高一數學教育教案設計
第一個抽象的概念大概是數(中國的計算),它認識到兩個蘋果和兩個橘子有共同之處,是人類思想的一大突破。除了知道如何計算實際物體的數量,史前人類還知道如何計算抽象概念的數量,如時間-日期、季節和年份。下面是小編為大家帶來的高一數學教育教案設計七篇,希望大家能夠喜歡!
高一數學教育教案設計精選篇1
目標:
(1)使學生初步理解集合的概念,知道常用數集的概念及其記法
(2)使學生初步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
重點:集合的基本概念
教學過程:
1.引入
(1)章頭導言
(2)集合論與集合論的-----康托爾(有關介紹可引用附錄中的內容)
2.講授新課
閱讀教材,并思考下列問題:
(1)有那些概念?
(2)有那些符號?
(3)集合中元素的特性是什么?
(4)如何給集合分類?
(一)有關概念:
1、集合的概念
(1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象.
(2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合.
(3)元素:集合中每個對象叫做這個集合的元素.
集合通常用大寫的拉丁字母表示,如A、B、C、……元素通常用小寫的拉丁字母表示,如a、b、c、……
2、元素與集合的關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
要注意“∈”的方向,不能把a∈A顛倒過來寫.
3、集合中元素的特性
(1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.
(2)互異性:集合中的元素一定是不同的.
(3)無序性:集合中的元素沒有固定的順序.
4、集合分類
根據集合所含元素個屬不同,可把集合分為如下幾類:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限個元素的集合叫做有限集
(3)含有無窮個元素的集合叫做無限集
注:應區分,0等符號的含義
5、常用數集及其表示方法
(1)非負整數集(自然數集):全體非負整數的集合.記作N
(2)正整數集:非負整數集內排除0的集.記作N__或N+
(3)整數集:全體整數的集合.記作Z
(4)有理數集:全體有理數的集合.記作Q
(5)實數集:全體實數的集合.記作R
注:(1)自然數集包括數0.
(2)非負整數集內排除0的集.記作N__或N+,Q、Z、R等其它數集內排除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z__
課堂練習:教材第5頁練習A、B
小結:本節課我們了解集合論的發展,學習了集合的概念及有關性質
課后作業:第十頁習題1-1B第3題
高一數學教育教案設計精選篇2
教學目標
1.使學生掌握的概念,圖象和性質.
(1)能根據定義判斷形如什么樣的函數是,了解對底數的限制條件的合理性,明確的定義域.
(2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數形兩方面認識的性質.
(3)能利用的性質比較某些冪形數的大小,會利用的圖象畫出形如的圖象.
2.通過對的概念圖象性質的學習,培養學生觀察,分析歸納的能力,進一步體會數形結合的思想方法.
3.通過對的研究,讓學生認識到數學的應用價值,激發學生學習數學的興趣.使學生善于從現實生活中數學的發現問題,解決問題.教學建議
教材分析
(1)是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以應重點研究.
(2)本節的教學重點是在理解定義的基礎上掌握的圖象和性質.難點是對底數在和時,函數值變化情況的區分.
(3)是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究.
教法建議
(1)關于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.
(2)對底數的限制條件的理解與認識也是認識的重要內容.如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來.
關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.
高一數學教育教案設計精選篇3
一、教學目標
1.掌握商的算術平方根的性質,能利用性質進行二次根式的化簡與運算;
2.會進行簡單的二次根式的除法運算;
3.使學生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;
4.培養學生利用二次根式的除法公式進行化簡與計算的能力;
5.通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學生的'歸納總結能力;
6.通過分母有理化的教學,滲透數學的簡潔性.
二、教學重點和難點
1.重點:會利用商的算術平方根的性質進行二次根式的化簡,會進行簡單的二次根式的除法運算,還要使學生掌握二次根式的除法采用分母有理化的方法進行.
2.難點:二次根式的除法與商的算術平方根的關系及應用.
三、教學方法
從特殊到一般總結歸納的方法以及類比的方法,在學習了二次根式乘法的基礎上本小節
內容可引導學生自學,進行總結對比.
高一數學教育教案設計精選篇4
1、教材(教學內容)
本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用。
2、設計理念
本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標。
3、教學目標
知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題。
過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用。
情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美。
4、重點難點
重點:任意角三角函數的定義。
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透。
5、學情分析
學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念。在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構。
6、教法分析
“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構。這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用。
7、學法分析
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。
高一數學教育教案設計精選篇5
一、教學內容:橢圓的方程
要求:理解橢圓的標準方程和幾何性質.
重點:橢圓的方程與幾何性質.
難點:橢圓的方程與幾何性質.
二、點:
1、橢圓的定義、標準方程、圖形和性質
定 義
第一定義:平面內與兩個定點 )的點的軌跡叫作橢圓,這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距
第二定義:
平面內到動點距離與到定直線距離的比是常數e.(0
標準方程
焦點在x軸上
焦點在y軸上
圖 形
焦點在x軸上
焦點在y軸上
性 質
焦點在x軸上
范 圍:
對稱性: 軸、 軸、原點.
頂點: , .
離心率:e
概念:橢圓焦距與長軸長之比
定義式:
范圍:
2、橢圓中a,b,c,e的關系是:(1)定義:r1+r2=2a
(2)余弦定理: + -2r1r2cos(3)面積: = r1r2 sin ?2c y0 (其中P( )
三、基礎訓練:
1、橢圓 的標準方程為 ,焦點坐標是 ,長軸長為___2____,短軸長為2、橢圓 的值是__3或5__;
3、兩個焦點的坐標分別為 ___;
4、已知橢圓 上一點P到橢圓一個焦點 的距離是7,則點P到另一個焦點5、設F是橢圓的一個焦點,B1B是短軸, ,則橢圓的離心率為6、方程 =10,化簡的結果是 ;
滿足方程7、若橢圓短軸上的兩個三等分點與兩個焦點構成一個正方形,則橢圓的離心率為
8、直線y=kx-2與焦點在x軸上的橢圓9、在平面直角坐標系 頂點 ,頂點 在橢圓 上,則10、已知點F是橢圓 的右焦點,點A(4,1)是橢圓內的一點,點P(x,y)(x≥0)是橢圓上的一個動點,則 的最大值是 8 .
【典型例題】
例1、(1)已知橢圓的中心在原點,焦點在坐標軸上,長軸長是短軸長的3倍,短軸長為4,求橢圓的方程.
解:設方程為 .
所求方程為
(2)中心在原點,焦點在x軸上,右焦點到短軸端點的距離為2,到右頂點的距離為1,求橢圓的方程.
解:設方程為 .
所求方程為(3)已知三點P,(5,2),F1 (-6,0),F2 (6,0).設點P,F1,F2關于直線y=x的對稱點分別為 ,求以 為焦點且過點 的橢圓方程 .
解:(1)由題意可設所求橢圓的標準方程為 ∴所以所求橢圓的標準方程為(4)求經過點M( , 1)的橢圓的標準方程.
解:設方程為
例2、如圖所示,我國發射的第一顆人造地球衛星運行軌道是以地心(地球的中心) 為一個焦點的橢圓,已知它的近地點A(離地面最近的點)距地面439km,遠地點B(離地面最遠的點)距地面2384km,并且 、A、B在同一直線上,設地球半徑約為6371km,求衛星運行的軌道方程 (精確到1km).
解:建立如圖所示直角坐標系,使點A、B、 在 軸上,
則 =OA-O = A=6371+439=6810
解得 =7782.5, =972.5
衛星運行的軌道方程為
例3、已知定圓
分析:由兩圓內切,圓心距等于半徑之差的絕對值 根據圖形,用符號表示此結論:
上式可以變形為 ,又因為 ,所以圓心M的軌跡是以P,Q為焦點的橢圓
解:知圓可化為:圓心Q(3,0),
設動圓圓心為 ,則 為半徑 又圓M和圓Q內切,所以 ,
即 ,故M的軌跡是以P,Q為焦點的橢圓,且PQ中點為原點,所以 ,故動圓圓心M的軌跡方程是:
例4、已知橢圓的焦點是 |和|(1)求橢圓的方程;
(2)若點P在第三象限,且∠ =120°,求 .
選題意圖:綜合考查數列與橢圓標準方程的基礎知識,靈活運用等比定理進行解題.
解:(1)由題設| |=2| |=4
∴ , 2c=2, ∴b=∴橢圓的方程為 .
(2)設∠ ,則∠ =60°-θ
由正弦定理得:
由等比定理得:
整理得: 故
說明:曲線上的點與焦點連線構成的三角形稱曲線三角形,與曲線三角形有關的問題常常借助正(余)弦定理,借助比例性質進行處理.對于第二問還可用后面的幾何性質,借助焦半徑公式余弦定理把P點橫坐標先求出來,再去解三角形作答
例5、如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點P向 軸作垂線段PP?@,求線段PP?@的中點M的軌跡(若M分 PP?@之比為 ,求點M的軌跡)
解:(1)當M是線段PP?@的中點時,設動點 ,則 的坐標為
因為點 在圓心為坐標原點半徑為2的圓上,
所以有 所以點
(2)當M分 PP?@之比為 時,設動點 ,則 的坐標為
因為點 在圓心為坐標原點半徑為2的圓上,所以有 ,
即所以點
例6、設向量 =(1, 0), =(x+m) +y =(x-m) +y + (I)求動點P(x,y)的軌跡方程;
(II)已知點A(-1, 0),設直線y= (x-2)與點P的軌跡交于B、C兩點,問是否存在實數m,使得 ?若存在,求出m的值;若不存在,請說明理由.
解:(I)∵ =(1, 0), =(0, 1), =6
上式即為點P(x, y)到點(-m, 0)與到點(m, 0)距離之和為6.記F1(-m, 0),F2(m, 0)(0
∴ PF1+PF2=6>F1F2
又∵x>0,∴P點的軌跡是以F1、F2為焦點的橢圓的右半部分.
∵ 2a=6,∴a=3
又∵ 2c=2m,∴ c=m,b2=a2-c2=9-m2
∴ 所求軌跡方程為 (x>0,0<m<3)
( II )設B(x1, y1),C(x2, y2),
∴∴ 而y1y2= (x1-2)? (x2-2)
= [x1x2-2(x1+x2)+4]
∴ [x1x2-2(x1+x2)+4]
= [10x1x2+7(x1+x2)+13]
若存在實數m,使得 成立
則由 [10x1x2+7(x1+x2)+13]=
可得10x1x2+7(x1+x2)+10=0 ①
再由
消去y,得(10-m2)x2-4x+9m2-77=0 ②
因為直線與點P的軌跡有兩個交點.
所以
由①、④、⑤解得m2= <9,且此時△>0
但由⑤,有9m2-77= <0與假設矛盾
∴ 不存在符合題意的實數m,使得
例7、已知C1: ,拋物線C2:(y-m)2=2px (p>0),且C1、C2的公共弦AB過橢圓C1的右焦點.
(Ⅰ)當AB⊥x軸時,求p、m的值,并判斷拋物線C2的焦點是否在直線AB上;
(Ⅱ)若p= ,且拋物線C2的焦點在直線AB上,求m的值及直線AB的方程.
解:(Ⅰ)當AB⊥x軸時,點A、B關于x軸對稱,所以m=0,直線AB的方程為x=1,從而點A的坐標為(1, )或(1,- ).
∵點A在拋物線上,∴
此時C2的焦點坐標為( ,0),該焦點不在直線AB上.
(Ⅱ)當C2的焦點在AB上時,由(Ⅰ)知直線AB的斜率存在,設直線AB的方程為y=k(x-1).
由 (kx-k-m)2= ①
因為C2的焦點F( ,m)在y=k(x-1)上.
所以k2x2- (k2+2)x+ =0 ②
設A(x1,y1),B(x2,y2),則x1+x2=
由
(3+4k2)x2-8k2x+4k2-12=0 ③
由于x1、x2也是方程③的兩根,所以x1+x2=
從而 = k2=6即k=±
又m=- ∴m= 或m=-
當m= 時,直線AB的方程為y=- (x-1);
當m=- 時,直線AB的方程為y= (x-1).
例8、已知橢圓C: (a>0,b>0)的左、右焦點分別是F1、F2,離心率為e.直線l:y=ex+a與x軸,y軸分別交于點A、B,M是直線l與橢圓C的一個公共點,P是點F1關于直線l的對稱點,設 = .
(Ⅰ)證明:(Ⅱ)若 ,△MF1F2的周長為6,寫出橢圓C的方程;
(Ⅲ)確定解:(Ⅰ)因為A、B分別為直線l:y=ex+a與x軸、y軸的交點,所以A、B的坐標分別是A(- ,0),B(0,a).
由 得 這里∴M = ,a)
即 解得
(Ⅱ)當 時, ∴a=2c
由△MF1F2的周長為6,得2a+2c=6
∴a=2,c=1,b2=a2-c2=3
故所求橢圓C的方程為
(Ⅲ)∵PF1⊥l ∴∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有PF1=F1F2,即 PF1=C.
設點F1到l的距離為d,由
PF1= =得: =e ∴e2= 于是
即當(注:也可設P(x0,y0),解出x0,y0求之)
【模擬】
一、選擇題
1、動點M到定點 和 的距離的和為8,則動點M的軌跡為 ( )
A、橢圓 B、線段 C、無圖形 D、兩條射線
2、設橢圓的兩個焦點分別為F1、F2,過F2作橢圓長軸的垂線交橢圓于點P,若△F1PF2為等腰直角三角形,則橢圓的離心率是 ( )
A、 C、2- -1
3、(20__年高考湖南卷)F1、F2是橢圓C: 的焦點,在C上滿足PF1⊥PF2的點P的個數為( )
A、2個 B、4個 C、無數個 D、不確定
4、橢圓 的左、右焦點為F1、F2,一直線過F1交橢圓于A、B兩點,則△ABF2的周長為 ( )
A、32 B、16 C、8 D、4
5、已知點P在橢圓(x-2)2+2y2=1上,則 的最小值為( )
A、 C、
6、我們把離心率等于黃金比 是優美橢圓,F、A分別是它的左焦點和右頂點,B是它的短軸的一個端點,則 等于( )
A、 C、
二、填空題
7、橢圓 的頂點坐標為 和 ,焦點坐標為 ,焦距為 ,長軸長為 ,短軸長為 ,離心率為 ,準線方程為 .
8、設F是橢圓 的右焦點,且橢圓上至少有21個不同的點Pi(i=1,2, ),使得FP1、FP2、FP3…組成公差為d的等差數列,則d的取值范圍是 .
9、設 , 是橢圓 的兩個焦點,P是橢圓上一點,且 ,則得 .
10、若橢圓 =1的準線平行于x軸則m的取值范圍是
三、解答題
11、根據下列條件求橢圓的標準方程
(1)和橢圓 共準線,且離心率為 .
(2)已知P點在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為 和 ,過P作長軸的垂線恰好過橢圓的一個焦點.
12、已知 軸上的一定點A(1,0),Q為橢圓 上的動點,求AQ中點M的軌跡方程
13、橢圓 的焦點為 =(3, -1)共線.
(1)求橢圓的離心率;
(2)設M是橢圓上任意一點,且 = 、 ∈R),證明 為定值.
【試題答案】
1、B
2、D
3、A
4、B
5、D(法一:設 ,則y=kx代入橢圓方程中得:(1+2k2)x2-4x+3=0,由△≥0得: .法二:用橢圓的參數方程及三角函數的有界性求解)
6、C
7、( ;(0, );6;10;8; ; .
8、 ∪
9、
10、m< 且m≠0.
11、(1)設橢圓方程 .
解得 , 所求橢圓方程為(2)由 .
所求橢圓方程為 的坐標為
因為點 為橢圓 上的動點
所以有
所以中點
13、解:設P點橫坐標為x0,則 為鈍角.當且僅當 .
14、(1)解:設橢圓方程 ,F(c,0),則直線AB的方程為y=x-c,代入 ,化簡得:
x1x2=
由 =(x1+x2,y1+y2), 共線,得:3(y1+y2)+(x1+x2)=0,
又y1=x1-c,y2=x2-c
∴ 3(x1+x2-2c)+(x1+x2)=0,∴ x1+x2=
即 = ,∴ a2=3b2
∴ 高中地理 ,故離心率e= .
(2)證明:由(1)知a2=3b2,所以橢圓 可化為x2+3y2=3b2
設 = (x2,y2),∴ ,
∵M∴ ( )2+3( )2=3b2
即: )+ (由(1)知x1+x2= ,a2= 2,b2= c2.
x1x2= = 2
x1x2+3y1y2=x1x2+3(x1-c)(x2-c)
=4x1x2-3(x1+x2)c+3c2= 2- 2+3c2=0
又 =3b2代入①得
為定值,定值為1.
高一數學教育教案設計精選篇6
教學目的:要求學生初步理解集合的概念,理解元素與集合間的關系,掌握集合的表示法,知道常用數集及其記法。
教學重難點:
1、元素與集合間的關系
2、集合的表示法
教學過程:
一、 集合的概念
實例引入:
⑴ 1~20以內的所有質數;
⑵ 我國從1991~20__的13年內所發射的所有人造衛星;
⑶ 金星汽車廠20__年生產的所有汽車;
⑷ 20__年1月1日之前與我國建立外交關系的所有國家;
⑸ 所有的正方形;
⑹ 黃圖盛中學20__年9月入學的高一學生全體。
結論:一般地,我們把研究對象統稱為元素;把一些元素組成的總體叫做集合,也簡稱集。
二、 集合元素的特征
(1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現同一元素。
(3)無序性:一般不考慮元素之間的順序,但在表示數列之類的特殊集合時,通常按照習慣的由小到大的數軸順序書寫
練習:判斷下列各組對象能否構成一個集合
⑴ 2,3,4 ⑵ (2,3),(3,4) ⑶ 三角形
⑷ 2,4,6,8,… ⑸ 1,2,(1,2),{1,2}
⑹我國的小河流 ⑺方程x2+4=0的所有實數解
⑻好心的人 ⑼著名的數學家 ⑽方程x2+2x+1=0的解
三 、 集合相等
構成兩個集合的元素一樣,就稱這兩個集合相等
四、 集合元素與集合的關系
集合元素與集合的關系用“屬于”和“不屬于”表示:
(1)如果a是集合A的元素,就說a屬于A,記作a∈A
(2)如果a不是集合A的元素,就說a不屬于A,記作a∈A
五、常用數集及其記法
非負整數集(或自然數集),記作N;
除0的非負整數集,也稱正整數集,記作N__或N+;
整數集,記作Z;
有理數集,記作Q;
實數集,記作R.
練習:(1)已知集合M={a,b,c}中的三個元素可構成某一三角形的三條邊,那么此三角形一定不是( )
A直角三角形 B 銳角三角形 C鈍角三角形 D等腰三角形
(2)說出集合{1,2}與集合{x=1,y=2}的異同點?
六、集合的表示方式
(1)列舉法:把集合中的元素一一列舉出來,寫在大括號內;
(2)描述法:用集合所含元素的共同特征表示的方法。(具體方法)
例 1、 用列舉法表示下列集合:
(1)小于10的所有自然數組成的集合;
(2)方程x2=x的所有實數根組成的集合;
(3)由1~20以內的所有質數組成。
例 2、 試分別用列舉法和描述法表示下列集合:
(1)由大于10小于20的的所有整數組成的集合;
(2)方程x2-2=2的所有實數根組成的集合。
注意:(1)描述法表示集合應注意集合的代表元素
(2)只要不引起誤解集合的代表元素也可省略
七、小結
集合的概念、表示;集合元素與集合間的關系;常用數集的記法。
高一數學教育教案設計精選篇7
一、指導思想與理論依據
數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。
二、教材分析
三角函數的誘導公式是普通高中課程標準實驗教科書(人教A版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六).本節是第一課時,教學內容為公式(二)、(三)、(四).教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角與、、終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四).同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求.為此本節內容在三角函數中占有非常重要的地位.
三、學情分析
本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容.
四、教學目標
(1).基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;
(2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;
(3).創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;
(4).個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀.
五、教學重點和難點
1.教學重點
理解并掌握誘導公式.
2.教學難點
正確運用誘導公式,求三角函數值,化簡三角函數式.
六、教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法,如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.
1.教法
數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.
在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅.
2.學法
“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.
3.預期效果
本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.
七、教學流程設計
(一)創設情景
1.復習銳角300,450,600的三角函數值;
2.復習任意角的三角函數定義;
3.問題:由,你能否知道sin2100的值嗎?引如新課.
設計意圖
自信的鼓勵是增強學生學習數學的自信,簡單易做的題加強了每個學生學習的熱情,具體數據問題的出現,讓學生既有好像會做的心理但又有迷惑的茫然,去發掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
(二)新知探究
1.讓學生發現300角的終邊與2100角的終邊之間有什么關系;
2.讓學生發現300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關系;
3.Sin2100與sin300之間有什么關系.
設計意圖
由特殊問題的引入,使學生容易了解,實現教學過程的平淡過度,為同學們探究發現任意角與的三角函數值的關系做好鋪墊.
(三)問題一般化
探究一
1.探究發現任意角的終邊與的終邊關于原點對稱;
2.探究發現任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;
3.探究發現任意角與的三角函數值的關系.
設計意圖
首先應用單位圓,并以對稱為載體,用聯系的觀點,把單位圓的性質與三角函數聯系起來,數形結合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數值之間的關系,逐步上升,一氣呵成誘導公式二.同時也為學生將要自主發現、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰,敢于前進
(四)練習
利用誘導公式(二),口答下列三角函數值.
(1).;(2).;(3)..
喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問題.
(五)問題變形
由sin3000=-sin600出發,用三角的定義引導學生求出sin(-3000),Sin1500值,讓學生聯想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.學生自主探究。