小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

2023高考數學總復習教案

時間: 沐欽 數學教案

高考數學總復習教案都有哪些?荷蘭教育家弗賴登諾爾認為:“數學來源于現實,也必須扎根于現實,并且應用于現實。下面是小編為大家帶來的2023高考數學總復習教案七篇,希望大家能夠喜歡!

2023高考數學總復習教案

2023高考數學總復習教案篇1

一、目標

1、知識與技能

(1)理解流程圖的順序結構和選擇結構。

(2)能用字語言表示算法,并能將算法用順序結構和選擇結構表示簡單的流程圖

2、過程與方法

學生通過模仿、操作、探索、經歷設計流程圖表達解決問題的過程,理解流程圖的結構。

3、情感、態度與價值觀

學生通過動手作圖,用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想——程序化思想,在歸納概括中培養學生的邏輯思維能力。

二、重點、難點

重點:算法的順序結構與選擇結構。

難點:用含有選擇結構的流程圖表示算法。

三、學法與教學用具

學法:學生通過動手作圖,用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經歷設計流程圖表達解決問題的過程。進而學習順序結構和選擇結構表示簡單的流程圖。

教學用具:尺規作圖工具,多媒體。

四、教學思路

(一)、問題引入揭示題

例1尺規作圖,確定線段的一個5等分點。

要求:同桌一人作圖,一人寫算法,并請學生說出答案。

提問:用字語言寫出算法有何感受?

引導學生體驗到:顯得冗長,不方便、不簡潔。

教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構成一張圖即流程圖表示算法。

本節要學習的是順序結構與選擇結構。

右圖即是同流程圖表示的算法。

(二)、觀察類比理解題

1、投影介紹流程圖的符號、名稱及功能說明。

符號符號名稱功能說明

終端框算法開始與結束

處理框算法的各種處理操作

判斷框算法的各種轉移

輸入輸出框輸入輸出操作

指向線指向另一操作

2、講授順序結構及選擇結構的概念及流程圖

(1)順序結構

依照步驟依次執行的一個算法

流程圖:

(2)選擇結構

對條進行判斷決定后面的步驟的結構

流程圖:

3、用自然語言表示算法與用流程圖表示算法的比較

(1)半徑為r的圓的面積公式當r=10時寫出計算圓的面積的算法,并畫出流程圖。

解:

算法(自然語言)

①把10賦與r

②用公式求s

③輸出s

流程圖

(2)已知函數對于每輸入一個X值都得到相應的函數值,寫出算法并畫流程圖。

算法:(語言表示)

①輸入X值

②判斷X的范圍,若,用函數Y=x+1求函數值;否則用Y=2-x求函數值

③輸出Y的值

流程圖

小結:含有數學中需要分類討論的或與分段函數有關的問題,均要用到選擇結構。

學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)

(三)模仿操作經歷題

1、用流程圖表示確定線段AB的一個16等分點

2、分析講解例2;

分析:

思考:有多少個選擇結構?相應的流程圖應如何表示?

流程圖:

(四)歸納小結鞏固題

1、順序結構和選擇結構的模式是怎樣的?

2、怎樣用流程圖表示算法。

(五)練習P992

(六)作業P991

2023高考數學總復習教案篇2

一、教學內容分析

圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象,恰當地利用定義解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

二、學生學習情況分析

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

三、設計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率。

四、教學目標

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3、借助多媒體輔助教學,激發學習數學的興趣。

五、教學重點與難點:

教學重點

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學難點:

巧用圓錐曲線定義解題

六、教學過程設計

【設計思路】

(一)開門見山,提出問題

一上課,我就直截了當地給出例題1:

(1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)線段(D)不存在

(2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

【設計意圖】

定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

【學情預設】

估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25

這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|5入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。

(二)理解定義、解決問題

例2:

(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。

(2)在(1)的條件下,給定點P(-2,2),求|PA|

【設計意圖】

運用圓錐曲線定義中的數量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。

【學情預設】

根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯系起來,這樣就容易和第二定義聯系起來,從而找到解決本題的突破口。

(三)自主探究、深化認識

如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會。

練習:

設點Q是圓C:(x1)2225|AB|的最小值。3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。

引申:若將點A移到圓C外,點M的軌跡會是什么?

【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,

可借助“多媒體課件”,引導學生對自己的結論進行驗證。

【知識鏈接】

(一)圓錐曲線的定義

1、圓錐曲線的第一定義

2、圓錐曲線的統一定義

(二)圓錐曲線定義的應用舉例

1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。

2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點,F1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。

3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。

4、例題:

(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。

(2)已知A(,3)為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。

(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。

5、已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。

七、教學反思

1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。

2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。

總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。

2023高考數學總復習教案篇3

一、教材

《直線與圓的位置關系》是高中人教版必修2第四章第二節的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續與提高,又是學習切線的判定定理、圓與圓的位置關系的基礎。從數學思想方法層面上看它運用運動變化的觀點揭示了知識的發生過程以及相關知識間的內在聯系,滲透了數形結合、分類討論、類比、化歸等數學思想方法,有助于提高學生的思維品質。

二、學情

學生初中已經接觸過直線與圓相交、相切、相離的定義和判定;且在上節的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數形結合解題思想的基礎。

三、教學目標

(一)知識與技能目標

能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。

(二)過程與方法目標

經歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

(三)情感態度價值觀目標

激發求知欲和學習興趣,鍛煉積極探索、發現新知識、總結規律的能力,解題時養成歸納總結的良好習慣。

四、教學重難點

(一)重點

用解析法研究直線與圓的位置關系。

(二)難點

體會用解析法解決問題的數學思想。

五、教學方法

根據本節課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的動態演示,變抽象為直觀,為學生的數學探究與數學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發揮各層次學生的作用,教師始終堅持啟發式教學原則,設計一系列問題串,以引導學生的數學思維活動。

六、教學過程

(一)導入新課

教師借助多媒體創設泰坦尼克號的情景,并從中抽象出數學模型:已知冰山的分布是一個半徑為r的圓形區域,圓心位于輪船正西的1處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?

教師引導學生回顧初中已經學習的直線與圓的位置關系,將所想到的航行路線轉化成數學簡圖,即相交、相切、相離。

設計意圖:在已有的知識基礎上,提出新的問題,有利于保持學生知識結構的連續性,同時開闊視野,激發學生的學習興趣。

(二)新課教學——探究新知

教師提問如何判斷直線與圓的位置關系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。

判斷方法:

(1)定義法:看直線與圓公共點個數

即研究方程組解的個數,具體做法是聯立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關系。

(2)比較法:圓心到直線的距離d與圓的半徑r做比較,

(三)合作探究——深化新知

教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發現,兩種方法本質相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學生解答,總結思路。

已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關系?

讓學生自主探索,討論交流,并闡述自己的解題思路。

當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關鍵是如何得到圓心到直線的距離d,他的本質是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯立直線與圓的方程,組成方程組,通過方程組解得個數確定直線與圓的交點個數,進一步確定他們的位置關系。最后明確解題步驟。

(四)歸納總結——鞏固新知

為了將結論由特殊推廣到一般引導學生思考:

可由方程組的解的不同情況來判斷:

當方程組有兩組實數解時,直線1與圓C相交;當方程組有一組實數解時,直線1與圓C相切;當方程組沒有實數解時,直線1與圓C相離。

活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎題的練習,鞏固兩種判斷直線與圓的位置關系判斷方法,并使每一個學生獲得后續學習的信心。

(五)小結作業

在小結環節,我會以口頭提問的方式:

(1)這節課學習的主要內容是什么?

(2)在數學問題的解決過程中運用了哪些數學思想?

設計意圖:啟發式的課堂小結方式能讓學生主動回顧本節課所學的知識點。也促使學生對知識網絡進行主動建構。

作業:在學生回顧本堂學習內容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節課主要用比較d與r的關系來解決這類問題,對用方程組解的個數的判斷方法,要求學生課外做進一步的探究,下一節課匯報。

2023高考數學總復習教案篇4

一、教學內容分析:

本節教材選自人教a版數學必修②第二章第一節課,本節內容在立幾學習中起著承上啟下的作用,具有重要的意義與地位。本節課是在前面已學空間點、線、面位置關系的基礎作為學習的出發點,結合有關的實物模型,通過直觀感知、操作確認(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節課的學習對培養學生空間感與邏輯推理能力起到重要作用,特別是對線線平行、面面平行的判定的學習作用重大。

二、學生學習情況分析:

任教的學生在年段屬中上程度,學生學習興趣較高,但學習立幾所具備的語言表達及空間感與空間想象能力相對不足,學習方面有一定困難。

三、設計思想

本節課的設計遵循從具體到抽象的原則,適當運用多媒體輔助教學手段,借助實物模型,通過直觀感知,操作確認,合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機結合,讓學生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數學的概念,領會數學的思想方法,養成積極主動、勇于探索、自主學習的學習方式,發展學生的空間觀念和空間想象力,提高學生的數學邏輯思維能力。

四、教學目標

通過直觀感知——觀察——操作確認的認識方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準確使用數學符號語言、文字語言表述判定定理。培養學生觀察、探究、發現的能力和空間想象能力、邏輯思維能力。讓學生在觀察、探究、發現中學習,在自主合作、交流中學習,體驗學習的樂趣,增強自信心,樹立積極的學習態度,提高學習的自我效能感。

五、教學重點與難點

重點是判定定理的引入與理解,難點是判定定理的應用及立幾空間感、空間觀念的形成與邏輯思維能力的培養。

六、教學過程設計

(一)知識準備、新課引入

提問1:根據公共點的情況,空間中直線a和平面?有哪幾種位置關系?并完成下表:(多媒體幻燈片演示)a??

提問2:根據直線與平面平行的定義(沒有公共點)來判定直線與平面平行你認為方便嗎?談談你的看法,并指出是否有別的判定途徑。

[設計意圖:通過提問,學生復習并歸納空間直線與平面位置關系引入本節課題,并為探尋直線與平面平行判定定理作好準備。]

(二)判定定理的探求過程

1、直觀感知

提問:根據同學們日常生活的觀察,你們能感知到并舉出直線與平面平行的具體事例嗎?

生1:例舉日光燈與天花板,樹立的電線桿與墻面。

生2:門轉動到離開門框的任何位置時,門的邊緣線始終與門框所在的平面平行(由學生到教室門前作演示),然后教師用多媒體動畫演示。

2、動手實踐

教師取出預先準備好的直角梯形泡沫板演示:當把互相平行的一邊放在講臺桌面上并轉動,觀察另一邊與桌面的位置給人以平行的感覺,而當把直角腰放在桌面上并轉動,觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準備的木條放在講臺桌上作上述情形的演示)。

3、探究思考

(1)上述演示的直線與平面位置關系為何有如此的不同?關鍵是什么因素起了作用呢?通過觀察感知發現直線與平面平行,關鍵是三個要素:

①平面外一條線

②我們把直線與平面相交或平行的位置關系統稱為直線在平面外,用符號表示為平面內一條直線

③這兩條直線平行

(2)如果平面外的直線a與平面?內的一條直線b平行,那么直線a與平面?平行嗎?

4、歸納確認:(多媒體幻燈片演示)

直線和平面平行的判定定理:平面外的一條直線與平面內的一條直線平行,則該直線和這個平面平行。

(三)定理運用,問題探究(多媒體幻燈片演示)

1、想一想:

(1)判斷下列命題的真假?說明理由:

①如果一條直線不在平面內,則這條直線就與平面平行()

②過直線外一點可以作無數個平面與這條直線平行()

③一直線上有二個點到平面的距離相等,則這條直線與平面平行()

(2)若直線a與平面?內無數條直線平行,則a與?的位置關系是()a、a||b、a、c、a||或a、d、a[學情預設:設計這組問題目的是強調定理中三個條件的重要性,同時預設(1)中的③學生可能認為正確的,這樣就無法達到老師的預設與生成的目的,這時教師要引導學生思考,讓學生想象的空間更廣闊些。此外教師可用預先準備好的羊毛針與泡沫板進行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學生空間想象力強,能按老師的要求生成正確的結果則就由個別學生進行演示。]

2、作一作:

設a、b是二異面直線,則過a、b外一點p且與a、b都平行的平面存在嗎?若存在請畫出平面,不存在說明理由?

先由學生討論交流,教師提問,然后教師總結,并用準備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動畫過程。

[設計意圖:這是一道動手操作的問題,不僅是為了拓展加深對定理的認識,更重要的是培養學生空間感與思維的嚴謹性。]

3、證一證:

例1(見課本60頁例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點,求證:ef||平面bcd。

變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點,連結ef、fg、gh、he、ac、bd請分別找出圖中滿足線面平行位置關系的所有情況。(共6組線面平行)變式二:在變式一的圖中如作pq?ef,使p點在線段ae上、q點在線段fc上,連結ph、qg,并繼續探究圖中所具有的線面平行位置關系?(在變式一的基礎上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。

[設計意圖:設計二個變式訓練,目的是通過問題探究、討論,思辨,及時鞏固定理,運用定理,培養學生的識圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點,求證:ef||平面bdd1b1分析:根據判定定理必須在平

面bdd1b1內找(作)一條線與ef平行,聯想到中點問題找中點解決的方法,可以取bd或b1d1中點而證之。

思路一:取bd中點g連d1g、eg,可證d1gef為平行四邊形。

思路二:取d1b1中點h連hb、hf,可證hfeb為平行四邊形。

[知識鏈接:根據空間問題平面化的思想,因此把找空間平行直線問題轉化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點。平行問題找中點解決是個好途徑好方法。這種思想方法是解決立幾論證平行問題,培養邏輯思維能力的重要思想方法]

4、練一練:

練習1:見課本6頁練習1、2

練習2:將兩個全等的正方形abcd和abef拼在一起,設m、n分別為ac、bf中點,求證:mn||平面bce。

變式:若將練習2中m、n改為ac、bf分點且am=fn,試問結論仍成立嗎?試證之。

[設計意圖:設計這組練習,目的是為了鞏固與深化定理的運用,特別是通過練習2及其變式的訓練,讓學生能在復雜的圖形中去識圖,去尋找分析問題、解決問題的途徑與方法,以達到逐步培養空間感與邏輯思維能力。]

(四)總結

先由學生口頭總結,然后教師歸納總結(由多媒體幻燈片展示):

1、線面平行的判定定理:平面外的一條直線與平面內的一條直線平行,則該直線與這個平面平行。

2、定理的符號表示:ba||?a||b??簡述:(內外)線線平行則線面平行

3、定理運用的關鍵是找(作)面內的線與面外的線平行,途徑有:取中點利用平行四邊形或三角形中位線性質等。

七、教學反思

本節“直線與平面平行的判定”是學生學習空間位置關系的判定與性質的第一節課,也是學生開始學習立幾演澤推理論述的思維方式方法,因此本節課學習對發展學生的空間觀念和邏輯思維能力是非常重要的。

本節課的設計遵循“直觀感知——操作確認——思辯論證”的認識過程,注重引導學生通過觀察、操作交流、討論、有條理的思考和推理等活動,從多角度認識直線和平面平行的判定方法,讓學生通過自主探索、合作交流,進一步認識和掌握空間圖形的性質,積累數學活動的經驗,發展合情推理、發展空間觀念與推理能力。

本節課的設計注重訓練學生準確表達數學符號語言、文字語言及圖形語言,加強各種語言的互譯。比如上課開始時的復習引入,讓學生用三種語言的表達,動手實踐、定理探求過程以及定理描述也注重三種語言的表達,對例題的講解與分析也注意指導學生三種語言的表達。

本節課對定理的探求與認識過程的設計始終貫徹直觀在先,感知在先,學自己身邊的數學,感知生活中包涵的數學現象與數學原理,體驗數學即生活的道理,比如讓學生舉生活中能感知線面平行的例子,學生會舉出日光燈與天花板,電線桿與墻面,轉動的門等等,同時老師的舉例也很貼進生活,如老師直立時與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導學生從中抽象概括出定理。

2023高考數學總復習教案篇5

教學目標

1、明確等差數列的定義。

2、掌握等差數列的通項公式,會解決知道中的三個,求另外一個的問題

3、培養學生觀察、歸納能力。

教學重點

1、等差數列的概念;

2、等差數列的通項公式

教學難點

等差數列“等差”特點的理解、把握和應用

教具準備

投影片1張

教學過程

(I)復習回顧

師:上兩節課我們共同學習了數列的定義及給出數列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數列的特點,下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數列有什么共同的特點?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:積極思考,找上述數列共同特點。

對于數列①(1≤n≤6);(2≤n≤6)

對于數列②-2n(n≥1)(n≥2)

對于數列③(n≥1)(n≥2)

共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數。

師:也就是說,這些數列均具有相鄰兩項之差“相等”的特點。具有這種特點的數列,我們把它叫做等差數。

一、定義:

等差數列:一般地,如果一個數列從第2項起,每一項與空的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示。

如:上述3個數列都是等差數列,它們的公差依次是1,-2。

二、等差數列的通項公式

師:等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列的首項是,公差是d,則據其定義可得:

若將這n-1個等式相加,則可得:

即:即:即:……

由此可得:師:看來,若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。

如數列①(1≤n≤6)

數列②:(n≥1)

數列③:(n≥1)

由上述關系還可得:即:則:=如:

三、例題講解

例1:(1)求等差數列8,5,2…的第20項

(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?

解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數列的第100項。

(Ⅲ)課堂練習

生:(口答)課本P118練習3

(書面練習)課本P117練習1

師:組織學生自評練習(同桌討論)

(Ⅳ)課時小結

師:本節主要內容為:

①等差數列定義。

即(n≥2)

②等差數列通項公式(n≥1)

推導出公式:

(V)課后作業

一、課本P118習題3.21,2

二、1、預習內容:課本P116例2P117例4

2、預習提綱:

①如何應用等差數列的定義及通項公式解決一些相關問題?

②等差數列有哪些性質?

2023高考數學總復習教案篇6

教學目標

(1)理解四種命題的概念;

(2)理解四種命題之間的相互關系,能由原命題寫出其他三種形式;

(3)理解一個命題的真假與其他三個命題真假間的關系;

(4)初步掌握反證法的概念及反證法證題的基本步驟;

(5)通過對四種命題之間關系的學習,培養學生邏輯推理能力;

(6)通過對四種命題的存在性和相對性的認識,進行辯證唯物主義觀點教育;

(7)培養學生用反證法簡單推理的技能,從而發展學生的思維能力。

教學重點和難點

重點:四種命題之間的關系;

難點:反證法的運用。

教學過程設計

一、導入新課

【練習】

1、把下列命題改寫成“若p則q”的形式:

(1)同位角相等,兩直線平行;

(2)正方形的四條邊相等。

2、什么叫互逆命題?上述命題的逆命題是什么?

將命題寫成“若p則q”的形式,關鍵是找到命題的條件p與q結論。

如果第一個命題的條件是第二個命題的結論,且第一個命題的結論是第二個命題的條件,那么這兩個命題叫做互道命題。

上述命題的道命題是“若一個四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”。

值得指出的是原命題和逆命題是相對的。我們也可以把逆命題當成原命題,去求它的逆命題。

3、原命題真,逆命題一定真嗎?

“同位角相等,兩直線平行”這個原命題真,逆命題也真。但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真。

學生活動:

口答:

(1)若同位角相等,則兩直線平行;

(2)若一個四邊形是正方形,則它的四條邊相等。

設計意圖:

通過復習舊知識,打下學習否命題、逆否命題的基礎。

二、新課

【設問】命題“同位角相等,兩條直線平行”除了能構成它的逆命題外,是否還可以構成其它形式的命題?

【講述】可以將原命題的條件和結論分別否定,構成“同位角不相等,則兩直線不平行”,這個命題叫原命題的否命題。

【提問】你能由原命題“正方形的四條邊相等”構成它的否命題嗎?

學生活動:

口答:若一個四邊形不是正方形,則它的四條邊不相等。

教師活動:

【講述】一個命題的條件和結論分別是另一個命題的條件的否定和結論的否定,這樣的兩個命題叫做互否命題。把其中一個命題叫做原命題,另一個命題叫做原命題的否命題。

若用p和q分別表示原命題的條件和結論,用┐p和┐q分別表示p和q的否定。

【板書】原命題:若p則q;

否命題:若┐p則q┐。

【提問】原命題真,否命題一定真嗎?舉例說明?

學生活動:

講論后回答:

原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真。

原命題“正方形的四條邊相等”真,它的否命題“若一個四邊形不是正方形,則它的四條邊不相等”不真。

由此可以得原命題真,它的否命題不一定真。

設計意圖:

通過設問和討論,讓學生在自己舉例中研究如何由原命題構成否命題及判斷它們的真假,調動學生學習的積極性。

教師活動:

【提問】命題“同位角相等,兩條直線平行”除了能構成它的逆命題和否命題外,還可以不可以構成別的命題?

學生活動:

討論后回答

【總結】可以將這個命題的條件和結論互換后再分別將新的條件和結論分別否定構成命題“兩條直線不平行,則同位角不相等”,這個命題叫原命題的逆否命題。

教師活動:

【提問】原命題“正方形的四條邊相等”的逆否命題是什么?

學生活動:

口答:若一個四邊形的四條邊不相等,則不是正方形。

教師活動:

【講述】一個命題的條件和結論分別是另一個命題的結論的否定和條件的否定,這樣的兩個命題叫做互為逆否命題。把其中一個命題叫做原命題,另一個命題就叫做原命題的逆否命題。

原命題是“若p則q”,則逆否命題為“若┐q則┐p。

【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

學生活動:

討論后回答

這兩個逆否命題都真。

原命題真,逆否命題也真。

教師活動:

【提問】原命題的真假與其他三種命題的真

假有什么關系?舉例加以說明?

【總結】

1、原命題為真,它的逆命題不一定為真。

2、原命題為真,它的否命題不一定為真。

3、原命題為真,它的逆否命題一定為真。

設計意圖:

通過設問和討論,讓學生在自己舉例中研究如何由原命題構成逆否命題及判斷它們的真假,調動學生學的積極性。

教師活動總結。

2023高考數學總復習教案篇7

教學目標:

1、了解反函數的概念,弄清原函數與反函數的定義域和值域的關系。

2、會求一些簡單函數的反函數。

3、在嘗試、探索求反函數的過程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學思想方法的認識。

4、進一步完善學生思維的深刻性,培養學生的逆向思維能力,用辯證的觀點分析問題,培養抽象、概括的能力。

教學重點:

求反函數的方法。

教學難點:

反函數的概念。

教學過程:

一、創設情境,引入新課

1、復習提問

①函數的概念

②y=f(x)中各變量的意義

2、同學們在物理課學過勻速直線運動的位移和時間的函數關系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是時間t的函數;在t=中,時間t是位移S的函數。在這種情況下,我們說t=是函數S=vt的反函數。什么是反函數,如何求反函數,就是本節課學習的內容。

3、板書課題

由實際問題引入新課,激發了學生學習興趣,展示了教學目標。這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性。

二、實例分析,組織探究

1、問題組一:

(1)這兩組函數的圖像有什么關系?這兩組函數有什么關系?

(2)由,已知y能否求x?

(3)是否是一個函數?它與有何關系?

(4)與有何聯系?

2、問題組二:

(1)函數y=2x1(x是自變量)與函數x=2y1(y是自變量)是否是同一函數?

(2)函數(x是自變量)與函數x=2y1(y是自變量)是否是同一函數?

(3)函數()的定義域與函數()的值域有什么關系?

3、滲透反函數的概念。

(教師點明這樣的函數即互為反函數,然后師生共同探究其特點)

從學生熟知的函數出發,抽象出反函數的概念,符合學生的認知特點,有利于培養學生抽象、概括的能力。

通過這兩組問題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發展區"設計問題,使學生對反函數有一個直觀的粗略印象,為進一步抽象反函數的概念奠定基礎。

三、師生互動,歸納定義

1、(根據上述實例,教師與學生共同歸納出反函數的定義)

函數y=f(x)(x∈A)中,設它的值域為C。我們根據這個函數中x,y的關系,用y把x表示出來,得到x=j(y)。如果對于y在C中的任何一個值,通過x=j(y),x在A中都有的值和它對應,那么,x=j(y)就表示y是自變量,x是自變量y的函數。這樣的函數x=j(y)(y∈C)叫做函數y=f(x)(x∈A)的反函數。記作:。考慮到"用x表示自變量,y表示函數"的習慣,將中的x與y對調寫成。

2、引導分析:

1)反函數也是函數;

2)對應法則為互逆運算;

3)定義中的"如果"意味著對于一個任意的函數y=f(x)來說不一定有反函數;

4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;

5)函數y=f(x)與x=f(y)互為反函數;

6)要理解好符號f;

7)交換變量x、y的原因。

3、兩次轉換x、y的對應關系

(原函數中的自變量x與反函數中的函數值y是等價的,原函數中的函數值y與反函數中的自變量x是等價的)

四、應用解題,總結步驟

1、(投影例題)

【例1】求下列函數的反函數

(1)y=3x—1(2)y=x1

【例2】求函數的反函數。

(教師板書例題過程后,由學生總結求反函數步驟。)

2、總結求函數反函數的步驟:

1、由y=f(x)反解出x=f(y)。

2、把x=f(y)中x與y互換得。

3、寫出反函數的定義域。

【例3】(1)有沒有反函數?

(2)的反函數是________。

(3)(x<0)的反函數是__________。

在上述探究的基礎上,揭示反函數的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產生矛盾沖突,體會反函數。在剖析定義的過程中,讓學生體會函數與方程、一般到特殊的數學思想,并對數學的符號語言有更好的把握。

通過動畫演示,表格對照,使學生對反函數定義從感性認識上升到理性認識,從而消化理解。

通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養學生分析、思考的習慣,以及歸納總結的能力。

題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進。并體現了對定義的反思理解。學生思考練習,師生共同分析糾正。

五、鞏固強化,評價反饋

1、已知函數y=f(x)存在反函數,求它的反函數y=f(x)

(1)y=—2x3(xR)(2)y=—(xR,且x)

(3)y=(xR,且x)

2、已知函數f(x)=(xR,且x)存在反函數,求f(7)的值。

六、反思小結,再度設疑

本節課主要研究了反函數的定義,以及反函數的求解步驟。互為反函數的兩個函數的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節研究。

進一步強化反函數的概念,并能正確求出反函數。反饋學生對知識的掌握情況,評價學生對學習目標的落實程度。具體實踐中可采取同學板演、分組競賽等多種形式調動學生的積極性。"問題是數學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂。

七、作業

習題2.4第1題,第2題

進一步鞏固所學的知識。

教學設計說明

"問題是數學的心臟"。一個概念的形成是螺旋式上升的,一般要經過具體到抽象,感性到理性的過程。本節教案通過一個物理學中的具體實例引入反函數,進而又通過若干函數的圖象進一步加以誘導剖析,最終形成概念。

反函數的概念是教學中的難點,原因是其本身較為抽象,經過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質上去把握反函數的概念。為此,我們大膽地使用教材,把互為反函數的兩個函數的圖象關系預先揭示,進而探究原因,尋找規律,程序是從問題出發,研究性質,進而得出概念,這正是數學研究的順序,符合學生認知規律,有助于概念的建立與形成。另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用。通過對函數與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環節,充分調動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養學生的逆向思維。使學生自然成為學習的主人。

34571 主站蜘蛛池模板: 衬四氟_衬氟储罐_四氟储罐-无锡市氟瑞特防腐科技有限公司 | 变位机,焊接变位机,焊接变位器,小型变位机,小型焊接变位机-济南上弘机电设备有限公司 | IWIS链条代理-ALPS耦合透镜-硅烷预处理剂-上海顶楚电子有限公司 lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | 飞扬动力官网-广告公司管理软件,广告公司管理系统,喷绘写真条幅制作管理软件,广告公司ERP系统 | 欧美日韩国产一区二区三区不_久久久久国产精品无码不卡_亚洲欧洲美洲无码精品AV_精品一区美女视频_日韩黄色性爱一级视频_日本五十路人妻斩_国产99视频免费精品是看4_亚洲中文字幕无码一二三四区_国产小萍萍挤奶喷奶水_亚洲另类精品无码在线一区 | 垃圾处理设备_餐厨垃圾处理设备_厨余垃圾处理设备_果蔬垃圾处理设备-深圳市三盛环保科技有限公司 | 电主轴,车床电磨头,变频制动电机-博山鸿达特种电机 | 卫生纸复卷机|抽纸机|卫生纸加工设备|做卫生纸机器|小型卫生纸加工需要什么设备|卫生纸机器设备多少钱一台|许昌恒源纸品机械有限公司 | 冷却塔风机厂家_静音冷却塔风机_冷却塔电机维修更换维修-广东特菱节能空调设备有限公司 | 波纹补偿器_不锈钢波纹补偿器_巩义市润达管道设备制造有限公司 | 大连海岛旅游网>>大连旅游,大连海岛游,旅游景点攻略,海岛旅游官网 | 浙江筋膜枪-按摩仪厂家-制造商-肩颈按摩仪哪家好-温州市合喜电子科技有限公司 | 玻璃钢型材-玻璃钢风管-玻璃钢管道,生产厂家-[江苏欧升玻璃钢制造有限公司] | 动库网动库商城-体育用品专卖店:羽毛球,乒乓球拍,网球,户外装备,运动鞋,运动包,运动服饰专卖店-正品运动品网上商城动库商城网 - 动库商城 | 【中联邦】增稠剂_增稠粉_水性增稠剂_涂料增稠剂_工业增稠剂生产厂家 | 沈阳建筑设计公司_加固改造设计_厂房设计_设计资质加盟【金辉设计】 | 同学聚会纪念册制作_毕业相册制作-成都顺时针宣传画册设计公司 | SPC工作站-连杆综合检具-表盘气动量仪-内孔缺陷检测仪-杭州朗多检测仪器有限公司 | 成都亚克力制品,PVC板,双色板雕刻加工,亚克力门牌,亚克力标牌,水晶字雕刻制作-零贰捌广告 | 除湿机|工业除湿机|抽湿器|大型地下室车间仓库吊顶防爆除湿机|抽湿烘干房|新风除湿机|调温/降温除湿机|恒温恒湿机|加湿机-杭州川田电器有限公司 | 岩石钻裂机-液压凿岩机-劈裂机-挖改钻_湖南烈岩科技有限公司 | 华禹护栏|锌钢护栏_阳台护栏_护栏厂家-华禹专注阳台护栏、楼梯栏杆、百叶窗、空调架、基坑护栏、道路护栏等锌钢护栏产品的生产销售。 | 武汉天安盾电子设备有限公司 - 安盾安检,武汉安检门,武汉安检机,武汉金属探测器,武汉测温安检门,武汉X光行李安检机,武汉防爆罐,武汉车底安全检查,武汉液体探测仪,武汉安检防爆设备 | 高压互感器,电流互感器,电压互感器-上海鄂互电气科技有限公司 | 青海电动密集架_智能密集架_密集架价格-盛隆柜业青海档案密集架厂家 | 广州小程序开发_APP开发公司_分销商城系统定制_小跑科技 | 外贮压-柜式-悬挂式-七氟丙烷-灭火器-灭火系统-药剂-价格-厂家-IG541-混合气体-贮压-非贮压-超细干粉-自动-灭火装置-气体灭火设备-探火管灭火厂家-东莞汇建消防科技有限公司 | 塑钢课桌椅、学生课桌椅、课桌椅厂家-学仕教育设备首页 | 馋嘴餐饮网_餐饮加盟店火爆好项目_餐饮连锁品牌加盟指南创业平台 | 衡阳耐适防护科技有限公司——威仕盾焊接防护用品官网/焊工手套/焊接防护服/皮革防护手套 | 道康宁消泡剂-瓦克-大川进口消泡剂供应商 | 众能联合-提供高空车_升降机_吊车_挖机等一站工程设备租赁 | 工装定制/做厂家/公司_工装订做/制价格/费用-北京圣达信工装 | 丹尼克尔拧紧枪_自动送钉机_智能电批_柔性振动盘_螺丝供料器品牌 | 金联宇电缆总代理-金联宇集团-广东金联宇电缆实业有限公司 | 安驭邦官网-双向万能直角铣头,加工中心侧铣头,角度头[厂家直销] 闸阀_截止阀_止回阀「生产厂家」-上海卡比阀门有限公司 | 送料机_高速冲床送料机_NC伺服滚轮送料机厂家-东莞市久谐自动化设备有限公司 | 代理记账_公司起名核名_公司注册_工商注册-睿婕实业有限公司 | 欧洲MV日韩MV国产_人妻无码一区二区三区免费_少妇被 到高潮喷出白浆av_精品少妇自慰到喷水AV网站 | 沈飞防静电地板__机房地板-深圳市沈飞防静电设备有限公司 | TTCMS自助建站_网站建设_自助建站_免费网站_免费建站_天天向上旗下品牌 |