高考數學復習教案
高考數學復習教案都有哪些?從學生數學學習心理來看,學生的學習過程不是被動的吸收過程,而是一個以已有知識和經驗為基礎的重新建構的過程,下面是小編為大家帶來的高考數學復習教案七篇,希望大家能夠喜歡!
高考數學復習教案(篇1)
猴子搬香蕉
一個小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家里?
解答:
100只香蕉分兩次,一次運50只,走1米,再回去搬另外50只,這樣走了1米的時候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時候剩下46+48只;...到16米的時候剩下(50-2×16)+(50-16)=18+34只;17米的時候剩下16+33只,共49只;然后把剩下的這49只一次運回去,要走剩下的33米,每米吃一個,到家還有16個香蕉。
河岸的距離
兩艘輪船在同一時刻駛離河的兩岸,一艘從A駛往B,另一艘從B開往A,其中一艘開得比另一艘快些,因此它們在距離較近的岸500公里處相遇。到達預定地點后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問河有多寬?
解答:
當兩艘渡輪在x點相遇時,它們距A岸500公里,此時它們走過的距離總和等于河的寬度。當它們雙方抵達對岸時,走過的總長度
等于河寬的兩倍。在返航中,它們在z點相遇,這時兩船走過的距離之和等于河寬的三倍,所以每一艘渡輪現在所走的距離應該等于它們第一次相遇時所走的距離的三倍。在兩船第一次相遇時,有一艘渡輪走了500公里,所以當它到達z點時,已經走了三倍的距離,即1500公里,這個距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時間對答案毫無影響。
變量交換
不使用任何其他變量,交換a,b變量的值?
分析與解答
a = a+b
b = a-b
a= a-b
步行時間
某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區一個小鎮的附近。他每次下班以后都是乘同一次市郊火車回小鎮。小鎮車站離家還有一段距離,他的私人司機總是在同一時刻從家里開出轎車,去小鎮車站接總裁回家。由于火車與轎車都十分準時,因此,火車與轎車每次都是在同一時刻到站。
有一次,司機比以往遲了半個小時出發。溫斯頓到站后,找不到
他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風馳電掣而來,立即招手示意停車,跳上車子后也顧不上罵司機,命其馬上掉頭往回開。回到家中,果不出所料,他老婆大發雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長時間?
解答:
假如溫斯頓一直在車站等候,那么由于司機比以往晚了半小時出發,因此,也將晚半小時到達車站。也就是說,溫斯頓將在車站空等半小時,等他的轎車到達后坐車回家,從而他將比以往晚半小時到家。而現在溫斯頓只比平常晚22分鐘到家,這縮短下來的8分鐘是如果總裁在火車站死等的話,司機本來要花在從現在遇到溫斯頓總裁的地點到火車站再回到這個地點上的時間。這意味著,如果司機開車從現在遇到總裁的地點趕到火車站,單程所花的時間將為4分鐘。因此,如果溫斯頓等在火車站,再過4分鐘,他的轎車也到了。也就是說,他如果等在火車站,那么他也已經等了30-4=26分鐘了。但是懼內的溫斯頓總裁畢竟沒有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。
因此,溫斯頓步行了26分鐘。
付清欠款
有四個人借錢的數目分別是這樣的:阿伊庫向貝爾借了10美元;
貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫借了40美元。碰巧四個人都在場,決定結個賬,請問最少只需要動用多少美金就可以將所有欠款一次付清?
解答:
貝爾、查理、迪克各自拿出10美元給阿伊庫就可解決問題了。這樣的話只動用了30美元。最笨的辦法就是用100美元來一一付清。
貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫則要收回借出的30美元。再復雜的問題只要有條理地分析就會很簡單。養成經常性地歸納整理、摸索實質的好習慣。
一美元紙幣
注:美國貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。
一家小店剛開始營業,店堂中只有三位男顧客和一位女店主。當這三位男士同時站起來付帳的時候,出現了以下的情況:
(1)這四個人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。
(2)這四人中沒有一人能夠兌開任何一枚硬幣。
(3)一個叫盧的男士要付的賬單款額最大,一位叫莫的男士要
付的帳單款額其次,一個叫內德的男士要付的賬單款額最小。
(4)每個男士無論怎樣用手中所持的硬幣付賬,女店主都無法找清零錢。
(5)如果這三位男士相互之間等值調換一下手中的硬幣,則每個人都可以付清自己的賬單而無需找零。
(6)當這三位男士進行了兩次等值調換以后,他們發現手中的硬幣與各人自己原先所持的硬幣沒有一枚面值相同。
(7)隨著事情的進一步發展,又出現如下的情況:
(8)在付清了賬單而且有兩位男士離開以后,留下的男士又買了一些糖果。這位男士本來可以用他手中剩下的硬幣付款,可是女店主卻無法用她現在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現在女店主不得不把她的全部硬幣都找給了他。
現在,請你不要管那天女店主怎么會在找零上屢屢遇到麻煩,這三位男士中誰用1美元的紙幣付了糖果錢?
解答:
對題意的以下兩點這樣理解:
(2)中不能換開任何一個硬幣,指的是如果任何一個人不能有2個5分,否則他能換1個10分硬幣。
(6)中指如果A,B換過,并且A,C換過,這就是兩次交換。
高考數學復習教案(篇2)
1.教學目標
(1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;
2.會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程.
(2)能力目標: 1.進一步培養學生用解析法研究幾何問題的能力;
2.使學生加深對數形結合思想和待定系數法的理解;
3.增強學生用數學的意識.
(3)情感目標:培養學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發學生的學習興趣.
2.教學重點.難點
(1)教學重點:圓的標準方程的求法及其應用.
(2)教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰
當的坐標系解決與圓有關的實際問題.
3.教學過程
(一)創設情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?
[引導] 畫圖建系
[學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)
解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。
(二)深入探究(獲得新知)
問題二:1.根據問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時又如何呢?
[學生活動] 探究圓的方程。
[教師預設] 方法一:坐標法
如圖,設m(x,y)是圓上任意一點,根據定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}
由兩點間的距離公式,點m適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應用舉例(鞏固提高)
i.直接應用(內化新知)
問題三:1.寫出下列各圓的方程(課本p77練習1)
(1)圓心在原點,半徑為3;
(2)圓心在 ,半徑為 ;
(3)經過點 ,圓心在點 .
2.根據圓的方程寫出圓心和半徑
(1) ; (2) .
ii.靈活應用(提升能力)
問題四:1.求以 為圓心,并且和直線 相切的圓的方程.
[教師引導]由問題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過圓上一點 的切線方程.
[學生活動]探究方法
[教師預設]
方法一:待定系數法(利用幾何關系求斜率-垂直)
方法二:待定系數法(利用代數關系求斜率-聯立方程)
方法三:軌跡法(利用勾股定理列關系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關系式)
3.你能歸納出具有一般性的結論嗎?
已知圓的方程是 ,經過圓上一點 的切線的方程是: .
iii.實際應用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).
[多媒體課件演示創設實際問題情境]
(四)反饋訓練(形成方法)
問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.
3.求圓x2 y2=13過點(-2,3)的切線方程.
4.已知圓的方程為 ,求過點 的切線方程.
高考數學復習教案(篇3)
一、單元教學內容
(1)算法的基本概念
(2)算法的基本結構:順序、條件、循環結構
(3)算法的基本語句:輸入、輸出、賦值、條件、循環語句
二、單元教學內容分析
算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力
三、單元教學課時安排:
1、算法的基本概念 3課時
2、程序框圖與算法的基本結構 5課時
3、算法的基本語句 2課時
四、單元教學目標分析
1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義
2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。
3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。
4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
五、單元教學重點與難點分析
1、重點
(1)理解算法的含義
(2)掌握算法的基本結構
(3)會用算法語句解決簡單的實際問題
2、難點
(1)程序框圖
(2)變量與賦值
(3)循環結構
(4)算法設計
六、單元總體教學方法
本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。
七、單元展開方式與特點
1、展開方式
自然語言→程序框圖→算法語句
2、特點
(1)螺旋上升 分層遞進
(2)整合滲透 前呼后應
(3)三線合一 橫向貫通
(4)彈性處理 多樣選擇
八、單元教學過程分析
1. 算法基本概念教學過程分析
對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。
2.算法的流程圖教學過程分析
對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。
3. 基本算法語句教學過程分析
經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,
4. 通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
九、單元評價設想
1.重視對學生數學學習過程的評價
關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。
2.正確評價學生的數學基礎知識和基本技能
關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法
高考數學復習教案(篇4)
一、課題:
人教版全日制普通高級中學教科書數學第一冊(上)《2.7對數》
二、指導思想與理論依據:
《數學課程標準》指出:高中數學課程應講清一些基本內容的實際背景和應用價值,開展“數學建模”的學習活動,把數學的應用自然地融合在平常的教學中。任何一個數學概念的引入,總有它的現實或數學理論發展的需要。都應強調它的現實背景、數學理論發展背景或數學發展歷史上的背景,這樣才能使教學內容顯得自然和親切,讓學生感到知識的發展水到渠成而不是強加于人,從而有利于學生認識數學內容的實際背景和應用的價值。在教學設計時,既要關注學生在數學情感態度和科學價值觀方面的發展,也要幫助學生理解和掌握數學基礎知識和基本技能,發展能力。在課程實施中,應結合教學內容介紹一些對數學發展起重大作用的歷史事件和人物,用以反映數學在人類社會進步、人類文化建設中的作用,同時反映社會發展對數學發展的促進作用。
三、教材分析:
本節內容主要學習對數的概念及其對數式與指數式的互化。它屬于函數領域的知識。而對數的概念是對數函數部分教學中的核心概念之一,而函數的思想方法貫穿在高中數學教學的始終。通過對數的學習,可以解決數學中知道底數和冪值求指數的問題,以及對數函數的相關問題。
四、學情分析:
在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學生認知的角度自然就產生了這樣的需要。因此,在前面學習指數的基礎上學習對數的概念是水到渠成的事。
五、教學目標:
(一)教學知識點:
1.對數的概念。
2.對數式與指數式的互化。
(二)能力目標:
1.理解對數的概念。
2.能夠進行對數式與指數式的互化。
(三)德育滲透目標:
1.認識事物之間的相互聯系與相互轉化,
2.用聯系的觀點看問題。
六、教學重點與難點:
重點是對數定義,難點是對數概念的理解。
七、教學方法:
講練結合法八、教學流程:
問題情景(復習引入)——實例分析、形成概念(導入新課)——深刻認識概念(對數式與指數式的互化)——變式分析、深化認識(對數的性質、對數恒等式,介紹自然對數及常用對數)——練習小結、形成反思(例題,小結)
八、教學反思:
對本節內容在進行教學設計之前,本人反復閱讀了課程標準和教材,教材內容的處理收到了一定的預期效果,尤其是練習的處理,充分發揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。然而還有一些缺憾:對本節內容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學中,對于一些較簡單的內容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內容等教學因素,都在不斷更新,作為數學教師要更新教學觀念,從學生的全面發展來設計課堂教學,關注學生個性和潛能的發展,使教學過程更加切合《課程標準》的要求。
對于本教學設計,時間倉促,不足之處在所難免,期待與各位同仁交流。
高考數學復習教案(篇5)
一、教學目標:
掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
二、教學重點:
向量的性質及相關知識的綜合應用。
三、教學過程:
(一)主要知識:
1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略
四、小結:
1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
2、滲透數學建模的思想,切實培養分析和解決問題的能力。
五、作業:
略
高考數學復習教案(篇6)
教材分析:
三角函數的誘導公式是普通高中課程標準實驗教科書(人教B版)數學必修四,第一章第二節內容,其主要內容是公式(一)至公式(四)。本節課是第二課時,教學內容是公式(三)。教材要求通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法。
教案背景:
通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求。因此本節內容在三角函數中占有非常重要的地位.
教學方法:
以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式。
教學目標:
借助單位圓探究誘導公式。
能正確運用誘導公式將任意角的三角函數化為銳角三角函數。
教學重點:
誘導公式(三)的推導及應用。
教學難點:
誘導公式的應用。
教學手段:
多媒體。
教學情景設計:
一.復習回顧:
1. 誘導公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
二.新課:
已知 由
可知
而 (課件演示,學生發現)
所以
于是可得: (三)
設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數式的值或化簡三角函數式。
設計意圖:結合學過的公式(一)(二),發現特點,總結公式。
1. 練習
(1)
設計意圖:利用公式解決問題,發現新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調重點,引導學生總結公式。)
三.例題
例3:求下列各三角函數值:
(1)
(2)
(3)
(4)
例4:化簡
設計意圖:利用公式解決問題。
練習:
(1)
(2) (學生板演,師生點評)
設計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結:將任意角三角函數轉化為銳角三角函數,體現轉化化歸,數形結合思想的應用,培養了學生分析問題、解決問題的能力,熟練應用解決問題。
五.課后作業:課后練習A、B組
六.課后反思與交流
很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
1.要認真的研讀新課標,對教學的目標,重難點把握要到位
2.注意板書設計,注重細節的東西,語速需要改正
3.進一步的學習網頁制作,讓你的網頁更加的完善,學生更容易操作
4.盡可能讓你的學生自主提出問題,自主的思考,能夠化被動學習為主動學習,充分享受學習數學的樂趣
5.上課的生動化,形象化需要加強
聽課者評價:
1.評議者:網絡輔助教學,起到了很好的效果;教態大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數學時,最好值有個側重點;網絡設計上,網頁上公開的推導公式為上,留有更大的空間讓學生來思考。
2.評議者:網絡教學效果良好,給學生自主思考,學習的空間發揮,教學設計得好;建議:課堂講課聲音,語調可以更有節奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
3.評議者:學科網絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經驗。
4.評議者:引導學生通過網絡進行探究。
建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。
( 1)給學生思考的時間較長,語調相對平緩,總結時,給學生一些激勵的語言更好
( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考
( 3)網絡平臺的使用,使得學生的參與度明顯提高,存在問題:1.公式對稱性的誘導,點與點的對稱的誘導,終邊的關系的誘導,要進一步的修正;2.公式的概括要注意引導學生怎么用,學習這個誘導公式的作用
( 4)給學生答案,這個網頁要進一步的修正,答案能否不要一點就出來
( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少
( 6)讓學生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習
( 8)教學模式相對簡單重復
( 9)思路較為清晰,規范化的推理
高考數學復習教案(篇7)
教學目標:1.進一步理解線性規劃的概念;會解簡單的線性規劃問題;
2.在運用建模和數形結合等數學思想方法分析、解決問題的過程中;提高解決問題的能力;
3.進一步提高學生的合作意識和探究意識。
教學重點:線性規劃的概念及其解法
教學難點:
代數問題幾何化的過程
教學方法:啟發探究式
教學手段:運用多媒體技術
教學過程:1.實際問題引入。
問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時70公里,平均耗油量為每小時6公升;小李駕車平均速度為每小時50公里,平均耗油量為每小時4公升.現知道油箱內油量為60公升,兩人駕車時間累計不能超過12小時.問小王和小李分別駕車多少時間時,行駛路程最遠?
2.探究和討論下列問題。
(1)實際問題轉化為一個怎樣的數學問題?
(2)滿足不等式組①的條件的點構成的區域如何表示?
(3)關于x、y的一個表達式z=70x+50y的幾何意義是什么?
(4)z的幾何意義是什么?
(5)z的最大值如何確定?
讓學生達成以下共識:小王駕車時間x和小李駕車時間y受到時間(12小時)和油量(60公升)的限制,即
x+y≤12
6x+4y≤60 ①
x≥0
y≥0
行駛路程可以表示成關于x、y的一個表達式:z=70x+50y 由數形結合可知:經過點B(6,6)的直線所對應的z最大.
則zmax=6×70+6×50=720
結論:小王和小李分別駕車6小時時,行駛路程最遠為720公里.
解題反思:
問題解決過程中體現了那些重要的數學思想?
3.線性規劃的有關概念。
什么是“線性規劃問題”?涉及約束條件、線性約束條件、目標函數、線性目標函數、可行解、可行域和最優解等概念.
4.進一步探究線性規劃問題的解。
問題二:若小王和小李駕車平均速度為每小時60公里和40公里,其它條件不變,問小王和小李分別駕車多少時間時,行駛路程最遠?
要求:請你寫出約束條件、目標函數,作出可行域,求出最優解。
問題三:如果把不等式組①中的兩個“≤”改為“≥”,是否存在最優解?
5.小結。
(1)數學知識;(2)數學思想。
6.作業。
(1)閱讀教材:P.60-63;
(2)課后練習:教材P.65-2,3;
(3)在自己生活中尋找一個簡單的線性規劃問題,寫出約束條件,確定目標函數,作出可行域,并求出最優解。
《一個數列的研究》教學設計
教學目標:
1.進一步理解和掌握數列的有關概念和性質;
2.在對一個數列的探究過程中,提高提出問題、分析問題和解決問題的能力;
3.進一步提高問題探究意識、知識應用意識和同伴合作意識。
教學重點:
問題的提出與解決
教學難點:
如何進行問題的探究
教學方法:
啟發探究式
教學過程:
問題:已知{an}是首項為1,公比為 的無窮等比數列。對于數列{an},提出你的問題,并進行研究,你能得到一些什么樣的結論?
研究方向提示:
1.數列{an}是一個等比數列,可以從等比數列角度來進行研究;
2.研究所給數列的項之間的關系;
3.研究所給數列的子數列;
4.研究所給數列能構造的新數列;
5.數列是一種特殊的函數,可以從函數性質角度來進行研究;
6.研究所給數列與其它知識的聯系(組合數、復數、圖形、實際意義等)。
針對學生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。
課堂小結:
1.研究一個數列可以從哪些方面提出問題并進行研究?
2.你最喜歡哪位同學的研究?為什么?
課后思考題: 1.將{an}推廣為一般的無窮等比數列:1,q,q2,…,qn-1,… ,上述一些研究結論會有什么變化?
2.若將{an}改為等差數列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進行類比研究?
開展研究性學習,培養問題解決能力
一、對“研究性學習”和“問題解決”的認識 研究性學習是一種與接受性學習相對應的學習方式,泛指學生主動探究問題的學習。研究性學習也可以說是一種學習活動:學生在教師指導下,在自己的學習生活和社會生活中選擇課題,以類似科學研究的方式去主動地獲取知識、應用知識、解決問題。
“問題解決”(problem solving)是美國數學教育界在二十世紀八十年代的主要口號,即認為應當以“問題解決”作為學校數學教育的中心。
問題解決能力是一種重要的數學能力,其核心是“創新精神”與“實踐能力”。在數學教學活動中開展研究性學習是培養問題解決能力的主要途徑。
二、“問題解決”課堂教學模式的建構與實踐 以研究性學習活動為載體,以培養問題解決能力為核心的課堂教學模式(以下簡稱為“問題解決”課堂教學模式)試圖通過問題情境創設,激發學生的求知欲,以獨立思考和交流討論的形式,發現、分析并解決問題,培養處理信息、獲取新知、應用知識的能力,提高合作意識、探究意識和創新意識。
(一)關于“問題解決”課堂教學模式
通過實施“問題解決”課堂教學模式,希望能夠達到以下的功能目標:學習發現問題的方法,開掘創造性思維潛力,培養主動參與、團結協作精神,增進師生、同伴之間的情感交流,形成自覺運用數學基礎知識、基本技能和數學思想方法分析問題、解決問題的能力和意識。
(二)數學學科中的問題解決能力的培養目標
數學問題解決能力培養的目標可以有不同層次的要求:會審題,會建模,會轉化,會歸類,會反思,會編題。
(三)“問題解決”課堂教學模式的教學流程
(四)“問題解決”課堂教學評價標準
1. 教學目標的確定;
2. 教學方法的選擇;
3. 問題的選擇;
4. 師生主體意識的體現;
5.教學策略的運用。
(五)了解學生的數學問題解決能力的途徑
(六)開展研究性學習活動對教師的能力要求