小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學教案 >

高中數(shù)學教案優(yōu)秀范文10篇

時間: 麗菲 數(shù)學教案

高中數(shù)學教案該怎么寫比較好呢?作為一名人民教師,很有必要精心設計一份教案,教案有助于學生理解并掌握系統(tǒng)的知識。下面是小編為大家精心收集整理的高中數(shù)學教案優(yōu)秀范文,希望對大家有所幫助。

高中數(shù)學教案優(yōu)秀范文10篇

高中數(shù)學教案優(yōu)秀范文篇1

教學目標:

1.了解復數(shù)的幾何意義,會用復平面內的點和向量來表示復數(shù);了解復數(shù)代數(shù)形式的加、減運算的幾何意義.

2.通過建立復平面上的點與復數(shù)的一一對應關系,自主探索復數(shù)加減法的幾何意義.

教學重點:

復數(shù)的幾何意義,復數(shù)加減法的幾何意義.

教學難點:

復數(shù)加減法的幾何意義.

教學過程:

一 、問題情境

我們知道,實數(shù)與數(shù)軸上的點是一一對應的,實數(shù)可以用數(shù)軸上的點來表示.那么,復數(shù)是否也能用點來表示呢?

二、學生活動

問題1 任何一個復數(shù)a+bi都可以由一個有序實數(shù)對(a,b)惟一確定,而有序實數(shù)對(a,b)與平面直角坐標系中的點是一一對應的,那么我們怎樣用平面上的點來表示復數(shù)呢?

問題2 平面直角坐標系中的點A與以原點O為起點,A為終點的向量是一一對應的,那么復數(shù)能用平面向量表示嗎?

問題3 任何一個實數(shù)都有絕對值,它表示數(shù)軸上與這個實數(shù)對應的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應的,我們可以給出復數(shù)的模(絕對值)的概念嗎?它又有什么幾何意義呢?

問題4 復數(shù)可以用復平面的向量來表示,那么,復數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復數(shù)差的模有什么幾何意義?

三、建構數(shù)學

1.復數(shù)的幾何意義:在平面直角坐標系中,以復數(shù)a+bi的實部a為橫坐標,虛部b為縱坐標就確定了點Z(a,b),我們可以用點Z(a,b)來表示復數(shù)a+bi,這就是復數(shù)的幾何意義.

2.復平面:建立了直角坐標系來表示復數(shù)的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù).

3.因為復平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應,所以我們也可以用向量來表示復數(shù)z=a+bi,這也是復數(shù)的幾何意義.

4.復數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復數(shù)差的模就是復平面內與這兩個復數(shù)對應的兩點間的距離.同時,復數(shù)加減法的法則與平面向量加減法的坐標形式也是完全一致的.

四、數(shù)學應用

例1 在復平面內,分別用點和向量表示下列復數(shù)4,2+i,-i,-1+3i,3-2i.

練習 課本P123練習第3,4題(口答).

思考

1.復平面內,表示一對共軛虛數(shù)的兩個點具有怎樣的位置關系?

2.如果復平面內表示兩個虛數(shù)的點關于原點對稱,那么它們的實部和虛部分別滿足什么關系?

3.“a=0”是“復數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.

4.“a=0”是“復數(shù)a+bi(a,b∈R)所對應的點在虛軸上”的_____條件.

例2 已知復數(shù)z=(m2+m-6)+(m2+m-2)i在復平面內所對應的點位于第二象限,求實數(shù)m允許的取值范圍.

例3 已知復數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大小.

思考 任意兩個復數(shù)都可以比較大小嗎?

例4 設z∈C,滿足下列條件的點Z的集合是什么圖形?

(1)│z│=2;(2)2<│z│<3.

變式:課本P124習題3.3第6題.

五、要點歸納與方法小結

本節(jié)課學習了以下內容:

1.復數(shù)的幾何意義.

2.復數(shù)加減法的幾何意義.

3.數(shù)形結合的思想方法.

高中數(shù)學教案優(yōu)秀范文篇2

一、課程性質與任務

數(shù)學是研究空間形式和數(shù)量關系的科學,是科學和技術的基礎,是人類文化的重要組成部分。

數(shù)學課程是中等職業(yè)學校學生必修的一門公共基礎課。本課程的任務是:使學生掌握必要的數(shù)學基礎知識,具備必需的相關技能與能力,為學習專業(yè)知識、掌握職業(yè)技能、繼續(xù)學習和終身發(fā)展奠定基礎。

二、課程教學目標

1.在九年義務教育基礎上,使學生進一步學習并掌握職業(yè)崗位和生活中所必要的數(shù)學基礎知識。

2.培養(yǎng)學生的計算技能、計算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學思維能力。

3.引導學生逐步養(yǎng)成良好的學習習慣、實踐意識、創(chuàng)新意識和實事求是的科學態(tài)度,提高學生就業(yè)能力與創(chuàng)業(yè)能力。

三、教學內容結構

本課程的教學內容由基礎模塊、職業(yè)模塊和拓展模塊三個部分構成。

1.基礎模塊是各專業(yè)學生必修的基礎性內容和應達到的基本要求,教學時數(shù)為128學時。

2.職業(yè)模塊是適應學生學習相關專業(yè)需要的限定選修內容,各學校根據(jù)實際情況進行選擇和安排教學,教學時數(shù)為32~64學時。

3.拓展模塊是滿足學生個性發(fā)展和繼續(xù)學習需要的任意選修內容,教學時數(shù)不做統(tǒng)一規(guī)定。

四、教學內容與要求

(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)

了解:初步知道知識的含義及其簡單應用。

理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其它相關知識的聯(lián)系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項技能與四項能力)

計算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數(shù)學工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進行處理并提取有關信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據(jù)條件畫出圖形。

分析與解決問題能力:能對工作和生活中的簡單數(shù)學相關問題,作出分析并運用適當?shù)臄?shù)學方法予以解決。

數(shù)學思維能力:依據(jù)所學的數(shù)學知識,運用類比、歸納、綜合等方法,對數(shù)學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。

(二)教學內容與要求1.基礎模塊(128學時)

第1單元集合(10學時)

第2單元不等式(8學時)

第6單元數(shù)列(10學時)

第7單元平面向量(矢量)(10學時)

第8單元直線和圓的方程(18學時)

第10單元概率與統(tǒng)計初步(16學時)

2.職業(yè)模塊

第2單元坐標變換與參數(shù)方程(12學時)

高中數(shù)學教案優(yōu)秀范文篇3

一、教學內容分析

圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數(shù)次實踐后的高度抽象.恰當?shù)乩枚x解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

二、學生學習情況分析

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。

三、設計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率.

四、教學目標

1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3.借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣.

五、教學重點與難點:

教學重點

1.對圓錐曲線定義的理解

2.利用圓錐曲線的定義求“最值”

3.“定義法”求軌跡方程

教學難點:

巧用圓錐曲線定義解題

六、教學過程設計

【設計思路】

(一)開門見山,提出問題

一上課,我就直截了當?shù)亟o出——

例題1:(1) 已知a(-2,0), b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是( )。

(a)橢圓 (b)雙曲線 (c)線段 (d)不存在

(2)已知動點 m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是( )。

(a)橢圓 (b)雙曲線 (c)拋物線 (d)兩條相交直線

【設計意圖】

定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數(shù)學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節(jié)課首先要弄清楚的問題。

為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

【學情預設】

估計多數(shù)學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折—— 如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|入手,考慮通過適當?shù)淖冃危D化為學生們熟知的兩個距離公式。

在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。

高中數(shù)學教案優(yōu)秀范文篇4

一、教材分析

1、教材地位和作用:二面角是我們日常生活中經常見到的、很普通的一個空間圖形。“二面角”是人教版《數(shù)學》第二冊(下B)中9.7的內容。它是在學生學過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學生進一步研究多面體的基礎。因此,它起著承上啟下的作用。通過本節(jié)課的學習還對學生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

2、教學目標:

知識目標:

(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

(2)進一步培養(yǎng)學生把空間問題轉化為平面問題的化歸思想。

能力目標:

(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學生的創(chuàng)新能力。

(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。

德育目標:

(1)使學生認識到數(shù)學知識來自實踐,并服務于實踐,增強學生應用數(shù)學的意識

(2)通過揭示線線、線面、面面之間的內在聯(lián)系,進一步培養(yǎng)學生聯(lián)系的辯證唯物主義觀點。

情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。

3、重點、難點:

重點:“二面角”和“二面角的平面角”的概念

難點:“二面角的平面角”概念的形成過程

二、教法分析

1、教學方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導、活動探究和類比發(fā)現(xiàn)法,在形成技能時以訓練法、探究研討法為主。

2、教學控制與調節(jié)的措施:本節(jié)課由于充分運用了多媒體和實物教具,預計學生對二面角及二面角平面角的概念能夠理解,根據(jù)學生及教學的實際情況,估計二面角的具體求法一節(jié)課內完成有一定的困難,所以將其放在下節(jié)課。

3、教學手段:教學手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學需要,確定利用多媒體課件來輔助教學;此外,為加強直觀教學,還要預先做好一些二面角的模型。

三、學法指導

1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學習中去,成為學習的主人。

2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯(lián)想等數(shù)學思想方法的運用,學會建立完善的認知結構。

3、會學:通過自己親身參與,學生要領會復習類比和深入研究這兩種知識創(chuàng)新的方法,從而既學到知識,又學會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。

四、教學過程

心理學研究表明,當學生明確數(shù)學概念的學習目的和意義時,就會對概念的學習產生濃厚的興趣。創(chuàng)設問題情境,激發(fā)了學生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。

(一)、二面角

1、揭示概念產生背景。

問題情境1、在平面幾何中“角”是怎樣定義的?

問題情境2、在立體幾何中我們還學習了哪些角?

問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。

通過這三個問題,打開了學生的原有認知結構,為知識的創(chuàng)新做好了準備;同時也讓學生領會到,二面角這一概念的產生是因為它與我們的生活密不可分,激發(fā)學生的求知欲。

2、展現(xiàn)概念形成過程。

問題情境4、那么,應該如何定義二面角呢?

創(chuàng)設這個問題情境,為學生創(chuàng)新思維的展開提供了空間。引導學生回憶平面幾何中“角”這一概念的引入過程。教師應注意多讓學生說,對于學生的創(chuàng)新意識和創(chuàng)新結果,教師要給與積極的評價。

問題情境5、同學們能舉出一些二面角的實例嗎?通過實際運用,可以促使學生更加深刻地理解概念。

(二)、二面角的平面角

1、揭示概念產生背景。平面幾何中可以把角理解為是一個旋轉量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉而成的,也是一個旋轉量。說明二面角不僅有大小,而且其大小是唯一確定的。平面與平面的位置關系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。

問題情境6、二面角的大小應該怎么度量?能否轉化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產生的背景。

2、展現(xiàn)概念形成過程

(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。

問題情境7、我們以前碰到過類似的問題嗎?引導學生回憶前面所學過的兩種空間角的定義,電腦演示以提高效率。

問題情境8、兩定義的共同點是什么?生:空間角總是轉化為平面的角,并且這個角是唯一確定的。

問題情境9、這個平面的角的頂點及兩邊是如何確定的?

(2)、提出猜想:二面角的大小也可通過平面的角來定義。對學生提出的猜想,教師應該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習慣,這對強化他們的創(chuàng)新意識大有幫助。

問題情境10、那么,這個角的頂點及兩邊應如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內。這也是學生直覺思維的結果。

(3)、探索實驗。通過實驗,激發(fā)了學生的學習興趣,培養(yǎng)了學生的動手操作能力。

(4)、繼續(xù)探索,得到定義。

問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內唯一確定,聯(lián)想到平面內過直線上一點的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

(5)、自我驗證:要求學生閱讀課本上的定義。并說明定義的合理性,教師作適當?shù)囊龑В⒓右岳碚撟C明。

(三)、二面角及其平面角的畫法

主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

(四)、范例分析

為鞏固學生所學知識,由于時間的關系設置了一道例題。來源于實際生活,不但培養(yǎng)了學生分析問題和解決問題的能力,也讓學生領會到數(shù)學概念來自生活實際,并服務于生活實際,從而增強他們應用數(shù)學的意識。

例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。

分析:涉及二面角的計算問題,關鍵是找出(或作出)該二面角的平面角。引導學生充分利用已知圖形的性質,最后發(fā)現(xiàn)可由定義找出該二面角的平面角。可讓學生先做,為調動學生的積極性,并增加學生的參與感,活躍課堂的氣氛,教師可給學生板演的機會。教師講評時強調解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

變式訓練:圖中共有幾個二面角?能求出它們的大小嗎?根據(jù)課堂實際情況,本題的變式訓練也可作為課后思考題。

題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

(五)、練習、小結與作業(yè)

練習:習題9.7的第3題

小結在復習完二面角及其平面角的概念后,要求學生對空間中三種角加以比較、歸納,以促成學生建立起空間中角這一概念系統(tǒng)。同時要求學生對本節(jié)課的學習方法進行總結,領會復習類比和深入研究這兩種知識創(chuàng)新的方法。

作業(yè):習題9.7的第4題

思考題:見例題

五、板書設計(見課件)

以上是我對《二面角》授課的初步設想,不足之處,懇請大家批評指正,謝謝!

高中數(shù)學教案優(yōu)秀范文篇5

【教學目標】

1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

2.能根據(jù)幾何結構特征對空間物體進行分類。

3.提高學生的觀察能力;培養(yǎng)學生的空間想象能力和抽象括能力。

【教學重難點】

教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

教學難點:柱、錐、臺、球的結構特征的概括。

【教學過程】

1.情景導入

教師提出問題,引導學生觀察、舉例和相互交流,提出本節(jié)課所學內容,出示課題。

2.展示目標、檢查預習

3、合作探究、交流展示

(1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?

(2)組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。

在此基礎上得出棱柱的主要結構特征。

(1)有兩個面互相平行;

(2)其余各面都是平行四邊形;

(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

(3)提出問題:請列舉身邊的棱柱并對它們進行分類

(4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

(5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關的概念及圓柱的表示。

(6)引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

4.質疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。

(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?

(3)圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

(4)棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

5、典型例題

例1:判斷下列語句是否正確。

⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。

⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。

答案 A B

6、課堂檢測:

課本P8,習題1.1 A組第1題。

7.歸納整理

由學生整理學習了哪些內容

【板書設計】

一、柱、錐、臺、球的結構

二、例題

例1

變式1、2

【作業(yè)布置】

導學案課后練習與提高

1.1.1柱、錐、臺、球的結構特征

課前預習學案

一、預習目標:

通過圖形探究柱、錐、臺、球的結構特征

二、預習內容:

閱讀教材第2—6頁內容,然后填空

(1)多面體的概念: 叫多面體,

叫多面體的面, 叫多面體的棱,

叫多面體的頂點。

① 棱柱:兩個面 ,其余各面都是 ,并且每相鄰兩個四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱

②棱錐:有一個面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐

③棱臺:用一個 棱錐底面的平面去截棱錐, ,叫作棱臺。

(2)旋轉體的概念: 叫旋轉體, 叫旋轉體的軸。

①圓柱: 所圍成的幾何體叫做圓柱

②圓錐: 所圍成的幾何體叫做圓錐

③圓臺: 的部分叫圓臺

④球的定義

思考:

(1)試分析多面體與旋轉體有何去別

(2)球面球體有何去別

(3)圓與球有何去別

三、提出疑惑

同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中

疑惑點 疑惑內容

高中數(shù)學教案優(yōu)秀范文篇6

一、教學目標:

掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

二、教學重點:

向量的性質及相關知識的綜合應用。

三、教學過程:

(一)主要知識:

1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略

四、小結:

1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,

2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。

五、作業(yè):

高中數(shù)學教案優(yōu)秀范文篇7

【課題名稱】

《等差數(shù)列》的導入

【授課年級】

高中二年級

【教學重點】

理解等差數(shù)列的概念,能夠運用等差數(shù)列的定義判斷一個數(shù)列是否為等差數(shù)列。

【教學難點】

等差數(shù)列的性質、等差數(shù)列“等差”特點的理解,

【教具準備】多媒體課件、投影儀

【三維目標】

㈠知識目標:

了解公差的概念,明確一個等差數(shù)列的限定條件,能根據(jù)定義判斷一個等差數(shù)列是否是一個等差數(shù)列;

㈡能力目標:

通過尋找等差數(shù)列的共同特征,培養(yǎng)學生的觀察力以及歸納推理的能力;

㈢情感目標:

通過對等差數(shù)列概念的歸納概括,培養(yǎng)學生的觀察、分析資料的能力。

【教學過程】

導入新課

師:上兩節(jié)課我們已經學習了數(shù)列的定義以及給出表示數(shù)列的幾種方法—列舉法、通項法,遞推公式、圖像法。這些方法分別從不同的角度反映了數(shù)列的特點。下面我們觀察以下的幾個數(shù)列的例子:

(1)我們經常這樣數(shù)數(shù),從0開始,每個5個數(shù)可以得到數(shù)列:0,5,10,15,20,()

(2)2000年,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目工設置了7個級別,其中較輕的4個級別體重組成的數(shù)列(單位:kg)為48,53,58,63,()試問第五個級別體重多少?

(3)為了保證優(yōu)質魚類有良好的生活環(huán)境,水庫管理員定期放水清庫以清除水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個數(shù)列:18,15.5,13,10.5,8,(),則第六個數(shù)應為多少?

(4)10072,10144,10216,( ),10360

請同學們回答以上的四個問題

生:第一個數(shù)列的第6項為25,第二個數(shù)列的第5個數(shù)為68,第三個數(shù)列的第6個數(shù)為5.5,第四個數(shù)列的第4個數(shù)為10288。

師:我來問一下,你是依據(jù)什么得到了這幾個數(shù)的呢?請以第二個數(shù)列為例說明一下。

生:第二個數(shù)列的后一項總比前一項多5,依據(jù)這個規(guī)律我就得到了這個數(shù)列的第5個數(shù)為68.

師:說的很好!同學們再仔細地觀察一下以上的四個數(shù)列,看看以上的四個數(shù)列是否有什么共同特征?請注意,是共同特征。

生1:相鄰的兩項的差都等于同一個常數(shù)。

師:很好!那作差是否有順序?是否可以顛倒?

生2:作差的順序是后項減去前項,不能顛倒!

師:正如生1的總結,這四個數(shù)列有共同的特征:從第二項起,每一項與它的前一項的差都等于同一個常數(shù)(即等差)。我們叫這樣的數(shù)列為等差數(shù)列。這就是我們這節(jié)課要研究的內容。

推進新課

等差數(shù)列的定義:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差都等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差,公差常用字母d表示。從剛才的分析,同學們應該注意公差d一定是由后項減前項。

師:有哪個同學知道定義中的關鍵字是什么?

生2:“從第二項起”和“同一個常數(shù)”

高中數(shù)學教案優(yōu)秀范文篇8

一、教學目標

【知識與技能】

在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。

【過程與方法】

通過對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。

【情感態(tài)度與價值觀】

滲透數(shù)形結合、化歸與轉化等數(shù)學思想方法,提高學生的整體素質,激勵學生創(chuàng)新,勇于探索。

二、教學重難點

【重點】

掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。

【難點】

二元二次方程與圓的一般方程及標準圓方程的關系。

三、教學過程

(一)復習舊知,引出課題

1、復習圓的標準方程,圓心、半徑。

2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數(shù)學教案優(yōu)秀范文篇9

[學習目標]

(1)會用坐標法及距離公式證明Cα+β;

(2)會用替代法、誘導公式、同角三角函數(shù)關系式,由Cα+β推導Cα—β、Sα±β、Tα±β,切實理解上述公式間的關系與相互轉化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

[學習重點]

兩角和與差的正弦、余弦、正切公式

[學習難點]

余弦和角公式的推導

[知識結構]

1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎。其公式的證明是用坐標法,利用三角函數(shù)定義及平面內兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)

2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、當α、β中有一個是的整數(shù)倍時,應首選誘導公式進行變形。注意兩角和與差的三角函數(shù)是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數(shù)的特例。

4、關于公式的正用、逆用及變用

高中數(shù)學教案優(yōu)秀范文篇10

教學目標:

1.結合實際問題情景,理解分層抽樣的必要性和重要性;

2.學會用分層抽樣的方法從總體中抽取樣本;

3.并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進行比較,揭示其相互關系.

教學重點:

通過實例理解分層抽樣的方法.

教學難點:

分層抽樣的步驟.

教學過程:

一、問題情境

1.復習簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

2.實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學生活動

能否用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣,為什么?

指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.

由于樣本的容量與總體的個體數(shù)的比為100∶2500=1∶25,

所以在各年級抽取的個體數(shù)依次是 , , ,即40,32,28.

三、建構數(shù)學

1.分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

說明:①分層抽樣時,由于各部分抽取的個體數(shù)與這一部分個體數(shù)的比等于樣本容量與總體的個體數(shù)的比,每一個個體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應用.

2.三種抽樣方法對照表:

類別

共同點

各自特點

相互聯(lián)系

適用范圍

簡單隨機抽樣

抽樣過程中每個個體被抽取的概率是相同的

從總體中逐個抽取

總體中的個體數(shù)較少

系統(tǒng)抽樣

將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取

在第一部分抽樣時采用簡單隨機抽樣

總體中的個體數(shù)較多

分層抽樣

將總體分成幾層,分層進行抽取

各層抽樣時采用簡單隨機抽樣或系統(tǒng)

總體由差異明顯的幾部分組成

3.分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分.

(2)確定比例:計算各層的個體數(shù)與總體的個體數(shù)的比.

(3)確定各層應抽取的樣本容量.

(4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本.

四、數(shù)學運用

1.例題.

例1(1)分層抽樣中,在每一層進行抽樣可用_________________.

(2)①教育局督學組到學校檢查工作,臨時在每個班各抽調2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進一步改進教和學;

③某班元旦聚會,要產生兩名“幸運者”.

對這三件事,合適的抽樣方法為( )

A.分層抽樣,分層抽樣,簡單隨機抽樣

B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣

C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣

D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣

例2某電視臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進行調查,參加調查的總人數(shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

很喜愛

喜愛

一般

不喜愛

2435

4567

3926

1072

電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調查,應怎樣進行抽樣?

解:抽取人數(shù)與總的比是60∶12000=1∶200,

則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

取近似值得各層人數(shù)分別是12,23,20,5.

然后在各層用簡單隨機抽樣方法抽取.

答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

數(shù)分別為12,23,20,5.

說明:各層的抽取數(shù)之和應等于樣本容量,對于不能取整數(shù)的情況,取其近似值.

(3)某學校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學校在校務公開方面的某意見,擬抽取一個容量為20的樣本.

分析:(1)總體容量較小,用抽簽法或隨機數(shù)表法都很方便.

(2)總體容量較大,用抽簽法或隨機數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

(3)由于學校各類人員對這一問題的看法可能差異較大,所以應采用分層抽樣方法.

五、要點歸納與方法小結

本節(jié)課學習了以下內容:

1.分層抽樣的概念與特征;

2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

35439 主站蜘蛛池模板: 无菌检查集菌仪,微生物限度仪器-苏州长留仪器百科 | 合肥白癜风医院_[治疗白癜风]哪家好_合肥北大白癜风医院 | 济南铝方通-济南铝方通价格-济南方通厂家-山东鲁方通建材有限公司 | 阜阳成人高考_阜阳成考报名时间_安徽省成人高考网 | 浙江皓格药业有限公司| 科昊仪器超纯水机系统-可成气相液氮罐-美菱超低温冰箱-西安昊兴生物科技有限公司 | 骨密度检测仪_骨密度分析仪_骨密度仪_动脉硬化检测仪专业生产厂家【品源医疗】 | 颚式破碎机,圆锥破碎机,制砂机-新乡市德诚机电制造有限公司 | 100_150_200_250_300_350_400公斤压力空气压缩机-舰艇航天配套厂家 | 欧洲MV日韩MV国产_人妻无码一区二区三区免费_少妇被 到高潮喷出白浆av_精品少妇自慰到喷水AV网站 | 氧化锆陶瓷_氧化锆陶瓷加工_氧化锆陶瓷生产厂家-康柏工业陶瓷有限公司 | 福州甲醛检测-福建室内空气检测_环境检测_水质检测-福建中凯检测技术有限公司 | elisa试剂盒-PCR试剂盒「上海谷研实业有限公司」 | 风信子发稿-专注为企业提供全球新闻稿发布服务 | 滑板场地施工_极限运动场地设计_滑板公园建造_盐城天人极限运动场地建设有限公司 | 火锅加盟_四川成都火锅店加盟_中国火锅连锁品牌十强_朝天门火锅【官网】 | 便携式谷丙转氨酶检测仪|华图生物科技百科 | 中天寰创-内蒙古钢结构厂家|门式刚架|钢结构桁架|钢结构框架|包头钢结构煤棚 | 北京晚会活动策划|北京节目录制后期剪辑|北京演播厅出租租赁-北京龙视星光文化传媒有限公司 | 实验室装修_实验室设计_实验室规划设计- 上海广建净化工程公司 | 超声骨密度仪-骨密度检测仪-经颅多普勒-tcd仪_南京科进实业有限公司 | 上海防爆真空干燥箱-上海防爆冷库-上海防爆冷柜?-上海浦下防爆设备厂家? | 奥运星-汽车性能网评-提供个性化汽车资讯 | 紫外荧光硫分析仪-硫含量分析仪-红外光度测定仪-泰州美旭仪器 | 一体化污水处理设备,一体化污水设备厂家-宜兴市福源水处理设备有限公司 | 玉米加工设备,玉米深加工机械,玉米糁加工设备.玉米脱皮制糁机 华豫万通粮机 | 奇酷教育-Python培训|UI培训|WEB大前端培训|Unity3D培训|HTML5培训|人工智能培训|JAVA开发的教育品牌 | 防水试验机_防水测试设备_防水试验装置_淋雨试验箱-广州岳信试验设备有限公司 | 锂辉石检测仪器,水泥成分快速分析仪-湘潭宇科分析仪器有限公司 | 篮球架_乒乓球台_足球门_校园_竞技体育器材_厂家_价格-沧州浩然体育器材有限公司 | 轴承振动测量仪电箱-轴承测振动仪器-测试仪厂家-杭州居易电气 | 电主轴-高速精密电主轴-高速电机厂家-瑞德沃斯品牌有限公司 | 私人别墅家庭影院系统_家庭影院音响_家庭影院装修设计公司-邦牛影音 | 中视电广_短视频拍摄_短视频推广_短视频代运营_宣传片拍摄_影视广告制作_中视电广 | 聚合甘油__盐城市飞龙油脂有限公司 | 青岛球场围网,青岛车间隔离网,青岛机器人围栏,青岛水源地围网,青岛围网,青岛隔离栅-青岛晟腾金属制品有限公司 | 长信科技产业园官网_西安厂房_陕西标准工业厂房 | 沈阳激光机-沈阳喷码机-沈阳光纤激光打标机-沈阳co2激光打标机 | 污水/卧式/潜水/钻井/矿用/大型/小型/泥浆泵,价格,参数,型号,厂家 - 安平县鼎千泵业制造厂 | 深圳公司注册-工商注册代理-注册公司流程和费用_护航财税 | 知名电动蝶阀,电动球阀,气动蝶阀,气动球阀生产厂家|价格透明-【固菲阀门官网】 |