高中簡單數學教案模板
一份優秀的教案應該包含合理的教學流程,其中包括引導課程、教授新知識、復習鞏固、課堂總結以及布置作業等環節。這里提供優秀的高中簡單數學教案模板,方便大家寫高中簡單數學教案模板參考。
高中簡單數學教案模板篇1
教學目標
(1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.
(2)理解曲線的方程、方程的曲線的概念,能根據曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.
(3)通過曲線方程概念的教學,培養學生數與形相互聯系、對立統一的辯證唯物主義觀點.
(4)通過求曲線方程的教學,培養學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.
(5)進一步理解數形結合的思想方法.
教學建議
教材分析
(1)知識結構
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質.曲線方程的概念和求曲線方程的問題又有內在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質則更在其后,本節不予研究.因此,本節涉及曲線方程概念和求曲線方程兩大基本問題.
(2)重點、難點分析
①本節內容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想.
②本節的難點是曲線方程的概念和求曲線方程的方法.
教法建議
(1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系.曲線與方程對應關系的基礎是點與坐標的對應關系.注意強調曲線方程的完備性和純粹性.
(2)可以結合已經學過的直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.
(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.
(4)從集合與對應的觀點可以看得更清楚:
設 表示曲線 上適合某種條件的點 的集合;
表示二元方程的解對應的點的坐標的集合.
可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即
(5)在學習求曲線方程的方法時,應從具體實例出發,引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數方程(曲線的方程),這個過渡是一個從幾何向代數不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.
這五個步驟的實質是將產生曲線的幾何條件逐步轉化為代數方程,即
文字語言中的幾何條件 數學符號語言中的等式 數學符號語言中含動點坐標 , 的代數方程 簡化了的 , 的代數方程
由此可見,曲線方程就是產生曲線的幾何條件的一種表現形式,這個形式的特點是“含動點坐標的代數方程.”
(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.
高中簡單數學教案模板篇2
教材第108頁例1,練習二十四第1、2題。
二、教材分析:
“滲透集合知識”是人教版《義務教育課程試驗教科書數學》三年級下冊第九單元《數學廣角》第一課時的教學內容。小學生從一開始學習數學,就已經在運用集合的思想方法了。例如,學生在一年級學習數數時,把1個人、2朵花、3枝鉛筆等等用一條封閉的曲線圈起來表示,這樣表示的數學概念更直觀、形象,給學生留下的印象更深刻。又如,我們學習過的分類實際上就是集合理論的基礎。本節課教學的例1是借助學生熟悉的題材,滲透集合的思想,并利用直觀圖的方式求出兩個小組的總人數。在教學例1時,我注重了三個方面的問題。(1)集合的理解。(2)有關計算。(3)鞏固練習。基于以上的安排,結合新課程標準,我確定了本節課的教學目標:
三、教學目標:
(1)知識與技能:初步體會集合的思想方法,能夠借助直觀圖及利用集合的思想方法解決簡單的實際問題。
(2)過程與方法:使學生能借助具體內容,體會集合的思想方法,利用集合的思想方法去解決問題。
(3)情感態度與價值觀:培養學生觀察思考問題的能力。
四、重難點
重點:初步體會集合的思想方法。
突破方法:借助具體內容,初步體會集合的思想方法。
難點:用集合直觀圖來表示事物。
突破方法:通過動手操作,利用集合直觀圖來表示事物。
五、教法學法
集合問題屬人教課改版小學數學第六冊的智力游戲,所以學生對它的掌握程度允許有差異性,即學生能掌握到什么程度就到什么程度,所以設計的集合問題有較簡單的,一題多法的,還有課后讓學生繼續研究集合問題的實踐題目,使每個學生各取所需,各有所得,各有所樂,同時培養學生的創造意識和實踐能力;同時由于集合問題中各部分之間的關系較復雜和抽象,所以設計讓學生在操作活動中領會集合問題的基本結構,并根據確立的教學目標和學生的認知特點,在教學設計中,我將特別注重以下幾個方面:
1、創設情境,適時引導
數學來源于生活,并應用于生活。我通過學生熟悉的隊列問題導入新課,使學生置身于熟悉的生活情境中,多種感官被調動起來,主動參與學習過程。
2、設置認知沖突,感知體驗集合圖
以“參加兩個興趣小組的一共有多少人?”這一問題沖突為線索,讓學生想想可能會出現的情況,當學生解答過程中出現分歧時,進而引導學生借助一種圖(集合圖)來理解解決這一問題,讓學生充分感知體驗到集合圖的作用。
六、教學準備:導學卡、數字卡片。
七、教學流程:
1、創設情景(引出目標)
2、自主探究(感知目標)
3、鞏固加深(鞏固目標)
4、課堂小結(再現目標)
(一)情境引入、小故事引出大學問(理解重復)
我是用了一道同學們兒時的問題,在站隊的時候,有一個小朋友從左數是第5個,從右數還是第5個,算一算這個隊一共多少個同學?這個情景的設計,是讓學生充分理解重復。把枯燥的數學知識貫穿于小學生實際生活當中,引發學生的學習興趣,點燃他們求知欲望的火花,從而進入最佳的學習狀態,為主動探究新知識聚集動力。
(二)探索新知(體會集合)
1、在教學例1時,我大膽的將例題進行了改寫,我沒有按照常規的教學方法先出示統計表告訴學生參加語文興趣小組和數學興趣小組的學生名單,讓他們通過觀察統計表得出信息,參加語文小組的有5人,參加數學小組的有7人,然后讓學生提出問題并解決問題。而是直接告訴了學生參加兩個興趣小組的人數,然后讓他們算一算參加兩個小組的一共有多少人?學生列出算式5+7=12(人),此時我不去及時評判,目的在于我要讓學生猜想可能會發生的情況,然后等學生掌握了新知識后,自己去發現、自己去解正,為鍛煉學生的判斷能力有意設局的。
2、接下來引導學生用圖示的方法表示兩個課外小組的人員組成情況。在這個環節我設計了一個對號入座的活動,請一名男生和一名女生到臺前去貼號,再貼號的過程中當問到有什么好辦法能一眼看出來兩個組的人數時?很自然的就引出了集合圈,讓學生理解了集合的意義,導出了課題《集合》。很快學生發現,既參加了語文小組又參加了數學小組的兩名學生,安排在中間的位置是最合適的,這樣就組成三個部分,如中間部分表示既參加語文興趣小組又參加數學興趣小組的同學,另外兩邊一邊是只參加語文興趣小組的同學,一邊是只參加數學興趣小組的同學。
3、經過學生和教師共同完成集合,再次的確定兩個學生既參加了語文小組又參加了數學小組,計算時重復了,進而讓學生進行小組合作,討論交流得出在計算參加語文小組和數學小組總人數時,一定要減去重復的數據2,得出正確的算式5+7—2=12(人),在這個過程中,還要體現算法的多樣化,并不是只有這一種列示方法。這一過程,鍛煉了學生的觀察能力和思維能力以及運用已有知識解答新問題的&39;能力,培養了學生運用數學知識的意識;不但知其然,而且知其所以然。
(三)鞏固加深
這是教學中不可缺少的環節,這一環節是學生鞏固知識,形成技能,技巧,發展智力的重要過程,還要確保學習任務的圓滿完成。因此,練習的鞏固我主要設計了兩道習題。第一道題讓學生把動物的序號填在合適的位置,一邊是只會游泳的,一邊是只會飛的,還要讓學生說出中間部分表示的是什么?第二題是讓學生算算文具商店兩天一共進了多少種貨?這道題中兩天進的貨是以圖畫的形式出現的,這就要求學生在完成的過程中一定要認真觀察,養成細心的好習慣。
(四)總結
讓學生真正成為學習的主人,對所學的內容理解深刻,記憶牢固。同時,還培養了學生歸納概括事物本質屬性的能力。只要學生在平時多觀察,就會發現在日常生活中,有很多事物具有雙重性,或者在數量上是重復的。我們可以運用畫集合圈的方法來分析類別,再計算它們的數量;但是在計算總數時必須減去重復的數量;還可以將左中右圈里的數量相加。
高中簡單數學教案模板篇3
[核心必知]
1、預習教材,問題導入
根據以下提綱,預習教材P6~P9,回答下列問題、
(1)常見的程序框有哪些?
提示:終端框(起止框),輸入、輸出框,處理框,判斷框、
(2)算法的基本邏輯結構有哪些?
提示:順序結構、條件結構和循環結構、
2、歸納總結,核心必記
(1)程序框圖
程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形、在程序框圖中,一個或幾個程序框的組合表示算法中的一個步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執行順序、
(2)常見的程序框、流程線及各自表示的功能
圖形符號名稱功能
終端框(起止框)表示一個算法的起始和結束
輸入、輸出框表示一個算法輸入和輸出的信息
處理框(執行框)賦值、計算
判斷框判斷某一條件是否成立,成立時在出口處標明“是”或“Y”;不成立時標明“否”或“N”
流程線連接程序框
○連接點連接程序框圖的兩部分
(3)算法的基本邏輯結構
①算法的三種基本邏輯結構
算法的三種基本邏輯結構為順序結構、條件結構和循環結構,盡管算法千差萬別,但都是由這三種基本邏輯結構構成的
②順序結構
順序結構是由若干個依次執行的步驟組成的這是任何一個算法都離不開的基本結構,用程序框圖表示為:
[問題思考]
(1)一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束嗎?
提示:由程序框圖的概念可知一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束、
(2)順序結構是任何算法都離不開的基本結構嗎?
提示:根據算法基本邏輯結構可知順序結構是任何算法都離不開的基本結構、
[課前反思]
通過以上預習,必須掌握的幾個知識點:
(1)程序框圖的概念:
(2)常見的程序框、流程線及各自表示的功能:
(3)算法的.三種基本邏輯結構:
(4)順序結構的概念及其程序框圖的表示:
問題背景:計算1×2+3×4+5×6+…+99×100。
[思考1]能否設計一個算法,計算這個式子的值。
提示:能。
[思考2]能否采用更簡潔的方式表述上述算法過程。
提示:能,利用程序框圖。
[思考3]畫程序框圖時應遵循怎樣的規則?
名師指津:
(1)使用標準的框圖符號。
(2)框圖一般按從上到下、從左到右的方向畫。
(3)除判斷框外,其他程序框圖的符號只有一個進入點和一個退出點,判斷框是一個具有超過一個退出點的程序框。
(4)在圖形符號內描述的語言要非常簡練清楚。
(5)流程線不要忘記畫箭頭,因為它是反映流程執行先后次序的,如果不畫出箭頭就難以判斷各框的執行順序。
高中簡單數學教案模板篇4
教學目標:
(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.
(2)進一步理解曲線的方程和方程的曲線.
(3)初步掌握求曲線方程的方法.
(4)通過本節內容的教學,培養學生分析問題和轉化的能力.
教學重點、難點:求曲線的方程.
教學用具:計算機.
教學方法:啟發引導法,討論法.
教學過程:
【引入】
1.提問:什么是曲線的方程和方程的曲線.
學生思考并回答.教師強調.
2.坐標法和解析幾何的意義、基本問題.
對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:
(1)根據已知條件,求出表示平面曲線的方程.
(2)通過方程,研究平面曲線的性質.
事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節課就初步研究曲線方程的求法.
【問題】
如何根據已知條件,求出曲線的方程.
【實例分析】
例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.
首先由學生分析:根據直線方程的知識,運用點斜式即可解決.
解法一:易求線段 的中點坐標為(1,3),
由斜率關系可求得l的斜率為
于是有
即l的方程為
①
分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據是什么,有證明嗎?
(通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據就是定義中的兩條).
證明:(1)曲線上的點的坐標都是這個方程的解.
設 是線段 的垂直平分線上任意一點,則
即
將上式兩邊平方,整理得
這說明點 的坐標 是方程 的解.
(2)以這個方程的解為坐標的點都是曲線上的點.
設點 的坐標 是方程①的任意一解,則
到 、 的距離分別為
所以 ,即點 在直線 上.
綜合(1)、(2),①是所求直線的方程.
至此,證明完畢.回顧上述內容我們會發現一個有趣的現象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:
解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合
由兩點間的距離公式,點所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優越一些);至于第二條上邊已證.
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現了曲線方程定義中點集與對應的思想.因此是個好方法.
讓我們用這個方法試解如下問題:
例2:點 與兩條互相垂直的直線的距離的積是常數 求點 的軌跡方程.
分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.
求解過程略.
【概括總結】通過學生討論,師生共同總結:
分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:
首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:
(1)建立適當的坐標系,用有序實數對例如 表示曲線上任意一點 的坐標;
(2)寫出適合條件 的點 的集合
;
(3)用坐標表示條件 ,列出方程 ;
(4)化方程 為最簡形式;
(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.
一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.
上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.
下面再看一個問題:
例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.
【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關系.
解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合
由距離公式,點 適合的條件可表示為
①
將①式 移項后再兩邊平方,得
化簡得
由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.
【練習鞏固】
題目:在正三角形 內有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.
分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .
根據條件 ,代入坐標可得
化簡得
①
由于題目中要求點 在三角形內,所以 ,在結合①式可進一步求出 、 的范圍,最后曲線方程可表示為
【小結】師生共同總結:
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?
【作業】課本第72頁練習1,2,3;
高中簡單數學教案模板篇5
一、教材分析
1、教材的地位和作用:
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面, 數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
2、教學目標
根據教學大綱的要求和學生的實際水平,確定了本次課的教學目標
a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入“數學建模”的思想方法并能運用。
b在能力上:培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
c在情感上:通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。
3、教學重點和難點
根據教學大綱的要求我確定本節課的教學重點為:
①等差數列的概念。
②等差數列的通項公式的推導過程及應用。
由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節課的一個難點。同時,學生對“數學建模”的思想方法較為陌生,因此用數學思想解決實際問題是本節課的另一個難點。
二、學情分析對于三中的高一學生,知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。
二、教法分析
針對高中生這一思維特點和心理特征,本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。
三、學法指導在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學程序
本節課的教學過程由(一)復習引入(二)新課探究(三)應用例解(四)反饋練習(五)歸納小結(六)布置作業,六個教學環節構成。
(一)復習引入:
1.從函數觀點看,數列可看作是定義域為__________對應的一列函數值,從而數列的通項公式也就是相應函數的______ 。(N﹡;解析式)
通過練習1復習上節內容,為本節課用函數思想研究數列問題作準備。
2. 小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為: 100,98,96,94,92 ①
3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為 5,10,15,20,25 ②
通過練習2和3 引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。
(二) 新課探究
1、由引入自然的給出等差數列的概念:
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。強調:
① “從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(強調“同一個常數” );
在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:
an+1-an=d (n≥1)
同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一個數列公差<0, 第二個數列公差>0,第三個數列公差=0
由此強調:公差可以是正數、負數,也可以是0
高中簡單數學教案模板篇6
人教版高中數學必修5教案
(一)課標要求
本章的中心內容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應用上。通過本章學習,學生應當達到以下學習目標:
(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的生活實際問題。
(二)編寫意圖與特色
1.數學思想方法的重要性
數學思想方法的教學是中學數學教學中的重要組成部分,有利于學生加深數學知識的理解和掌握。
本章重視與內容密切相關的數學思想方法的教學,并且在提出問題、思考解決問題的策略等方面對學生進行具體示范、引導。本章的兩個主要數學結論是正弦定理和余弦定理,它們都是關于三角形的邊角關系的結論。在初中,學生已經學習了相關邊角關系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應邊及其所夾的角相等,那么這兩個三角形全”等。
教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發,提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題。”設置這些問題,都是為了加強數學思想方法的教學。
2.注意加強前后知識的聯系
加強與前后各章教學內容的聯系,注意復習和應用已學內容,并為后續章節教學內容做好準備,能使整套教科書成為一個有機整體,提高教學效益,并有利于學生對于數學知識的學習和鞏固。
本章內容處理三角形中的邊角關系,與初中學習的三角形的邊與角的基本關系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯系。教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發,提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的`問題。”這樣,從聯系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎上,形成良好的知識結構。
《課程標準》和教科書把“解三角形”這部分內容安排在數學五的第一部分內容,
位置相對靠后,在此內容之前學生已經學習了三角函數、平面向量、直線和圓的方程等與本章知識聯系密切的內容,這使這部分內容的處理有了比較多的工具,某些內容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關系,余弦定理則指出了一般三角形中三邊平方之間的關系,如何看這兩個定理之間的關系?”,并進而指出,“從余弦定理以及余弦函數的性質可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
3.重視加強意識和數學實踐能力
學數學的最終目的是應用數學,而如今比較突出的兩個問題是,學生應用數學的意識不強,創造能力較弱。學生往往不能把實際問題抽象成數學問題,不能把所學的數學知識應用到實際問題中去,對所學數學知識的實際背景了解不多,雖然學生機械地模仿一些常見數學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發現問題、解決問題的科學思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發,引入數學課題,最后把數學知識應用于實際問題。
高中簡單數學教案模板篇7
各位評委老師,上午好,我是__號考生葉新穎。今天我的說課題目是集合。首先我們來進行教材分析。
教材分析
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
本節課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。
教學目標
1、學習目標
(1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬于”關系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
2、能力目標
(1)能夠把一句話一個事件用集合的方式表示出來。
(2)準確理解集合與及集合內的元素之間的關系。
3、情感目標
通過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了解到數學于生活中。
教學重點與難點
重點:集合的基本概念與表示方法;
難點:運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;
教學方法
(1)本課將采用探究式教學,讓學生主動去探索,激發學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果;
(2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。
學習方法
(1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,
教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象的綜合能力。
(2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培
優扶差,滿足不同。”
教學思路,具體的思路如下
一、引入課題
軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。
二、正體部分
學生閱讀教材,并思考下列問題:
(1)集合有那些概念?
(2)集合有那些符號?
(3)集合中元素的特性是什么?
(4)如何給集合分類?
(一)集合的有關概念
(1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象.
(2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合.
(3)元素:集合中每個對象叫做這個集合的元素.集合通常用大寫的拉丁字母表示,如A、B、C、元素通常用小寫的
拉丁字母表示,如a、b、c、
1.思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,對學生的例子予以討論、點評,進而講解下面的問題。
2、元素與集合的關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)
集合A={2,3,4,6,9}a=2因此我們知道a∈A(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA
要注意“∈”的方向,不能把a∈A顛倒過來寫.(舉例)集合A={3,4,6,9}a=2因此我們知道aA
3、集合中元素的特性(1)確定性:(2)互異性:(3)無序性:
4、集合分類
根據集合所含元素個屬不同,可把集合分為如下幾類:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限個元素的集合叫做有限集
(3)含有無窮個元素的集合叫做無限集注:應區分,{},{0},0等符號的含義
5、常用數集及其表示方法
(1)非負整數集(自然數集):全體非負整數的集合.記作N
(2)正整數集:非負整數集內排除0的集.記作N__或N+
(3)整數集:全體整數的集合.記作Z
(4)有理數集:全體有理數的集合.記作Q
(5)實數集:全體實數的集合.記作R注:
(1)自然數集包括數0.
(2)非負整數集內排除0的集.記作N__或N+,Q、Z、R等其它數集內排除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z__
(二)集合的表示方法
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1)列舉法:把集合中的元素一一列舉出來,寫在大括號內。如:{1,2,3,4,5},{-2,3-+2,5y3--,-2+y2},;例1.(課本例1)思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
(2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{---3>2},{(-,y)y=-2+1},{直角三角形},;例2.(課本例2)說明:(課本P5最后一段)思考3:(課本P6思考)
強調:描述法表示集合應注意集合的代表元素
{(-,y)y=-2+3-+2}與{yy=-2+3-+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{}已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。
說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
(三)課堂練習(課本P6練習)
三、歸納小結與作業
本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
書面作業:習題1.1,第1-4題。
高中簡單數學教案模板篇8
教學目標:
1、進一步熟練掌握比較法證明不等式;
2、了解作商比較法證明不等式;
3、提高學生解題時應變能力.
教學重點:
比較法的應用
教學難點:
常見解題技巧
教學方法啟發引導式
教學活動
(一)導入新課
(教師活動)教師打出字幕(復習提問),請三位同學回答問題,教師點評.
(學生活動)思考問題,回答.
[字幕]
1、比較法證明不等式的步驟是怎樣的?
2、比較法證明不等式的步驟中,依據、手段、目的各是什么?
3、用比較法證明不等式的步驟中,最關鍵的是哪一步?學了哪些常用的變形方法?對式子的變形還有其它方法嗎?
[點評]用比較法證明不等式步驟中,關鍵是對差式的變形.在我們所學的知識中,對式子變形的常用方法除了配方、通分,還有因式分解.這節課我們將繼續學習比較法證明不等式,積累對差式變形的常用方法和比較法思想的應用.(板書課題)
設計意圖:復習鞏固已學知識,銜接新知識,引入本節課學習的內容.
(二)新課講授
【嘗試探索,建立新知】
(教師活動)提出問題,引導學生研究解決問題,并點評.
(學生活動)嘗試解決問題.
[問題]
1、化簡
2、比較與()的大小.
(學生解答問題)
[點評]
①問題1,我們采用了因式分解的方法進行簡化.
②通過學習比較法證明不等式,我們不難發現,比較法的思想方法還可用來比較兩個式子的大小.
設計意圖:啟發學生研究問題,建立新知,形成新的知識體系.
【例題示范,學會應用】
(教師活動)教師打出字幕(例題),引導、啟發學生研究問題,井點評解題過程.
(學生活動)分析,研究問題.
[字幕]例題3已知a,b是正數,且,求證
[分析]依題目特點,作差后重新組項,采用因式分解來變形.
證明:(見課本)
[點評]因式分解也是對差式變形的一種常用方法.此例將差式變形為幾個因式的積的形式,在確定符號中,表達過程較復雜,如何書寫證明過程,例3給出了一個好的示范.
[點評]解這道題在判斷符號時用了分類討論,分類討論是重要的數學思想方法.要理解為什么分類,怎樣分類.分類時要不重不漏.
[字幕]例5甲、乙兩人同時同地沿同一條路線走到同一地點.甲有一半時間以速度m行走,另一半時間以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果,問甲、乙兩人誰先到達指定地點.
[分析]設從出發地點至指定地點的路程為,甲、乙兩人走完這段路程用的時間分別為,要回答題目中的問題,只要比較、的大小就可以了.
解:(見課本)
[點評]此題是一個實際問題,學習了如何利用比較法證明不等式的思想方法解決有關實際問題.要培養自己學數學,用數學的良好品質.
設計意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號的方法.培養學生應用知識解決實際問題的能力.
【課堂練習】
(教師活動)教師打出字幕練習,要求學生獨立思考,完成練習;請甲、乙兩位學生板演;巡視學生的解題情況,對正確的給予肯定,對偏差及時糾正;點評練習中存在的問題.
(學生活動)在筆記本上完成練習,甲、乙兩位同學板演.
[字幕]練習:
1、設,比較與的大小.
2、已知,求證
設計意圖:掌握比較法證明不等式及思想方法的應用.靈活掌握因式分解法對差式的變形和分類討論確定符號.反饋信息,調節課堂教學.
【分析歸納、小結解法】
(教師活動)分析歸納例題的解題過程,小結對差式變形、確定符號的常用方法和利用不等式解決實際問題的解題步驟.
(學生活動)與教師一道小結,并記錄在筆記本上.
1、比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個式子大小的一種重要方法.
2、對差式變形的常用方法有:配方法,通分法,因式分解法等.
3、會用分類討論的方法確定差式的符號.
4、利用不等式解決實際問題的解題步驟:
①類比列方程解應用題的步驟.
②分析題意,設未知數,找出數量關系(函數關系,相等關系或不等關系),
③列出函數關系、等式或不等式,
④求解,作答.
設計意圖:培養學生分析歸納問題的能力,掌握用比較法證明不等式的知識體系.
(三)小結
(教師活動)教師小結本節課所學的知識及數學思想與方法.
(學生活動)與教師一道小結,并記錄筆記.
本節課學習了對差式變形的一種常用方法因式分解法;對符號確定的分類討論法;應用比較法的思想解決實際問題.
通過學習比較法證明不等式,要明確比較法證明不等式的理論依據,理解轉化,使問題簡化是比較法證明不等式中所蘊含的重要數學思想,掌握求差后對差式變形以及判斷符號的重要方法,并在以后的學習中繼續積累方法,培養用數學知識解決實際問題的`能力.
設計意圖:培養學生對所學的知識進行概括歸納的能力,鞏固所學的知識,領會化歸、類比、分類討論的重要數學思想方法.
(四)布置作業
1、課本作業:P177、8。
2、思考題:已知,求證
3、研究性題:對于同樣的距離,船在流水中來回行駛一次的時間和船在靜水中來回行駛一次的時間是否相等?(假設船在流水中的速度和部在靜水中的速度保持不變)
設計意圖:思考題讓學生了解商值比較法,掌握分類討論的思想.研究性題是使學生理論聯系實際,用數學解決實際問題,提高應用數學的能力.
(五)課后點評
1、教學評價、反饋調節措施的構想:本節課采用啟發引導,講練結合的授課方式,發揮教師主導作用,體現學生主體地位,通過啟發誘導學生深入思考問題,解決問題,反饋學習信息,調節教學活動.
2、教學措施的設計:由于對差式變形,確定符號是掌握比較法證明不等式的關鍵,本節課在上節課的基礎上繼續學習差式變形的方法和符號的確定,例3和例4分別使學生掌握因式分解變形和分類討論確定符號,例5使學生對所學的知識會應用.例題設計目的在于突出重點,突破難點,學會應用
高中簡單數學教案模板篇9
一、課程性質與任務
數學是研究空間形式和數量關系的科學,是科學和技術的基礎,是人類文化的重要組成部分。數學課程是中等職業學校學生必修的一門公共基礎課。本課程的任務是:使學生掌握必要的數學基礎知識,具備必需的相關技能與能力,為學習專業知識、掌握職業技能、繼續學習和終身發展奠定基礎。二、課程教學目標
1.在九年義務教育基礎上,使學生進一步學習并掌握職業崗位和生活中所必要的數學基礎知識。2.培養學生的計算技能、計算工具使用技能和數據處理技能,培養學生的觀察能力、空間想象能力、分析與解決問題能力和數學思維能力。
3.引導學生逐步養成良好的學習習慣、實踐意識、創新意識和實事求是的科學態度,提高學生就業能力與創業能力。三、教學內容結構
本課程的教學內容由基礎模塊、職業模塊和拓展模塊三個部分構成。
1.基礎模塊是各專業學生必修的基礎性內容和應達到的基本要求,教學時數為128學時。2.職業模塊是適應學生學習相關專業需要的限定選修內容,各學校根據實際情況進行選擇和安排教學,教學時數為32~64學時。
3.拓展模塊是滿足學生個性發展和繼續學習需要的任意選修內容,教學時數不做統一規定。四、教學內容與要求
(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)
了解:初步知道知識的含義及其簡單應用。
理解:懂得知識的概念和規律(定義、定理、法則等)以及與其他相關知識的聯系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養要求(分為三項技能與四項能力)
計算技能:根據法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數學工具軟件。數據處理技能:按要求對數據(數據表格)進行處理并提取有關信息。觀察能力:根據數據趨勢,數量關系或圖形、圖示,描述其規律。
空間想象能力:依據文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數學相關問題,作出分析并運用適當的數學方法予以解決。
數學思維能力:依據所學的數學知識,運用類比、歸納、綜合等方法,對數學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
(二)教學內容與要求1.基礎模塊(128學時)第1單元集合(10學時)
第2單元不等式(8學時)
第3單元函數(12學時)
第4單元指數函數與對數函數(12學時)
第5單元三角函數(18學時)
第6單元數列(10學時)
第7單元平面向量(矢量)(10學時)
第8單元直線和圓的方程(18學時)
第9單元立體幾何(14學時)
第10單元概率與統計初步(16學時)
2.職業模塊
第1單元三角計算及其應用(16學時)
第2單元坐標變換與參數方程(12學時)
第3單元復數及其應用(10學時)
高中簡單數學教案模板篇10
開學第一課講點什么,我想最好不講學習的事情,不要講作業什么的。最好的就是談談理想,或者寫寫夢想,描繪一下自己在本學期結束后會變成一個什么樣的人。作為老師,我想我會講三個故事。
第一個故事:我會講《山體滑坡的故事》
一個灰心喪氣的青年人,因科舉沒考上,便頹廢不堪,一蹶不振,整天關在屋子里,抱頭痛哭。有一天,一位老者跨進門,語重心長地說:“假如山上滑坡,你該怎么辦?”年青人喃喃:“往下跑。”老者仰頭大笑:“那你就葬身山中了。你應該往山上跑,你只有勇敢地面對它,才有生還的希望,天下事皆然。”說完便飄然而去。
需要告訴學生的是:只有勇敢面對挑戰和困難,才能戰勝它。往上走,不要往下走,學習亦如此。
第二個故事:我會講《老鷹的故事》
一個人在高山之巔的鷹巢里,抓到了一只幼鷹,他把幼鷹帶回家,養在雞籠里。這只幼鷹和雞一起啄食、嬉鬧和休息,它以為自己是一只雞。這只鷹漸漸長大,羽翼豐滿了,主人想把它訓練成獵鷹,可是由于終日和雞混在一起,它已經變得和雞完全一樣,根本沒有飛的愿望了。主人試了各種辦法,都毫無效果,最后把它帶到山頂上,一把將它扔了出去。這只鷹像塊石頭似的,直掉下去,慌亂之中它拼命地撲打翅膀,就這樣,它終于飛了起來!
需要告訴學生的是:相信自己是一只雄鷹,勇敢面對一切挑戰和失敗。
第三故事:我會講《蘇格拉底的故事》
開學第一天,大哲學家蘇格拉底對學生們說:“今天,我們只做一件最簡單也是最容易做的事兒:每個人把胳膊盡量都往前甩,然后再盡量往后甩。”說著,蘇格拉底示范了一遍,“從今天開始,每天做300下,大家能做到嗎?”學生們都笑了,這么簡單的事情,有什么做不到的?過了一個月,蘇格拉底問學生們:“每天甩手300下,哪些同學堅持了?”有90%的同學驕傲地舉起了手。又過了一個月,蘇格拉底再問,這回,堅持下來的同學只剩下了八成。一年過后,蘇格拉底再一次問大家:“請大家告訴我,最簡單的甩手運動,還有哪幾位同學堅持了?”這時候,整個教室里,只有一個人舉起了手。這個學生就是后來成為古希臘另一位大哲學家的柏拉圖。
需要告訴學生的是:成功在于堅持,這是一個并不神秘的秘訣。
三個故事講完之后,我還會問問,成功除了學會面對困難,相信自己,學會堅持之外,還需要那些成功因素?當然還需要養成好習慣和掌握好方法。
最后我還會講兩個小故事。來結束我的第一課。
故事一:
父子兩住山上,每天都要趕牛車下山賣柴。老父較有經驗,坐鎮駕車,山路崎嶇,彎道特多,兒子眼神較好,總是在要轉彎時提醒道:“爹,轉彎啦!”有一次父親因病沒有下山,兒子一人駕車。到了彎道,牛怎么也不肯轉彎,兒子用盡各種方法,下車又推又拉,用青草誘之,牛一動不動。到底是怎么回事?兒子百思不得其解。最后只有一個辦法了,他左右看看無人,貼近牛的耳朵大聲叫道:“爹,轉彎啦!”牛應聲而動。
——要培養好的習慣來代替壞的習慣,當好的習慣積累多了,自然會有一個好的人生。
有個老人在河邊釣魚,一個小孩走過去看他釣魚,老人技巧純熟,所以沒多久就釣上了滿簍的魚,老人見小孩很可愛,要把整簍的魚送給他,小孩搖搖頭,老人驚異的問道你為何不要?小孩回答:“我想要你手中的釣竿。”老人問:“你要釣竿做什么?小孩說:”這簍魚沒多久就吃完了,要是我有釣竿,我就可以自己釣,一輩子也吃不完。“你們說,這個小孩是不是很聰明?
——重要的還在釣技。學習,不能只記住知識,更重要的是掌握方法,形成能力。
高中簡單數學教案模板篇11
1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用。
(1)能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象。
(2)能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題。
2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力。
3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性。
高一數學對數函數教案:教材分析
(1)對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的。故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解。對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎。
(2)本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質。難點是利用指數函數的圖象和性質得到對數函數的圖象和性質。由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點。
(3)本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開。而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點。
高一數學對數函數教案:教法建議
(1)對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
(2)在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。
高中簡單數學教案模板篇12
【學習導航】
(一)兩角和與差公式
(二)倍角公式
2cos2α=1+cos2α 2sin2α=1-cos2α
注意:倍角公式揭示了具有倍數關系的兩個角的三角函數的運算規律,可實現函數式的降冪的變化。
注: (1)兩角和與差的三角函數公式能夠解答的三類基本題型:求值題,化簡題,證明題。
(2)對公式會“正用”,“逆用”,“變形使用”;
(3)掌握“角的演變”規律,
(4)將公式和其它知識銜接起來使用。
重點難點
重點:幾組三角恒等式的應用
難點:靈活應用和、差、倍角等公式進行三角式化簡、求值、證明恒等式
【精典范例】
例1 已知
求證:
例2 已知 求 的取值范圍
分析 難以直接用 的式子來表達,因此設 ,并找出 應滿足的等式,從而求出 的取值范圍.
例3 求函數 的值域.
例4 已知且 、 、 均為鈍角,求角 的值.
分析 僅由 ,不能確定角 的值,還必須找出角 的范圍,才能判斷 的值. 由單位圓中的余弦線可以看出,若 使 的角為 或 若 則 或
【選修延伸】
例5 已知
求 的值.
例6 已知 ,
求 的值.
例7 已知
求 的值.
例8 求值:(1) (2)
【追蹤訓練】
1. 等于 ( )
A. B. C. D.
2.已知 ,且,則 的值等于 ( )
A. B. C. D.
3.求值: = .
4.求證:(1)
高中簡單數學教案模板篇13
六年級,讓好習慣不離身
一、目標
“要做事,先做人”,“好習慣使人終生收益”。
二、數學學科行為訓導內容
1、專心聽
講的習慣。
2、勤思好問的習慣。
3、預習習慣。
4、主動探究的習慣。
5、自覺作筆記的習慣。
6、獨立完成作業的習慣。
三、教學過程
“同學們,為了能在20__年6月順利畢業,你準備好了嗎?”
老師知道,你們都是很優秀的,相信你們以后會做得更優秀。有沒有信心?
(一)講故事,感悟
第一個故事:一個人在高山之巔的鷹巢里,抓到了一只幼鷹,他把幼鷹帶回家,養在雞籠里。這只幼鷹和雞一起啄食、嬉鬧和休息,它以為自己是一只雞。這只鷹漸漸長大,羽翼豐滿了,主人想把它訓練成獵鷹,可是由于終日和雞混在一起,它已經變得和雞完全一樣,根本沒有飛的愿望了。主人試了各種辦法,都毫無效果,最后把它帶到山頂上,一把將它扔了出去。這只鷹像塊石頭似的,直掉下去,慌亂之中它拼命地撲打翅膀,就這樣,它終于飛了起來!(——相信自己是一只雄鷹,勇敢面對一切挑戰和失敗。)
第二個故事:開學第一天,大哲學家蘇格拉底對學生們說:“今天,我們只做一件最簡單也是最容易做的事兒:每個人把胳膊盡量都往前甩,然后再盡量往后甩。”說著,蘇格拉底示范了一遍,“從今天開始,每天做300下,大家能做到嗎?”學生們都笑了,這么簡單的事情,有什么做不到的?過了一個月,蘇格拉底問學生們:“每天甩手300下,哪些同學堅持了?”有90%的同學驕傲地舉起了手。又過了一個月,蘇格拉底再問,這回,堅持下來的同學只剩下了八成。一年過后,蘇格拉底再一次問大家:“請大家告訴我,最簡單的甩手運動,還有哪幾位同學堅持了?”這時候,整個教室里,只有一個人舉起了手。這個學生就是后來成為古希臘另一位大哲學家的柏拉圖。(——成功在于堅持,這是一個并不神秘的秘訣。)
第三個故事:有個老人在河邊釣魚,一個小孩走過去看他釣魚,老人技巧純熟,所以沒多久就釣上了滿簍的魚,老人見小孩很可愛,要把整簍的魚送給他,小孩搖搖頭,老人驚異的問道你為何不要?小孩回答:“我想要你手中的釣竿。”老人問:“你要釣竿做什么?小孩說:“這簍魚沒多久就吃完了,要是我有釣竿,我就可以自己釣,一輩子也吃不完。”你們說,這個小孩是不是很聰明?(——重要的還在釣技。學習,不能只記住知識,更重要的是掌握方法,形成能力。)
第四個故事:某人在屋檐下躲雨,看見觀音正撐傘走過。這人說:“觀音菩薩,普度一下眾生吧,帶我一段如何?”觀音說:“我在雨里,你在檐下,而檐下無雨,你不需要我度。”這人立刻跳出檐下,站在雨中:“現在我也在雨中了,該度我了吧?”觀音說:“你在雨中,我也在雨中,我不被淋,因為有傘;你被雨淋,因為無傘。所以不是我度自己,而是傘度我。你要想度,不必找我,請自找傘去!”說完便走了。第二天,這人遇到了難事,便去寺廟里求觀音。走進廟里,才發現觀音的像前也有一個人在拜,那個人長得和觀音一模一樣,絲毫不差。這人問:“你是觀音嗎?”那人答道:“我正是觀音。”這人又問:“那你為何還拜自己?”觀音笑道:“我也遇到了難事,但我知道,求人不如求己。”第五個故事:一頭馱著沉重貨物的驢,氣喘吁吁地請求只馱了一點貨物的馬:“幫我馱一點東西吧。對你來說,這不算什么;可對我來說,卻可以減輕不少負擔。”馬不高興地回答:“你憑什么讓我幫你馱東西,我樂得輕松呢。”不久,驢累死了。主人將驢背上的所有貨物全部加在馬背上,馬懊悔不已。
膨脹的自我使我們忽略了一個基本事實,那就是:我們同在生活這條大船上,別人的好壞與我們休戚相關。別人的不幸不能給我們帶來快樂,相反,在幫助別人的時候,其實也是在幫助我們自己。一位信佛的老人告訴我,人好比一只空杯,里面的水滿了,你得施一半給人家,待杯子里又滿了,再施一半給人家。只有不斷進、不斷出,你這個杯子才會有價值,你這里的水才會是活水。如果只進不出,你那只杯子也就再也裝不進了。當你得到一杯水的時候,你別忘記,其中的一半是奉獻。假如你不愿奉獻,你就再也得不到了。
小結:
第一,相信自己,勇敢面對
第二、養成習慣,重在堅持
第三、注重方法,培養能力
第四、求人不如求己
第五、幫助別人,追求雙蠃
(二)六年級學生必須養成的學習習慣
1、專心聽講的習慣
課堂上全神貫注、靜心聆聽、積極思考、勇于發言是學習高效的前提條件,希望各位同學能夠充分利用每天課堂上的40分鐘時間漂亮地完成當天的學習任務。讓自己的課余時間更輕松、更自由。
2、勤思好問的習慣
在課堂上除了認真聽講以外,還要勤于思考,善于提問,這樣的學習才是更有效的學習,學習能力才會提升,學習成績才會提高。
3、預習習慣。
預習可以培養和提高我們的自學能力、提高聽課效率。學習新知識以前,老師會設計幾個問題,讓大家帶著問題去預習。我們可用彩筆勾劃出書中的重要內容,在不理解的地方標上記號,
(1)通過自學,將自己看到的,想到的用筆在書中某個地方規范地記錄下來,能初步理解書中的概念,并能舉例說明。
(2)會敘述書中闡明的算理,并嘗試完成“做一做”中的習題。
(3)自擬思考題,在小組內交流并討論。
4、主動探究的習慣。
(1)觀察:觀察要仔細、全面,要有目的、有條理,通過觀察發現問題并提出問題、討論問題、解決問題;
(2)在老師指導下畫圖分析或動手操作的習慣。
5、自覺作筆記的習慣。
在課堂上要養成記筆記的好習慣,可以記錄在數學書上,但一定要規范,如可在書中某些空白地方畫上一些條形格子,然后用工整的書寫記錄下每節課知識重點和要點,記知識結構與規律,記公式,記補充內容等。
6、獨立完成作業的習慣。
(1)細心審題,弄清題目的要求,思考解題的方法
(2)獨自去解決問題。
(3)書寫格式符合要求。
(4)當天的作業當天完成。
(5)每天作業及時清理、每單元進行評比。
(6)每單元檢測后自我查漏補缺的習慣。
高中簡單數學教案模板篇14
一、單元教學內容分析
本章節內容教學北師大版教材安排在三角函數章節之后,教本必修四的中間位置,為后面推導和差角公式做好鋪墊,為解三角形問題和平面幾何中的許多計算問題提供便利工具。
向量既有代數特征,又有幾何特征,是溝通代數與幾何的橋梁。向量具有代數特征,運算及其規律是代數學研究的基本問題。向量可以進行多種運算,如向量加、減、數乘和叉乘等。向量運算具有一系列豐富的運算性質,與數運算相比,向量運算擴充了運算的對象和運算的性質。向量具有幾何特征,它不僅可以描述、刻畫幾何中的點、線、面及其位置關系,數量關系,還可以表示空間當中的曲線與曲面,是研究幾何問題的基本工具。本教材能從學生熟悉的實例出發,經過觀察、分析、歸納等方法概括出向量的相關概念,比以往教材更能使學生產生自然而親切的感覺,有助于激發學生的學習興趣,調動學生學習的積極性,使他們真正認識到數學的應用價值,從而提高學生應用數學的意識。
向量是刻畫現實世界的重要的數學模型。它為理解抽象代數、線性代數、泛函分析提供了基本數學模型。他與物理學科緊密相連。由于向量是近代數學中重要和基本的數學概念,是溝通代數、幾何與三角函數的一種重要工具,它有極其豐富的實際背景,有著廣泛的實際應用,因此它具有很高的教育教學價值,它對更新和完善知識結構具有重要的意義。
教材結合向量的幾何背景——有向線段,引入向量的表示法,規定了向量的長度的概念。定義了零向量、單位向量、平行向量和共線向量等概念。對于許多舊有的知識利用向量方法去處理,就會變得非常簡捷,甚至變得十分明了,從而有助于學生對這些知識有更深刻的理解,更牢固的記憶,更自如的應用,總之,有助于學生建立良好的數學認知結構。通過本部分內容的學習,可以促使學生認識到向量與實際生活緊密相連,它在解決實際問題當中有著廣泛應用。
二、單元學生情況分析
1、學生在初中階段接觸過物理學里面的矢量,已具備基本的認知水平和運算能力,具備在運算中探索和發現數學結論的基本能力。
2、學生已基本掌握函數和三角函數章節的基礎知識,會運用數形結合法,整體代換,分類討論法,類比思想解決實際問題。
3、學生已具備基本的分析和解決數學問題的勇氣和智慧。
三、教學目標
1.知識與技能目標
(1)理解并掌握平面向量的基本概念。通過力與力的分析實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示。
(2)通過實例,掌握向量的加、減、數乘向量和兩向量數量積運算,并理解其幾何意義。
(3)理解并掌握向量共線和垂直問題。理解平面向量基本定理及其意義。掌握平面向量的正交分解及其坐標表示。會用坐標表示向量的加、減、數乘向量及數量積運算。
(4)通過物理中“功”等實例,理解平面向量數量積的含義及其物理意義。體會平面向量的數量積與向量投影的關系。掌握數量積的坐標表示,能運用數量積表示兩個向量的夾角,會用數量積來判斷向量的垂直問題。
2.過程與方法目標
(1)通過實例讓學生親身經歷觀察、分析、歸納、抽象概括的思維過程。感受和認知不同維度中的向量表示。
(2)通過讓學生體會平面向量數量積的物理意義和幾何意義,體會數學與物理是密切聯系的。
(3)經歷用向量方法解決某些簡單的平面幾何及力學問題與其他一些實際問題的過程,體會向量是一種處理幾何問題、物理問題等的工具,使學生的運算能力和解決實際問題的能力得到提升。
3.情感、態度與價值觀
(1)從學生熟悉的生活實例出發建立平面向量概念,激發學生的學習興趣。從物理知識引入到數學知識的形成過程,使學生體會到知識之間的相互聯系,建立全面、科學的價值觀。
(2)通過對向量正交分解的學習,使學生進一步體會一般的問題往往歸結為人們最熟悉的特殊問題。
(3)通過對本章節內容的學習,使學生體會到數學和其他知識相聯系,體會數學作為解決問題的工具的作用。
重點:
1.平面向量的概念,運算,共線問題,平面向量的基本定理。
2.平面向量的坐標表示,向量數量積的概念和性質,向量的垂直問題。
3.體會向量在解決平面幾何問題和物理問題中的作用。
難點:
1.對自由向量,向量加、減法數乘向量定義的理解和對平面向量基本定理理解。
2.對平面向量運算坐標表示及向量數量積概念的理解,平面向量數量積的應用。
3.用向量表示幾何關系。
四、單元教學活動
1.引入向量相關概念時,除用教材中給出的實例外,鼓勵學生列舉實際生活中的其他實例。
2.學習向量知識的同時,盡量地聯系熟悉的物理現象或其他生活實例,用向量表述和刻畫。以便讓學生領悟到知識之間和學科之間的相互聯系。
3.通過協作討論,根據生活中的實際案例,邊了解概念,邊畫圖;邊進行計算,邊畫圖;進一步培養學生數形結合、形象思考、分析問題的習慣。
4.在學習本章知識的過程中,應注意向量運算的兩個方面:幾何意義與代數表示。由于新知識的學習過程中,它們相對孤立,學生對他們的認識也就不容易形成體系。所以在教授新課時應有意識地做一些滲透和鋪墊,在章節小結時應強調它們的區別與聯系,以便學生更加全面、深刻的認識向量。
高中簡單數學教案模板篇15
一、教學目標
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態度與價值觀:提高學生空間想象力,體會三視圖的作用。
二、教學重點難點
重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學法指導:
觀察、動手實踐、討論、類比。
四、教學過程
(一)創設情景,揭開課題
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的`投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統稱為幾何體的三視圖。
三視圖的畫法規則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
(三)鞏固練習
課本P15練習1、2;P20習題1.2[A組]2。
(四)歸納整理
請學生回顧發表如何作好空間幾何體的三視圖
(五)布置作業
課本P20習題1.2[A組]1。
高中簡單數學教案模板篇16
一、說教材:
1.地位及作用:
“橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書的重點內容之一,也是歷年高考、會考的必考內容,是在學完求曲線方程的基礎上,進一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今后的學習打好基礎,因此本節內容具有承前啟后的作用。
2.教學目標:
根據《教學大綱》,《考試說明》的要求,并根據教材的具體內容和學生的實際情況,確定本節課的教學目標:
(1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。
(2)能力目標:
(a)培養學生靈活應用知識的能力。
(b)培養學生全面分析問題和解決問題的能力。
(c)培養學生快速準確的運算能力。
(3)德育目標:培養學生數形結合思想,類比、分類討論的思想以及確立從感性到理性認識的辯證唯物主義觀點。
3.重點、難點和關鍵點:
因為橢圓的定義和標準方程是解決與橢圓有關問題的重要依據,也是研究雙曲線和拋物線的基礎,因此,它是本節教材的重點;由于學生推理歸納能力較低,在推導橢圓的標準方程時涉及到根式的兩次平方,并且運算也較繁,因此它是本節課的難點;坐標系建立的好壞直接影響標準方程的推導和化簡,因此建立一個適當的直角坐標系是本節的關鍵。
二、說教材處理
為了完成本節課的教學目標,突出重點、分散難點、根據教材的內容和學生的實際情況,對教材做以下的處理:
1.學生狀況分析及對策:
2.教材內容的組織和安排:
本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進,層層深入的原則組織和安排如下:
(1)復習提問(2)引入新課(3)新課講解(4)反饋練習(5)歸納總結(6)布置作業
三、說教法和學法
1.為了充分調動學生學習的積極性,是學生變被動學習為主動而愉快的學習,引導學生自己動手,讓學生的思維活動在教師的引導下層層展開。請學生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課采用“引導教學法”。
2.利用電腦所畫圖形的動態演示總結規律。同時利用電腦的動態演示激發學生的學習興趣。
四、教學過程
教學環節
3.設a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。
例1屬基礎,主要反饋學生掌握基本知識的程度。
例2可強化基本技能訓練和基本知識的靈活運用。
小結
為使學生對本節內容有一個完整深刻的認識,教師引導學生從以下幾個方面進行小結。
1.橢圓的定義和標準方程及其應用。
2.橢圓標準方程中a,b,c諸關系。
3.求橢圓方程常用方法和基本思路。
通過小結形成知識體系,加深對本節知識的理解培養學生的歸納總結能力,增強學生學好圓錐曲線的信心。
布置作業
(1)77頁——78頁1,2,3,79頁11
(2)預習下節內容
鞏固本節所學概念,強化基本技能訓練,培養學生良好的學習習慣和品質,發現和彌補教學中的遺漏和不足。
高中簡單數學教案模板篇17
教學目標:①掌握對數函數的性質。
②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值 域及單調性。
③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。
教學重點與難點:對數函數的性質的應用。
教學過程設計:
⒈復習提問:對數函數的概念及性質。
⒉開始正課
1 比較數的大小
例 1 比較下列各組數的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數有何特征?
生:這兩個對數底相等。
師:那么對于兩個底相等的對數如何比大小?
生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數函數的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1
板書:
解:Ⅰ)當0∵5.1<5.9 ∴loga5.1>loga5.9
Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,∵5.1<5.9 ∴loga5.1
師:請同學們觀察一下⑵中這三個對數有何特征?
生:這三個對數底、真數都不相等。
師:那么對于這三個對數如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函數 的單調性比大小,②借用“中間量”間接比大小,③利用對數函數圖象的位置關系來比大小。
2 函數的定義域, 值 域及單調性。
例 2 ⑴求函數y=的定義域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要使函數有意義。若函數中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數中有對數的形式,則真數大于零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,
再根據對數函數的單調性求解。
師:請你寫一下這道題的解題過程。
生:<板書>
解: x2+2x-3>0 x<-3 或 x>1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解為:1
例 3 求下列函數的值域和單調區間。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。
下面請同學們來解⑴。
生:此函數可看作是由y= log0.5u, u= x- x2復合而成。
板書:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函數y=log0.5(x- x2)的單調遞減區間(0,0.5],單調遞 增區間[0.5,1)
注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則函數都不存在,性質就無從談起。
師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什么區別?
生:⑴的底數是常值,⑵的底數是字母。
師:那么⑵如何來解?
生:只要對a進行分類討論,做法與⑴類似。
板書:略。
⒊小結
這堂課主要講解如何應用對數函數的性質解決一些問題,希望能通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。
⒋作業
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)
⑵已知函數y=loga(x2-2x),(a>0,a≠1)
①求它的單調區間;②當0
⑶已知函數y=loga (a>0, b>0, 且 a≠1)
①求它的定義域;②討論它的奇偶性; ③討論它的單調性。
⑷已知函數y=loga(ax-1) (a>0,a≠1),
①求它的定義域;②當x為何值時,函數值大于1;③討論它的單調性。
5.課堂教學設計說明
這節課是安排為習題課,主要利用對數函數的性質解決一些問題,整個一堂課分兩個部分:一 .比較數的大小,想通過這一部分的練習,培養同學們構造函數的思想和分類討論、數形結合的思想。二.函數的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數的定義域。因為學生在求函數的值域和單調區間時,往往不考慮函數的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。
高中簡單數學教案模板篇18
【教學目標】
1、知識與技能:
(1)掌握圓的標準方程。
(2)會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程。
(3)會判斷點與圓的位置關系。
2、過程與方法:
(1)進一步培養學生用代數方法研究幾何問題的能力。
(2)加深對數形結合思想的理解和加強待定系數法的運用。
3、情感、態度與價值觀:
(1)培養學生主動探究知識、合作交流的意識。
(2)讓學生感受數學,體驗數學;從走入數學到走出數學,生活處處有數學,數學就在我身邊,體會到數學知識、思想方法和精神來源于生活,還要服務于生活;寓思想教育于教學。讓學生體會到數學的美以及數學的價值與魅力。
【學情分析】
對圓的方程有個初步的認識以及在上章學習了直線與方程的基礎上,學習圓的方程,學生還是可以接受。在教學過程中,主要采用啟發性原則,并且與已經學過的直線方程進行類比,發揮學生的思維能力、想象能力,由易到難,逐步加深。
【重點難點】
重點:圓的標準方程和圓的標準方程特點的明確。
難點:會根據不同的條件寫出圓的標準方程。
【教學過程】
第一學時評論(0)教學目標
教學活動活動1【導入】新聞聯播片段
請結合數學中圓知識,談談你對這句話的理解?
活動2【講授】問題1.
在直角坐標系中,以A(a,b)為圓心,r為半徑的圓上的動點M(x,y)滿足怎樣的關系式?
活動3【活動】想一想!
圓心在坐標原點,半徑長為r的圓的方程是什么?
活動4【導入】試試你的眼力!判斷下列方程是否為圓的標準方程:
(x-2)2+y=8;
(x-2)2-y2=8;
(2x-2)2+y2=8;
(x-2)2+y2=0;
(x-2)2+y2=a;
(2x-2)2+(2y-4)2=8。
答案:都不是,第6個可以化為圓的標準方程。
活動5【活動】再試一下!
圓(x1)2+(ay2)2=1a的圓心坐標和半徑分別是什么?
答案:圓心坐標為(1,—2),半徑是√2
活動6【活動】問題2.
要寫出圓的標準方程,只需知道圓的哪些量?
怎樣判斷一點是否在一個圓上?
學生回答,教師點評.
活動7【活動】例1
寫出圓心為A(2,-3),半徑長為5的圓的方程,并判斷點M1(5,7),M2((√5,1)是否在這個圓上。
學生回答,教師點評后,學生閱讀教科書上本題解法.
活動8【活動】探究
你能判斷點M2在圓內還是在圓外嗎?
學生回答,教師點評。
點與圓心距離比半徑大等價于點在圓外。
點與圓心距離比半徑小等價于點在圓內。
點與圓心距離等于半徑等價于點在圓外等價于點的坐標滿足方程。
活動9【講授】解題收獲
1.從確定圓的兩個要素即圓心和半徑入手,直接寫出圓的標準方程——直接法。
2.類似于點與直線方程的關系:點在圓上等價于點坐標滿足圓方程活動10【活動】試一試!
例2△ABC的三個頂點的坐標分別是A(5,1),B(7,-3),C(2,-8),求它的外接圓的方程.
師:△ABC的外接圓的圓心簡稱什么?
學生回答
師:△ABC的外心是什么的交點?
學生回答
師:求圓的標準方程,只需知道圓心坐標和圓的半徑。這三點都在圓上,其坐標一定是滿足所求圓的方程。這樣就可以設出圓的標準方程。
學生閱讀教材例2解法。
師:提示:方程組中
(1)(2)得到什么?
(1)(3)得到什么?
然后,怎樣就可以求出圓心坐標和半徑。
活動11【講授】解題收獲
先設出圓的標準方程,再根據已知條件建立方程組,從而求出圓心坐標和半徑的方法——待定系數法。
活動12【活動】動手折一折
請同學們準備一個銳角三角形紙片,能否用手工的方法找到此三角形外接圓的圓心?
學生回答過程.
把三角形的任意兩個頂點重合進行對折,就可以得到邊的垂直平分線,垂直平分線的交點即是三角形的外心。
師:把圓的弦對折,折線一定經過圓心。即圓心一定在弦的垂直平分線上。
活動13【活動】Let’stry
例3已知圓心為C的圓經過點A(1,1)和B(2,-2),且圓心C在直線m:x-y+1=0上,求圓心為C的圓的標準方程。
由學生閱讀例3,學生總結解題步驟。
活動14【講授】解題收獲
由圓的幾何性質直接求出圓心坐標和半徑,然后寫出標準方程——幾何性質法。
活動15【活動】小結
一個方程
三種方法
一種思想
活動16【講授】作業布置
作業:教材P124習題A組第2題和第3題.
課下探究:
(1)平面內到一定點的距離等于定長的點軌跡是圓。點的軌跡是圓的方法很多,請試著找出來,并和其他同學交流。
(2)直線方程有五種形式,圓除了標準方程,還有其它形式嗎?
活動17【導入】結束語
圓心半徑確定圓,
待定系數很普遍;
大家站在同一圓,
彰和諧平等友善;
半徑就像無形線,
把大家心聚一點;
垂直平分折中線,
就能折出同心愿;
中國騰飛之夢圓。
活動18【測試】課堂測試
1.圓C:(x2)2+(y+1)2=3的圓心坐標為()
A(2,1)B(2,—1)C(—2,1)D(—2,—1)
2.以原點為圓心,2為半徑的圓的標準方程是()
Ax2+y2=2Bx2+y2=4
C(x2)2+(y2)2=8Dx2+y2=√2
3圓心為(1,1)且與直線x+y=4相切的圓的方程是()
A(x1)2+(y1)2=2B(x1)2+(y1)2=4
C(x+1)2+(y+1)2=2D(x+1)2+(y+1)2=4
4圓A:(ax+2)2+y2=a+3,則此圓的半徑為______________。
5已知一個圓的圓心在點C(—3,—4),且經過原點。
(1)求該圓的標準方程;
(2)判斷點M(—1,0),N(1,—1),P(3,—4)和圓的位置關系。
6.已知△AOB的頂點坐標分別是A(8,0),B(0,6),O(0,0),求△AOB外接圓的方程.
7求過點A(1,—1)B(—1,1)且圓心在直線x+y2=0上的圓方程
參考答案:1B2B3A42或√2
5(1)(x+3)2+(y+4)2=25
(2)M在圓內,N在圓上,P在圓外。
6(x4)2+(y3)2=25。
7(x1)2+(y1)2=4