取不同科目的書兩本的不同取法有63種.

例2 由數字0,1,2,3,4可以組成多少個三位整數(各位上的數字允許重復)?

解:要組成一個三位數,需要分成三個步驟:第一步確定百位上的數字,從1~4這4個數字中任選一個數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個位上的數字,仍有5種選法.根據乘法原理,得到可以組成的三位整數的個數是N=4×5×5=100.

答:可以組成100個三位整數.

教師的連續發問、啟發、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高.教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質的理解,周密的考慮,準確的表達、規范的書寫,對于學生周密思考、準確表達、規范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎.

(四)歸納小結

歸納什么時候用加法原理、什么時候用乘法原理:

分類時用加法原理,分步時用乘法原理.

應用兩個基本原理時需要注意分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的.

(五)課堂練習

P222:練習1~4.

(對于題4,教師有必要對三個多項式乘積展開后各項的構成給以提示)

(六)布置作業

P222:練習5,6,7.

補充題:

1.在所有的兩位數中,個位數字小于十位數字的共有多少個?

(提示:按十位上數字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)

2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數.

(提示:需要按三個志愿分成三步,共有m(m-1)(m-2)種填寫方式)

3.在所有的三位數中,有且只有兩個數字相同的三位數共有多少個?

(提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數字相同的三位數)

4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?

(提示:由于8+5=13>10,所以10人中必有3人既會英語又會日語.

(1)N=5+2+3;(2)N=5×2+5×3+2×3)

高中數學教案怎么篇11

教學內容

義務教育課程標準實驗教科書(人教版)二年級上冊第八單元第一課時

教學目標:

知識目標:

使學生通過觀察、猜測、實驗等活動,找出簡單事物的排列數和組合數。

能力目標:

培養學生有順序地、全面地思考問題的意識。

情感目標:

使學生感受到數學在現實生活中的應用價值,嘗試用數學的方法來解決實際生活中的問題。

教學重點:

經歷探索簡單事物排列與組合規律的過程。教學難點:初步理解簡單事物排列與組合的不同。教學環節

一、創設情境,導入新課

今天,我們來上一節數學活動課,大家樂意嗎?(板書課題)現在大家來看一下我們的活動目標。(課件出示活動目標)

師:老師給大家帶來了一個新朋友,課件出示圣誕老人畫面,圣誕老人過生日了,想請大家參加他的生日聚會,但是他有要求。通過圣誕老人提出本節課任務。

二、合作學習,構建模型

(一)初步感知。課件出示:

第一關:擺一擺,猜密碼。(用數字卡片

1、2能排成幾個兩位數自己動手擺一擺)讓學生自己動手擺卡片后,指名匯報。

(二)合作探究。課件出示:

第二關:擺一擺,比一比(用數字卡片1、2、3能擺成幾個不同的兩位數)比比看,哪個組找的最多。

小組探討,組長把大家的討論結果記錄在練習本上。(活動開始,教師巡視。)

以組為單位派代表匯報。

師:有的組擺出了4個不同的兩位數,有的組擺出了6個不同的兩位數,你們是怎么擺的?有什么好辦法?

(鼓勵方法的多樣化,對各組的不同方法進行肯定和表揚。)結合發言,引導學生進行評價,選出優勝組。

師生共同歸納:用數字排列組成數,要按照一定的順序確定十位上的數,然后考慮個位上有哪些數可以與其搭配。

(三)握一握。課件出示:小精靈說的話。

恭喜你們成功的度過了前兩關,現在,我們握手祝賀一下。師:每兩人握一次手,三人一共握幾次手?(小組活動,教師巡視)活動后,小組指名匯報。

師:究竟是幾次呢?請大家互相握握看吧!請一個組的同學上臺演示,其他同學一起數數。

(四)課件出示:

師:圣誕老人決定獎勵你們兩件上衣、兩條褲子,那么一共有幾種搭配方法呢?(課件出示圖片。)

學生拿出學具卡片,小組活動解決問題。匯報交流,說說自己為什么這樣設計。

三、分層練習,鞏固新知

(一)付錢問題。

課件出示:99頁做一做2題

小組討論,小組長統計本組學生答題情況,并由小組代表匯報。

(二)拍照站法。

小麗、小芳、小美在風景如畫的郊外游玩,三人想站成一排拍照留念,她們有幾種站法?

小組討論后,由一組學生上臺演示,其他學生數一數。

高中數學教案怎么篇12

一、說教材

等差數列為人教版必修5第二章第二節的內容。數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的性質與應用等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

二、說學情

對于我校的高中學生,知識經驗比較貧乏,雖然他們的智力發展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。

三、說教學目標

【知識與技能】能夠準確的說出等差數列的特點;能夠推導出等差數列的通項公式,并可以利用等差數列解決些簡單的實際問題。

【過程與方法】在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,鍛煉知識、方法遷移能力;通過階梯性練習,提高分析問題和解決問題的能力。

【情感態度價值觀】通過對等差數列的研究,激發主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

四、說教學重難點

【重點】等差數列的概念,等差數列的通項公式的推導過程及應用。

【難點】等差數列通項公式的推導,用“數學建模”的思想解決實際問題。

五、說教法與學法

數學教學是師生之間交往活動共同發展的課程,結合本節課的特點,我采取指導自主學習方法,并在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

六、說教學過程

(一)復習導入

類比函數,復習提問數列的函數意義,即數列可看作是定義域為正整數對應的一列函數值,從而數列的通項公式也就是相應函數的解析式。

設計意圖:通過復習,為本節課用函數思想研究數列問題作準備,將課堂設置成為階梯型教學,消除學生的畏難情緒。

(二)新課教學

教師創設具體情境,從具體事例中抽象出數學概念。

1.小明目前會100個單詞,他打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92

2.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25

通過練習1和2引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。

接下來由學生嘗試總結歸納等差數列的定義:

如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,

這個常數叫做等差數列的公差,通常用字母d來表示。

(三)深化概念

教師請學生深度剖析等差數列的概念,進一步強調

①“從第二項起”滿足條件;

②公差d一定是由后項減前項所得;

③每一項與它的前一項的差必須是同一個常數(強調“同一個常數”);

在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:an+1-an=d(n≥1)

同時為配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。其中第一個數列公差小于0,第二個數列公差大于0,第三個數列公差等于0。由此強調:公差可以是正數、負數,也可以是0。

(四)歸納通項公式

在歸納等差數列通項公式中,我采用討論式的教學方法。由學生研究,分組討論上述四個等差數列的通項公式。通過總結對比找出共同點猜想一般等差數列的通向公式應為怎樣的形式整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。

猜想等差數列的通項公式:an=a1+(n-1)d

此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法---迭加法:

在迭加法的證明過程中,我采用啟發式教學方法。

利用等差數列概念啟發學生寫出n-1個等式。

對照已歸納出的通項公式啟發學生想出將n-1個等式相加。證出通項公式。

在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想”的教學要求

接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)×2,

即an=2n-1,以此來鞏固等差數列通項公式的運用。

同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。

(五)應用舉例

這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。

先讓學生求等差數列的第20項、30項等。向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。

此外還可以聯系實際建模問題,如建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?

這道題我采用啟發式和討論式相結合的教學方法。啟發學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型--等差數列。

設置此題的目的:

1.加強同學們對應用題的綜合分析能力;

2.通過數學實際問題引出等差數列問題,激發了學生的興趣;

3.再者通過數學實例展示了“從實際問題出發經抽象概括建立數學模型,最后還原說明實際問題的“數學建模”的數學思想方法。

(六)小結作業

小結:(由學生總結這節課的收獲)

1.等差數列的概念及數學表達式。

強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數。

2.等差數列的通項公式:an=a1+(n-1),會知三求一。

3.用“數學建模”思想方法解決實際問題

作業:現實生活中還有哪些等差數列的實際應用呢?根據實際問題自己編寫兩道等差數列的題目并進行求解。

激發學生學習數學的興趣,以及認識到學習數學的重要性,將數學知識應用于實際問題的解決不僅回顧加深了本堂課的教學內容,開闊學生思維,還鍛煉了學生學以致用、觀察分析問題解決問題的能力。

七、說板書設計

在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。

高中數學教案怎么篇13

[核心必知]

1、預習教材,問題導入

根據以下提綱,預習教材P6~P9,回答下列問題、

(1)常見的程序框有哪些?

提示:終端框(起止框),輸入、輸出框,處理框,判斷框、

(2)算法的基本邏輯結構有哪些?

提示:順序結構、條件結構和循環結構、

2、歸納總結,核心必記

(1)程序框圖

程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形、在程序框圖中,一個或幾個程序框的組合表示算法中的一個步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執行順序、

(2)常見的程序框、流程線及各自表示的功能

圖形符號名稱功能

終端框(起止框)表示一個算法的起始和結束

輸入、輸出框表示一個算法輸入和輸出的信息

處理框(執行框)賦值、計算

判斷框判斷某一條件是否成立,成立時在出口處標明“是”或“Y”;不成立時標明“否”或“N”

流程線連接程序框

○連接點連接程序框圖的兩部分

(3)算法的基本邏輯結構

①算法的三種基本邏輯結構

算法的三種基本邏輯結構為順序結構、條件結構和循環結構,盡管算法千差萬別,但都是由這三種基本邏輯結構構成的

②順序結構

順序結構是由若干個依次執行的步驟組成的這是任何一個算法都離不開的基本結構,用程序框圖表示為:

[問題思考]

(1)一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束嗎?

提示:由程序框圖的概念可知一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束、

(2)順序結構是任何算法都離不開的基本結構嗎?

提示:根據算法基本邏輯結構可知順序結構是任何算法都離不開的基本結構、

[課前反思]

通過以上預習,必須掌握的幾個知識點:

(1)程序框圖的概念:

(2)常見的程序框、流程線及各自表示的功能:

(3)算法的.三種基本邏輯結構:

(4)順序結構的概念及其程序框圖的表示:

問題背景:計算1×2+3×4+5×6+…+99×100。

[思考1]能否設計一個算法,計算這個式子的值。

提示:能。

[思考2]能否采用更簡潔的方式表述上述算法過程。

提示:能,利用程序框圖。

[思考3]畫程序框圖時應遵循怎樣的規則?

名師指津:

(1)使用標準的框圖符號。

(2)框圖一般按從上到下、從左到右的方向畫。

(3)除判斷框外,其他程序框圖的符號只有一個進入點和一個退出點,判斷框是一個具有超過一個退出點的程序框。

(4)在圖形符號內描述的語言要非常簡練清楚。

(5)流程線不要忘記畫箭頭,因為它是反映流程執行先后次序的,如果不畫出箭頭就難以判斷各框的執行順序。

高中數學教案怎么篇14

在前一段我講了30度、45度、60度特殊角的三角函數值,它是北師大版九年級數學下冊的一節課,在前一節剛講過正弦、余弦、正切三角函數的定義和求法。現把我對本節課的做法和想法與大家交流一下,希望能得到同行和專家的指點,以期取得更大的進步。

一、說教學目標

1、經歷探索30°、45°、60°角的三角函數值的過程,能夠進行有關的推理。進一步體會三角函數的意義;能夠進行30°、45°、60°角的三角函數值的計算;能夠根據30°、45°、60°的三角函數值說明相應的銳角的大小。

2、發展學生觀察、分析、發現的能力;培養學生把實際問題轉化為數學問題的能力。

3、積極參與數學活動,對數學產生好奇心。培養學生獨立思考問題的習慣。

二、說教學重點

教學重點:探索特殊銳角三角函數值的過程,進行這些三角函數值的計算并會比較不同銳角三角函數值大小

在引入時我采用創設情境法,“為了測量一棵大樹的高度,準備了如下測量工具:(1)含30、60度角的直角三角尺(2)皮尺。請你設計一個方案,來測量一棵大樹的高度。這樣會增強學生的學習欲望,使學生對本節內容更感興趣。

三、說教學設計:

1、讓學生自主研習,獨立探究。

(1)觀察一副三角尺,其中有幾個銳角?他們分別等于多少度?

(2)sin30度等于多少呢?你是怎樣得到的?cos30度呢,tan30度呢?

2、讓學生合作學習、生生互動

(1)請同學們完成下表:30°、45°、60°角的三角函數值(表格略)

(2)觀察表格中函數值的特點。先看第一列30°、45°、60°角的正弦值,你能發現什么規律呢?第二列、第三列呢?

(3)同桌之間可互相檢查一下對30°、45°、60°角的三角函數值的記憶情況。

3、精講細評,師生合作(先由學生獨立完成)

(1)計算:sin30°+cos45°;sin260°+cos260°—tan45°。

(2)鐘表上的鐘擺長度為25Cm,當鐘擺向兩邊擺動時,擺角恰好為60°,且兩邊的擺動角度相同,求它擺至最高位置時與其擺至最低位置時的高度之差。(結果精確到0。1Cm)

分析:引導學生自己根據題意畫出示意圖,培養學生把實際問題轉化為數學問題的能力

4、延伸遷移,形成技能

(1)計算:sin60°—tan45°;cos60°+tan60°;

(2)某商場有一自動扶梯,其傾斜角為30°。高為7m,扶梯的長度是多少?

自主小結:

講課后我讓學生自主小結本節收獲,并給他們提出困惑的時間和機會

在本節課中我感覺學生整體來說收獲不小,有百分之八十的學生都會進行計算,只是對這些三角函數值的記憶還有欠缺,課下還需時間加以鞏固。課堂中學生積極性也很高,能體會到數學在生活中的應用廣泛,學習數學對解決實際生活問題的幫助,體會到學習數學的重要性。

高中數學教案怎么篇15

一、課程性質與任務

數學是研究空間形式和數量關系的科學,是科學和技術的基礎,是人類文化的重要組成部分。數學課程是中等職業學校學生必修的一門公共基礎課。本課程的任務是:使學生掌握必要的數學基礎知識,具備必需的相關技能與能力,為學習專業知識、掌握職業技能、繼續學習和終身發展奠定基礎。二、課程教學目標

1.在九年義務教育基礎上,使學生進一步學習并掌握職業崗位和生活中所必要的數學基礎知識。2.培養學生的計算技能、計算工具使用技能和數據處理技能,培養學生的觀察能力、空間想象能力、分析與解決問題能力和數學思維能力。

3.引導學生逐步養成良好的學習習慣、實踐意識、創新意識和實事求是的科學態度,提高學生就業能力與創業能力。三、教學內容結構

本課程的教學內容由基礎模塊、職業模塊和拓展模塊三個部分構成。

1.基礎模塊是各專業學生必修的基礎性內容和應達到的基本要求,教學時數為128學時。2.職業模塊是適應學生學習相關專業需要的限定選修內容,各學校根據實際情況進行選擇和安排教學,教學時數為32~64學時。

3.拓展模塊是滿足學生個性發展和繼續學習需要的任意選修內容,教學時數不做統一規定。四、教學內容與要求

(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)

了解:初步知道知識的含義及其簡單應用。

理解:懂得知識的概念和規律(定義、定理、法則等)以及與其他相關知識的聯系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養要求(分為三項技能與四項能力)

計算技能:根據法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數學工具軟件。數據處理技能:按要求對數據(數據表格)進行處理并提取有關信息。觀察能力:根據數據趨勢,數量關系或圖形、圖示,描述其規律。

空間想象能力:依據文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據條件畫出圖形。

分析與解決問題能力:能對工作和生活中的簡單數學相關問題,作出分析并運用適當的數學方法予以解決。

數學思維能力:依據所學的數學知識,運用類比、歸納、綜合等方法,對數學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。

(二)教學內容與要求1.基礎模塊(128學時)第1單元集合(10學時)

第2單元不等式(8學時)

第3單元函數(12學時)

第4單元指數函數與對數函數(12學時)

第5單元三角函數(18學時)

第6單元數列(10學時)

第7單元平面向量(矢量)(10學時)

第8單元直線和圓的方程(18學時)

第9單元立體幾何(14學時)

第10單元概率與統計初步(16學時)

2.職業模塊

第1單元三角計算及其應用(16學時)

第2單元坐標變換與參數方程(12學時)

第3單元復數及其應用(10學時)

高中數學教案怎么篇16

一、單元教學內容分析

本章節內容教學北師大版教材安排在三角函數章節之后,教本必修四的中間位置,為后面推導和差角公式做好鋪墊,為解三角形問題和平面幾何中的許多計算問題提供便利工具。

向量既有代數特征,又有幾何特征,是溝通代數與幾何的橋梁。向量具有代數特征,運算及其規律是代數學研究的基本問題。向量可以進行多種運算,如向量加、減、數乘和叉乘等。向量運算具有一系列豐富的運算性質,與數運算相比,向量運算擴充了運算的對象和運算的性質。向量具有幾何特征,它不僅可以描述、刻畫幾何中的點、線、面及其位置關系,數量關系,還可以表示空間當中的曲線與曲面,是研究幾何問題的基本工具。本教材能從學生熟悉的實例出發,經過觀察、分析、歸納等方法概括出向量的相關概念,比以往教材更能使學生產生自然而親切的感覺,有助于激發學生的學習興趣,調動學生學習的積極性,使他們真正認識到數學的應用價值,從而提高學生應用數學的意識。

向量是刻畫現實世界的重要的數學模型。它為理解抽象代數、線性代數、泛函分析提供了基本數學模型。他與物理學科緊密相連。由于向量是近代數學中重要和基本的數學概念,是溝通代數、幾何與三角函數的一種重要工具,它有極其豐富的實際背景,有著廣泛的實際應用,因此它具有很高的教育教學價值,它對更新和完善知識結構具有重要的意義。

教材結合向量的幾何背景——有向線段,引入向量的表示法,規定了向量的長度的概念。定義了零向量、單位向量、平行向量和共線向量等概念。對于許多舊有的知識利用向量方法去處理,就會變得非常簡捷,甚至變得十分明了,從而有助于學生對這些知識有更深刻的理解,更牢固的記憶,更自如的應用,總之,有助于學生建立良好的數學認知結構。通過本部分內容的學習,可以促使學生認識到向量與實際生活緊密相連,它在解決實際問題當中有著廣泛應用。

二、單元學生情況分析

1、學生在初中階段接觸過物理學里面的矢量,已具備基本的認知水平和運算能力,具備在運算中探索和發現數學結論的基本能力。

2、學生已基本掌握函數和三角函數章節的基礎知識,會運用數形結合法,整體代換,分類討論法,類比思想解決實際問題。

3、學生已具備基本的分析和解決數學問題的勇氣和智慧。

三、教學目標

1.知識與技能目標

(1)理解并掌握平面向量的基本概念。通過力與力的分析實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示。

(2)通過實例,掌握向量的加、減、數乘向量和兩向量數量積運算,并理解其幾何意義。

(3)理解并掌握向量共線和垂直問題。理解平面向量基本定理及其意義。掌握平面向量的正交分解及其坐標表示。會用坐標表示向量的加、減、數乘向量及數量積運算。

(4)通過物理中“功”等實例,理解平面向量數量積的含義及其物理意義。體會平面向量的數量積與向量投影的關系。掌握數量積的坐標表示,能運用數量積表示兩個向量的夾角,會用數量積來判斷向量的垂直問題。

2.過程與方法目標

(1)通過實例讓學生親身經歷觀察、分析、歸納、抽象概括的思維過程。感受和認知不同維度中的向量表示。

(2)通過讓學生體會平面向量數量積的物理意義和幾何意義,體會數學與物理是密切聯系的。

(3)經歷用向量方法解決某些簡單的平面幾何及力學問題與其他一些實際問題的過程,體會向量是一種處理幾何問題、物理問題等的工具,使學生的運算能力和解決實際問題的能力得到提升。

3.情感、態度與價值觀

(1)從學生熟悉的生活實例出發建立平面向量概念,激發學生的學習興趣。從物理知識引入到數學知識的形成過程,使學生體會到知識之間的相互聯系,建立全面、科學的價值觀。

(2)通過對向量正交分解的學習,使學生進一步體會一般的問題往往歸結為人們最熟悉的特殊問題。

(3)通過對本章節內容的學習,使學生體會到數學和其他知識相聯系,體會數學作為解決問題的工具的作用。

重點:

1.平面向量的概念,運算,共線問題,平面向量的基本定理。

2.平面向量的坐標表示,向量數量積的概念和性質,向量的垂直問題。

3.體會向量在解決平面幾何問題和物理問題中的作用。

難點:

1.對自由向量,向量加、減法數乘向量定義的理解和對平面向量基本定理理解。

2.對平面向量運算坐標表示及向量數量積概念的理解,平面向量數量積的應用。

3.用向量表示幾何關系。

四、單元教學活動

1.引入向量相關概念時,除用教材中給出的實例外,鼓勵學生列舉實際生活中的其他實例。

2.學習向量知識的同時,盡量地聯系熟悉的物理現象或其他生活實例,用向量表述和刻畫。以便讓學生領悟到知識之間和學科之間的相互聯系。

3.通過協作討論,根據生活中的實際案例,邊了解概念,邊畫圖;邊進行計算,邊畫圖;進一步培養學生數形結合、形象思考、分析問題的習慣。

4.在學習本章知識的過程中,應注意向量運算的兩個方面:幾何意義與代數表示。由于新知識的學習過程中,它們相對孤立,學生對他們的認識也就不容易形成體系。所以在教授新課時應有意識地做一些滲透和鋪墊,在章節小結時應強調它們的區別與聯系,以便學生更加全面、深刻的認識向量。

高中數學教案怎么篇17

一、教學內容分析

向量作為工具在數學、物理以及實際生活中都有著廣泛的應用.

本小節的重點是結合向量知識證明數學中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學中的應用.

二、教學目標設計

1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應用,體會從不同角度去看待一些數學問題,使一些數學知識有機聯系,拓寬解決問題的思路.

2、了解構造法在解題中的運用.

三、教學重點及難點

重點:平面向量知識在各個領域中應用.

難點:向量的構造.

四、教學流程設計

五、教學過程設計

一、復習與回顧

1、提問:下列哪些量是向量?

(1)力 (2)功 (3)位移 (4)力矩

2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[說明]復習數量積的有關知識.

二、學習新課

例1(書中例5)

向量作為一種工具,不僅在物理學科中有廣泛的應用,同時它在數學學科中也有許多妙用!請看

例2(書中例3)

證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立.

證法(二)向量法

[說明]本例關鍵引導學生觀察不等式結構特點,構造向量,并發現(等號成立的充要條件是)

例3(書中例4)

[說明]本例的關鍵在于構造單位圓,利用向量數量積的兩個公式得到證明.

二、鞏固練習

1、如圖,某人在靜水中游泳,速度為 km/h.

(1)如果他徑直游向河對岸,水的流速為4 km/h,他實際沿什么方向前進?速度大小為多少?

答案:沿北偏東方向前進,實際速度大小是8 km/h.

(2) 他必須朝哪個方向游才能沿與水流垂直的方向前進?實際前進的速度大小為多少?

答案:朝北偏西方向前進,實際速度大小為km/h.

三、課堂小結

1、向量在物理、數學中有著廣泛的應用.

2、要學會從不同的角度去看一個數學問題,是數學知識有機聯系.

四、作業布置

1、書面作業:課本P73, 練習8.4 4

66927 主站蜘蛛池模板: 学叉车培训|叉车证报名|叉车查询|叉车证怎么考-工程机械培训网 | HDPE土工膜,复合土工膜,防渗膜价格,土工膜厂家-山东新路通工程材料有限公司 | 中控室大屏幕-上海亿基自动化控制系统工程有限公司 | 安平县鑫川金属丝网制品有限公司,声屏障,高速声屏障,百叶孔声屏障,大弧形声屏障,凹凸穿孔声屏障,铁路声屏障,顶部弧形声屏障,玻璃钢吸音板 | 品牌设计_VI设计_电影海报设计_包装设计_LOGO设计-Bacross新越品牌顾问 | 数显恒温培养摇床-卧式/台式恒温培养摇床|朗越仪器 | 江苏全风,高压风机,全风环保风机,全风环形高压风机,防爆高压风机厂家-江苏全风环保科技有限公司(官网) | 礼堂椅厂家|佛山市艺典家具有限公司 | 安徽华耐泵阀有限公司-官方网站| 电动葫芦-河北悍象起重机械有限公司 | 丙烷/液氧/液氮气化器,丙烷/液氧/液氮汽化器-无锡舍勒能源科技有限公司 | 转向助力泵/水泵/发电机皮带轮生产厂家-锦州华一精工有限公司 | 超声波电磁流量计-液位计-孔板流量计-料位计-江苏信仪自动化仪表有限公司 | 北京自然绿环境科技发展有限公司专业生产【洗车机_加油站洗车机-全自动洗车机】 | 南京蜂窝纸箱_南京木托盘_南京纸托盘-南京博恒包装有限公司 | 卫浴散热器,卫浴暖气片,卫生间背篓暖气片,华圣格浴室暖气片 | IIS7站长之家-站长工具-爱网站请使用IIS7站长综合查询工具,中国站长【WWW.IIS7.COM】 | 山东商品混凝土搅拌楼-环保型搅拌站-拌合站-分体仓-搅拌机厂家-天宇 | 机床导轨_导轨板_滚轮导轨-上海旻佑精密机械有限公司 | 布袋式除尘器|木工除尘器|螺旋输送机|斗式提升机|刮板输送机|除尘器配件-泊头市德佳环保设备 | 山东石英砂过滤器,除氟过滤器「价格低」-淄博胜达水处理 | 合肥网络推广_合肥SEO网站优化-安徽沃龙First | 浇钢砖,流钢砖_厂家价低-淄博恒森耐火材料有限公司 | 二手Sciex液质联用仪-岛津气质联用仪-二手安捷伦气质联用仪-上海隐智科学仪器有限公司 | 上海软件开发-上海软件公司-软件外包-企业软件定制开发公司-咏熠科技 | 清水混凝土修复_混凝土色差修复剂_混凝土色差调整剂_清水混凝土色差修复_河南天工 | 热镀锌槽钢|角钢|工字钢|圆钢|H型钢|扁钢|花纹板-天津千百顺钢铁贸易有限公司 | 大流量卧式砂磨机_强力分散机_双行星双动力混合机_同心双轴搅拌机-莱州市龙跃化工机械有限公司 | 隧道风机_DWEX边墙风机_SDS射流风机-绍兴市上虞科瑞风机有限公司 | 对夹式止回阀厂家,温州对夹式止回阀制造商--永嘉县润丰阀门有限公司 | 5nd音乐网|最新流行歌曲|MP3歌曲免费下载|好听的歌|音乐下载 免费听mp3音乐 | DAIKIN电磁阀-意大利ATOS电磁阀-上海乾拓贸易有限公司 | 福建省教师资格证-福建教师资格证考试网| 水冷散热器_水冷电子散热器_大功率散热器_水冷板散热器厂家-河源市恒光辉散热器有限公司 | 暴风影音| 塑料熔指仪-塑料熔融指数仪-熔体流动速率试验机-广东宏拓仪器科技有限公司 | 洗地机-全自动/手推式洗地机-扫地车厂家_扬子清洁设备 | 杰恒蠕动泵-蠕动泵专业厂家-19年专注蠕动泵 | 大通天成企业资质代办_承装修试电力设施许可证_增值电信业务经营许可证_无人机运营合格证_广播电视节目制作许可证 | 博客-悦享汽车品质生活| 南京泽朗生物科技有限公司-液体饮料代加工_果汁饮料代加工_固体饮料代加工 |