小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

小班數(shù)學(xué)高一教案設(shè)計

時間: 新華 數(shù)學(xué)教案

數(shù)學(xué)教育對我們有重要的作用,它可以促進世界科學(xué)的發(fā)展。作為一個數(shù)學(xué)老師,你可以寫一套數(shù)學(xué)教案和我們一起分享。你是否在找正準備撰寫“小班數(shù)學(xué)高一教案設(shè)計”,下面小編收集了相關(guān)的素材,供大家寫文參考!

小班數(shù)學(xué)高一教案設(shè)計篇1

教學(xué)目的:

(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

(2)使學(xué)生初步了解“屬于”關(guān)系的意義

(3)使學(xué)生初步了解有限集、無限集、空集的意義

教學(xué)重點:集合的基本概念及表示方法

教學(xué)難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合

授課類型:新授課

課時安排:1課時

教具:多媒體、實物投影儀

內(nèi)容分析:

1.集合是中學(xué)數(shù)學(xué)的一個重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進一步應(yīng)用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學(xué)生認識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)

把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯

本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認識學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點是集合的基本概念

集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明

教學(xué)過程:

一、復(fù)習(xí)引入:

1.簡介數(shù)集的發(fā)展,復(fù)習(xí)公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

2.教材中的章頭引言;

3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有關(guān)概念:

由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.

定義:一般地,某些指定的對象集在一起就成為一個集合.

1、集合的概念

(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

(2)元素:集合中每個對象叫做這個集合的元素

2、常用數(shù)集及記法

(1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合記作N,

(2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集記作N_或N+

(3)整數(shù)集:全體整數(shù)的集合記作Z,

(4)有理數(shù)集:全體有理數(shù)的集合記作Q,

(5)實數(shù)集:全體實數(shù)的集合記作R

注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

(2)非負整數(shù)集內(nèi)排除0的集記作N_或N+Q、Z、R等其它

數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z_

3、元素對于集合的隸屬關(guān)系

(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

4、集合中元素的特性

(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,

或者不在,不能模棱兩可

(2)互異性:集合中的元素沒有重復(fù)

(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗?

5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……

元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的開口方向,不能把a∈A顛倒過來寫

三、練習(xí)題:

1、教材P5練習(xí)1、2

2、下列各組對象能確定一個集合嗎?

(1)所有很大的實數(shù)(不確定)

(2)好心的人(不確定)

(3)1,2,2,3,4,5.(有重復(fù))

3、設(shè)a,b是非零實數(shù),那么可能取的值組成集合的元素是_-2,0,2__

4、由實數(shù)x,-x,|x|,所組成的集合,最多含(A)

(A)2個元素(B)3個元素(C)4個元素(D)5個元素

5、設(shè)集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數(shù),求證:

(1)當(dāng)x∈N時,x∈G;

(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G

證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

則x=x+0_=a+b∈G,即x∈G

證明(2):∵x∈G,y∈G,

∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

∵a∈Z,b∈Z,c∈Z,d∈Z

∴(a+c)∈Z,(b+d)∈Z

∴x+y=(a+c)+(b+d)∈G,

又∵=

且不一定都是整數(shù),

∴=不一定屬于集合G

四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.集合的有關(guān)概念:(集合、元素、屬于、不屬于)

2.集合元素的性質(zhì):確定性,互異性,無序性

3.常用數(shù)集的定義及記法

五、課后作業(yè):

六、板書設(shè)計(略)

七、課后記:

小班數(shù)學(xué)高一教案設(shè)計篇2

教學(xué)目標

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用.

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.

(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.

2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.

教學(xué)建議

教材分析

(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ).

(2)本節(jié)的教學(xué)重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點.

(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點.教法建議

(1)對數(shù)函數(shù)在引入時,就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

(2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點,一定要讓學(xué)生動手做,動腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.

小班數(shù)學(xué)高一教案設(shè)計篇3

一、教材分析

1、 教材的地位和作用:

函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強是函數(shù)理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對函數(shù)概念理解的程度會直接影響其它知識的學(xué)習(xí),所以函數(shù)的第一課時非常的重要。

2、 教學(xué)目標及確立的依據(jù):

教學(xué)目標:

(1) 教學(xué)知識目標:了解對應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對函數(shù)抽象符號的理解。

(2) 能力訓(xùn)練目標:通過教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。

(3) 德育滲透目標:使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點。

教學(xué)目標確立的依據(jù):

函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。

3、教學(xué)重點難點及確立的依據(jù):

教學(xué)重點:映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號的理解。

教學(xué)難點:映射的概念,函數(shù)近代概念,及函數(shù)符號的理解。

重點難點確立的依據(jù):

映射的概念和函數(shù)的近代定義抽象性都比較強,要求學(xué)生的理性認識的能力也比較高,對于剛剛升入高中不久的來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點難點必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號的理解與運用上。

二、教材的處理:

將映射的定義及類比手法的運用作為本課突破難點的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應(yīng)觀點給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點,主要是從實際出發(fā)調(diào)動學(xué)生的學(xué)習(xí)熱情與參與意識,運用引導(dǎo)對比的手法,啟發(fā)引導(dǎo)學(xué)生進行有目的的反復(fù)比較幾個概念的異同,使真正對函數(shù)的概念有很準確的認識。

三、教學(xué)方法和學(xué)法

教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。

依據(jù)是:因為以新的觀點認識函數(shù)概念及函數(shù)符號與運用時,更重要的是必須給學(xué)生講清楚概念及注意事項,并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號的運用在學(xué)生的思想和知識結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識打下堅實的基礎(chǔ)。

學(xué)法:四、教學(xué)程序

一、課程導(dǎo)入

通過舉以下一個通俗的例子引出通過某個對應(yīng)法則可以將兩個非空集合聯(lián)系在一起。

例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個集合,問,通過“找好朋友”這個對應(yīng)法則是否能將這兩個集合的某些元素聯(lián)系在一起?

二. 新課講授:

(1) 接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的共同性質(zhì)(一對一,多對一),進而給出映射的概念,表示符號f:a→b,及原像和像的定義。強調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對應(yīng)法則 f。進一步引導(dǎo)判斷一個從a到b的對應(yīng)是否為映射的關(guān)鍵是看a中的任意一個元素通過對應(yīng)法則f在b中是否有確定的元素與之對應(yīng)。

(2)鞏固練習(xí)課本52頁第八題。

此練習(xí)能讓更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。

例1. 給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進而給出函數(shù)的近代定義(設(shè)a、b是兩個非空集合,如果按照某種對應(yīng)法則f,使得a中的任何一個元素在集合b中都有的元素與之對應(yīng)則這樣的對應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對應(yīng)法則f),并說明把函f:a→b記為y=f(_),其中自變量_的取值范圍a叫做函數(shù)的定義域,與_的值相對應(yīng)的y(或f(_))值叫做函數(shù)值,函數(shù)值的集合{ f(_):_∈a}叫做函數(shù)的值域。

并把函數(shù)的近代定義與映射定義比較使認識到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。

再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項:2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。

3. f表示對應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。

4. f(_)是一個符號,不表示f與_的乘積,而表示_經(jīng)過f作用后的結(jié)果。

5. 集合a中的數(shù)的任意性,集合b中數(shù)的性。

6. “f:a→b”表示一個函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。

三.講解例題

例1.問y=1(_∈a)是不是函數(shù)?

解:y=1可以化為y=0__+1

畫圖可以知道從_的取值范圍到y(tǒng)的取值范圍的對應(yīng)是“多對一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。

[注]:引導(dǎo)從集合,映射的觀點認識函數(shù)的定義。

四.課時小結(jié):

1. 映射的定義。

2. 函數(shù)的近代定義。

3. 函數(shù)的三要素及符號的正確理解和應(yīng)用。

4. 函數(shù)近代定義的五大注意點。

五.課后作業(yè)及板書設(shè)計

書本p51 習(xí)題2.1的1、2寫在書上3、4、5上交。

預(yù)習(xí)函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。

函數(shù)(一)

一、映射:

2.函數(shù)近代定義: 例題練習(xí)

二、函數(shù)的定義 [注]1—5

1.函數(shù)傳統(tǒng)定義

三、作業(yè):

小班數(shù)學(xué)高一教案設(shè)計篇4

教學(xué)目的:

(1)明確函數(shù)的三種表示方法;

(2)在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù);

(3)通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用;

(4)糾正認為“y=f(_)”就是函數(shù)的解析式的片面錯誤認識.

教學(xué)重點:函數(shù)的三種表示方法,分段函數(shù)的概念.

教學(xué)難點:根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù),什么才算“恰當(dāng)”?分段函數(shù)的表示及其圖象.

教學(xué)過程:

引入課題

復(fù)習(xí):函數(shù)的概念;

常用的函數(shù)表示法及各自的優(yōu)點:

(1)解析法;

(2)圖象法;

(3)列表法.

新課教學(xué)

(一)典型例題

例1.某種筆記本的單價是5元,買_ (_∈{1,2,3,4,5})個筆記本需要y元.試用三種表示法表示函數(shù)y=f(_) .

分析:注意本例的設(shè)問,此處“y=f(_)”有三種含義,它可以是解析表達式,可以是圖象,也可以是對應(yīng)值表.

解:(略)

注意:

函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數(shù)圖象的依據(jù);

解析法:必須注明函數(shù)的定義域;

圖象法:是否連線;

列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.

鞏固練習(xí):

課本P27練習(xí)第1題

例2.下表是某校高一(1)班三位同學(xué)在高一學(xué)年度幾次數(shù)學(xué)測試的成績及班級及班級平均分表:

第一次 第二次 第三次 第四次 第五次 第六次 王 偉 98 87 91 92 88 95 張 城 90 76 88 75 86 80 趙 磊 68 65 73 72 75 82 班平均分 88.2 78.3 85.4 80.3 75.7 82.6 請你對這三們同學(xué)在高一學(xué)年度的數(shù)學(xué)學(xué)習(xí)情況做一個分析.

分析:本例應(yīng)引導(dǎo)學(xué)生分析題目要求,做學(xué)情分析,具體要分析什么?怎么分析?借助什么工具?

解:(略)

注意:

本例為了研究學(xué)生的學(xué)習(xí)情況,將離散的點用虛線連接,這樣更便于研究成績的變化特點;

本例能否用解析法?為什么?

鞏固練習(xí):課本P27練習(xí)第2題

例3.畫出函數(shù)y = | _ | .

解:(略)

鞏固練習(xí):課本P27練習(xí)第3題

拓展練習(xí):

任意畫一個函數(shù)y=f(_)的圖象,然后作出y=|f(_)| 和 y=f (|_|) 的圖象,并嘗試簡要說明三者(圖象)之間的關(guān)系.

課本P27練習(xí)第3題

例4.某市郊空調(diào)公共汽車的票價按下列規(guī)則制定:

(1) 乘坐汽車5公里以內(nèi),票價2元;

(2) 5公里以上,每增加5公里,票價增加1元(不足5公里按5公里計算).

已知兩個相鄰的公共汽車站間相距約為1公里,如果沿途(包括起點站和終點站)設(shè)20個汽車站,請根據(jù)題意,寫出票價與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象.

分析:本例是一個實際問題,有具體的實際意義.根據(jù)實際情況公共汽車到站才能停車,所以行車里程只能取整數(shù)值.

解:設(shè)票價為y元,里程為_公里,同根據(jù)題意,

如果某空調(diào)汽車運行路線中設(shè)20個汽車站(包括起點站和終點站),那么汽車行駛的里程約為19公里,所以自變量_的取值范圍是{_∈N_| _≤19}.

由空調(diào)汽車票價制定的規(guī)定,可得到以下函數(shù)解析式:

()

根據(jù)這個函數(shù)解析式,可畫出函數(shù)圖象,如下圖所示:

注意:

本例具有實際背景,所以解題時應(yīng)考慮其實際意義;

本題可否用列表法表示函數(shù),如果可以,應(yīng)怎樣列表?

實踐與拓展:

請你設(shè)計一張乘車價目表,讓售票員和乘客非常容易地知道任意兩站之間的票價.(可以實地考查一下某公交車線路)

說明:象上面兩例中的函數(shù),稱為分段函數(shù).

29244 主站蜘蛛池模板: 1000帧高速摄像机|工业高速相机厂家|科天健光电技术 | 全自动五线打端沾锡机,全自动裁线剥皮双头沾锡机,全自动尼龙扎带机-东莞市海文能机械设备有限公司 | 365文案网_全网创意文案句子素材站 | 无锡网站建设_小程序制作_网站设计公司_无锡网络公司_网站制作 | 等离子空气净化器_医用空气消毒机_空气净化消毒机_中央家用新风系统厂家_利安达官网 | 食品机械专用传感器-落料放大器-低价接近开关-菲德自控技术(天津)有限公司 | 大功率金属激光焊接机价格_不锈钢汽车配件|光纤自动激光焊接机设备-东莞市正信激光科技有限公司 定制奶茶纸杯_定制豆浆杯_广东纸杯厂_[绿保佳]一家专业生产纸杯碗的厂家 | FAG轴承,苏州FAG轴承,德国FAG轴承-恩梯必传动设备(苏州)有限公司 | 污水处理设备-海普欧环保集团有限公司 | 120kv/2mA直流高压发生器-60kv/2mA-30kva/50kv工频耐压试验装置-旭明电工 | 塑料异型材_PVC异型材_封边条生产厂家_PC灯罩_防撞扶手_医院扶手价格_东莞市怡美塑胶制品有限公司 | 流程管理|流程管理软件|企业流程管理|微宏科技-AlphaFlow_流程管理系统软件服务商 | 安徽华耐泵阀有限公司-官方网站 安德建奇火花机-阿奇夏米尔慢走丝|高维|发那科-北京杰森柏汇 | 中空玻璃生产线,玻璃加工设备,全自动封胶线,铝条折弯机,双组份打胶机,丁基胶/卧式/立式全自动涂布机,玻璃设备-山东昌盛数控设备有限公司 | 政府园区专业委托招商平台_助力企业选址项目快速落地_东方龙商务集团 | 德国GMN轴承,GMN角接触球轴承,GMN单向轴承,GMN油封,GMN非接触式密封 | 蒸汽热收缩机_蒸汽发生器_塑封机_包膜机_封切收缩机_热收缩包装机_真空机_全自动打包机_捆扎机_封箱机-东莞市中堡智能科技有限公司 | 卫生人才网-中国专业的医疗卫生医学人才网招聘网站! | 金刚网,金刚网窗纱,不锈钢网,金刚网厂家- 河北萨邦丝网制品有限公司 | 净化板-洁净板-净化板价格-净化板生产厂家-山东鸿星新材料科技股份有限公司 | 东莞压铸厂_精密压铸_锌合金压铸_铝合金压铸_压铸件加工_东莞祥宇金属制品 | 合肥角钢_合肥槽钢_安徽镀锌管厂家-昆瑟商贸有限公司 | Eiafans.com_环评爱好者 环评网|环评论坛|环评报告公示网|竣工环保验收公示网|环保验收报告公示网|环保自主验收公示|环评公示网|环保公示网|注册环评工程师|环境影响评价|环评师|规划环评|环评报告|环评考试网|环评论坛 - Powered by Discuz! | 广东教师资格网-广东教师资格证考试网 | 求是网 - 思想建党 理论强党| 户外-组合-幼儿园-不锈钢-儿童-滑滑梯-床-玩具-淘气堡-厂家-价格 | 风信子发稿-专注为企业提供全球新闻稿发布服务| 防潮防水通风密闭门源头实力厂家 - 北京酷思帝克门窗 | 深圳成考网-深圳成人高考报名网 深圳工程师职称评定条件及流程_深圳职称评审_职称评审-职称网 | 卫生纸复卷机|抽纸机|卫生纸加工设备|做卫生纸机器|小型卫生纸加工需要什么设备|卫生纸机器设备多少钱一台|许昌恒源纸品机械有限公司 | 深圳宣传片制作_产品视频制作_深圳3D动画制作公司_深圳短视频拍摄-深圳市西典映画传媒有限公司 | 成都茶楼装修公司 - 会所设计/KTV装修 - 成都朗煜装饰公司 | 定硫仪,量热仪,工业分析仪,马弗炉,煤炭化验设备厂家,煤质化验仪器,焦炭化验设备鹤壁大德煤质工业分析仪,氟氯测定仪 | 千斤顶,液压千斤顶-力良企业,专业的液压千斤顶制造商,shliliang.com | 转子泵_凸轮泵_凸轮转子泵厂家-青岛罗德通用机械设备有限公司 | 有声小说,听书,听小说资源库-听世界网 | 谷歌关键词优化-外贸网站优化-Google SEO小语种推广-思亿欧外贸快车 | 代写标书-专业代做标书-商业计划书代写「深圳卓越创兴公司」 | 冷凝水循环试验箱-冷凝水试验箱-可编程高低温试验箱厂家-上海巨为(www.juweigroup.com) | 等离子表面处理机-等离子表面活化机-真空等离子清洗机-深圳市东信高科自动化设备有限公司 | 耐驰泵阀管件制造-耐驰泵阀科技(天津)有限公司 |