小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數(shù)學(xué)教案 >

初二數(shù)學(xué)講評教案

時(shí)間: 梓茵 數(shù)學(xué)教案

教案是教師為順利而有效地開展教學(xué)活動(dòng),根據(jù)課程標(biāo)準(zhǔn),教學(xué)大綱和教科書要求及學(xué)生的實(shí)際情況,以課時(shí)或課題為單位,下面是小編為大家整理的關(guān)于初二數(shù)學(xué)講評教案。歡迎大家閱讀參考學(xué)習(xí)!

初二數(shù)學(xué)講評教案1

教學(xué)目標(biāo)

1.掌握等邊三角形的性質(zhì)和判定方法. 2.培養(yǎng)分析問題、解決問題的能力.

教學(xué)重點(diǎn):等邊三角形的性質(zhì)和判定方法.

教學(xué)難點(diǎn):等邊三角形性質(zhì)的應(yīng)用

教學(xué)過程

I創(chuàng)設(shè)情境,提出問題

回顧上節(jié)課講過的等邊三角形的有關(guān)知識

1.等邊三角形是軸對稱圖形,它有三條對稱軸.

2.等邊三角形每一個(gè)角相等,都等于60°

3.三個(gè)角都相等的三角形是等邊三角形.

4.有一個(gè)角是60°的等腰三角形是等邊三角形.

其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.

II例題與練習(xí)

1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

①在邊AB、AC上分別截取AD=AE.

②作∠ADE=60°,D、E分別在邊AB、AC上.

③過邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).

2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知顯然可知三角形APQ是等邊三角形,每個(gè)角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.

3. P56頁練習(xí)1、2

III課堂小結(jié):1.等腰三角形和性質(zhì);等腰三角形的條件

V布置作業(yè): 1.P58頁習(xí)題12.3第ll題.

2.已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個(gè)?

初二數(shù)學(xué)講評教案2

教學(xué)目標(biāo)

1、 理解并掌握等腰三角形的判定定理及推論

2、 能利用其性質(zhì)與判定證明線段或角的相等關(guān)系.

教學(xué)重點(diǎn): 等腰三角形的判定定理及推論的運(yùn)用

教學(xué)難點(diǎn): 正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.

教學(xué)過程:

一、復(fù)習(xí)等腰三角形的性質(zhì)

二、新授:

I提出問題,創(chuàng)設(shè)情境

出示投影片.某地質(zhì)專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點(diǎn))為B標(biāo),然后在這棵樹的正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時(shí),測得∠ACB為30°,這時(shí),地質(zhì)專家測得AC的長度就可知河流寬度.

學(xué)生們很想知道,這樣估測河流寬度的根據(jù)是什么?帶著這個(gè)問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”.

II引入新課

1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB= AC嗎?

作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對的邊有什么關(guān)系?

2.引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證.

2、小結(jié),通過論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對等邊”.

4.引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測量方法的根據(jù).

III例題與練習(xí)

1.如圖2

其中△ABC是等腰三角形的是 [ ]

2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據(jù)什么?).

②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.

④若已知 AD=4cm,則BC______cm.

3.以問題形式引出推論l______.

4.以問題形式引出推論2______.

例: 如果三角形一個(gè)外角的平分線平行于三角形的一邊,求證這個(gè)三角形是等腰三角形.

分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫出已知、求證,并分析證明.

練習(xí):5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點(diǎn)F,過F作DE//BC,交AB于點(diǎn)D,交AC于E.問圖中哪些三角形是等腰三角形?

(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

練習(xí):P53練習(xí)1、2、3。

IV課堂小結(jié)

1.判定一個(gè)三角形是等腰三角形有幾種方法?

2.判定一個(gè)三角形是等邊三角形有幾種方法?

3.等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?

4.現(xiàn)在證明線段相等問題,一般應(yīng)從幾方面考慮?

V布置作業(yè):P56頁習(xí)題12.3第5、6題

初二數(shù)學(xué)講評教案3

用“完全平方公式”分解因式

一、學(xué)習(xí)目標(biāo):

1.使學(xué)生會(huì)用完全平方公式分解因式.

2.使學(xué)生學(xué)習(xí)多步驟,多方法的分解因式

二、重點(diǎn)難點(diǎn):

重點(diǎn): 讓學(xué)生掌握多步驟、多方法分解因式方法

難點(diǎn): 讓學(xué)生學(xué)會(huì)觀察多項(xiàng)式特點(diǎn),恰當(dāng)安排步驟,恰當(dāng)?shù)剡x用不同方法分解因式

三、合作學(xué)習(xí)

創(chuàng)設(shè)問題情境,引入新課

完全平方公式(a±b)2=a2±2ab+b2

講授新課

1.推導(dǎo)用完全平方公式分解因式的公式以及公式的特點(diǎn).

將完全平方公式倒寫:

a2+2ab+b2=(a+b)2;

a2-2ab+b2=(a-b)2.

凡具備這些特點(diǎn)的三項(xiàng)式,就是一個(gè)二項(xiàng)式的完全平方,將它寫成平方形式,便實(shí)現(xiàn)了因式分解

用語言敘述為:兩個(gè)數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

由分解因式與整式乘法的關(guān)系可以看出,如果把乘法公式反過來,那么就可以用來把某些多項(xiàng)式分解因式,這種分解因式的方法叫做運(yùn)用公式法.

練一練.下列各式是不是完全平方式?

(1)a2-4a+4; (2)x2+4x+4y2;

(3)4a2+2ab+ b2; (4)a2-ab+b2;

四、精講精練

例1、把下列完全平方式分解因式:

(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.

例2、把下列各式分解因式:

(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.

課堂練習(xí): 教科書練習(xí)

補(bǔ)充練習(xí):把下列各式分解因式:

(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;

五、小結(jié):兩個(gè)數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

六、作業(yè):1、

2、分解因式:

X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2

45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4

初二數(shù)學(xué)講評教案4

一、教材分析 1、 特點(diǎn)與地位: 重點(diǎn)中的重點(diǎn)。本課是教材求兩結(jié)點(diǎn)之間的最短路徑問題是圖最常見的應(yīng)用的之一,在交通運(yùn)輸、通 訊網(wǎng)絡(luò)等方面具有一定的實(shí)用意義。

2、 重點(diǎn)與難點(diǎn):結(jié)合學(xué)生現(xiàn)有抽象思維能力水平,已掌握基本概念等學(xué)情,以及求解最短路徑問題 的自身特點(diǎn),確立本課的重點(diǎn)和難點(diǎn)如下:

(1)重點(diǎn):如何將現(xiàn)實(shí)問題抽象成求解最短路徑問題,以及該問題的解決方案。 (2)難點(diǎn):求解最短路徑算法的程序?qū)崿F(xiàn)。 3、 教學(xué)安排: 最短路徑問題包含兩種情況:一種是求從某個(gè)源點(diǎn)到其他各結(jié)點(diǎn)的最短路徑,另一種是求每 一對結(jié)點(diǎn)之間的最短路徑。根據(jù)教學(xué)大綱安排,重點(diǎn)講解第一種情況問題的解決。安排一個(gè)課時(shí) 講授。教材直接分析算法,考慮實(shí)際應(yīng)用需要,補(bǔ)充旅游景點(diǎn)線路選擇的實(shí)例,實(shí)例中問題解決 與算法分析相結(jié)合,逐步推動(dòng)教學(xué)過程。

二、教學(xué)目標(biāo)分析 1、知識目標(biāo):掌握最短路徑概念、能夠求解最短路徑。 2、能力目標(biāo): (1)通過將旅游景點(diǎn)線路選擇問題抽象成求最短路徑問題,培養(yǎng)學(xué)生的數(shù)據(jù)抽象能力。 (2)通過旅游景點(diǎn)線路選擇問題的解決,培養(yǎng)學(xué)生的獨(dú)立思考、分析問題、解決問題的能力。 3、素質(zhì)目標(biāo):培養(yǎng)學(xué)生講究工作方法、與他人合作,提高效率。

三、教法分析 課前充分準(zhǔn)備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學(xué)過程中除了使用傳統(tǒng)的“講授 法”以外,主要采用“案例教學(xué)法” ,同時(shí)輔以多媒體課件,以啟發(fā)的方式展開教學(xué)。由于本節(jié)課的 內(nèi)容屬于圖這一章的難點(diǎn),考慮學(xué)生的接受能力,注意與學(xué)生溝通,根據(jù)學(xué)生的反應(yīng)控制好教學(xué)進(jìn)度 是本節(jié)課成功的關(guān)鍵。

四、學(xué)法指導(dǎo) 1、 課前 上次課結(jié)課時(shí)給學(xué)生布置任務(wù),使其有針對性的預(yù)習(xí)。 2、 課中 指導(dǎo)學(xué)生討論任務(wù)解決方法,引導(dǎo)學(xué)生分析本節(jié)課知識點(diǎn)。 3、 課后 給學(xué)生布置同類型任務(wù),加強(qiáng)練習(xí)。

五、教學(xué)過程分析 (一)課前復(fù)習(xí)(3~5 分鐘) 回顧“路徑”的概念,為引出“最短路徑”做鋪墊。 教學(xué)方法及注意事項(xiàng): (1)采用提問方式,注意及時(shí)小結(jié),提問的目的是幫助學(xué)生回憶概念。 (2)提示學(xué)生“溫故而知新” ,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

(二)導(dǎo)入新課(3~5 分鐘) 以城市公路網(wǎng)為例, 基于求兩個(gè)點(diǎn)間最短距離的實(shí)際需要, 引出本課教學(xué)內(nèi)容 “求最短路徑問題” 。 教學(xué)方法及注意事項(xiàng): (1)先講實(shí)例,再指出概念,既可以吸引學(xué)生注意力,激發(fā)學(xué)習(xí)興趣,又可以實(shí)現(xiàn)教學(xué)內(nèi)容的 自然過渡。 (2)此處使用案例教學(xué)法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例 子只需要概述,能夠說明問題即可。

(三)講授新課(25~30 分鐘) 1、 求某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑(重點(diǎn)) 主要采用案例教學(xué)法,提出旅游景點(diǎn)選擇的例子,解決如何選擇代價(jià)小、景點(diǎn)多的路線。 (1)將實(shí)際問題抽象成圖中求任一結(jié)點(diǎn)到其他結(jié)點(diǎn)最短路徑問題。 (3~5 分鐘) 教學(xué)方法及注意事項(xiàng): ① 主要采用講授法,將實(shí)際問題用圖形表示出來。語言描述轉(zhuǎn)換的方法(用圓圈加標(biāo)號 表示某一景點(diǎn),用箭頭表示從某景點(diǎn)到其他景點(diǎn)是否存在旅游線路,并且將旅途費(fèi)用 寫在箭頭的旁邊。 )一邊用語言描述,一邊在黑上畫圖。 ② 注意示范畫圖只進(jìn)行一部分,讓學(xué)生獨(dú)立思考、自主完成余下部分的轉(zhuǎn)化。 ③ 及時(shí)總結(jié),原型抽象(景點(diǎn)作為圖的結(jié)點(diǎn),景點(diǎn)間的線路作為圖的邊,旅途費(fèi)用作為 邊的權(quán)值) ,將案例求解問題抽象成求圖中某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑問題。 ④ 利用多媒體課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學(xué)做準(zhǔn)備。

教學(xué)方法及注意事項(xiàng): ① 啟發(fā)式教學(xué),如何實(shí)現(xiàn)按路徑長度遞增產(chǎn)生最短路 徑? ② 結(jié)合案例分析求解最短路徑過程中 (重點(diǎn))注意此處借助 黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下 部分由學(xué)生獨(dú)立思考完成。

(四)課堂小結(jié)(3~5 分鐘) 1、明確本節(jié)課重點(diǎn)

2、提示學(xué)生, 這種方式形成的圖又可以解決哪類實(shí)際問題呢?

(五)布置作業(yè)1、書面作業(yè):復(fù)習(xí)本次課內(nèi)容,準(zhǔn)備一道備用習(xí)題,靈活把握時(shí)間安排。 六、教學(xué)特色 以旅游路線選擇為主線,靈活采用案例教學(xué)、示范教學(xué)、多媒體課件等多種手段輔助教學(xué),使枯 燥的理論講解生動(dòng)起來。在順利開展教學(xué)的同時(shí),體現(xiàn)所講內(nèi)容的實(shí)用性,提高學(xué)生的學(xué)習(xí)興趣。

初二數(shù)學(xué)講評教案5

三角形三條邊的關(guān)系

1、教材分析

(1)知識結(jié)構(gòu)

(2)重點(diǎn)、難點(diǎn)分析

本節(jié)內(nèi)容的重點(diǎn)是三角形三邊關(guān)系定理及推論.這個(gè)定理與推論不僅給出了三角形的三邊之間的大小關(guān)系,更重要的是提供了判斷三條線段能否組成三角形的標(biāo)準(zhǔn);熟練靈活地運(yùn)用三角形的兩邊之和大于第三邊,是數(shù)學(xué)嚴(yán)謹(jǐn)性的一個(gè)體現(xiàn);同時(shí)也有助于提高學(xué)生全面思考數(shù)學(xué)問題的能力;它還將在以后的學(xué)習(xí)中起著重要作用.

本節(jié)內(nèi)容的難點(diǎn)一是三角形按邊分類,很多學(xué)生常常把等腰三角形與等邊三角形看成獨(dú)立的兩類,而在解題中產(chǎn)生錯(cuò)誤.二是利用三角形三邊之間的關(guān)系解題,在學(xué)習(xí)和應(yīng)用這個(gè)定理時(shí),“兩邊之和大于第三邊”指的是“任何兩邊的和”都“大于第三邊”而學(xué)生的錯(cuò)誤就在于以偏概全;分類討論在解題中也是學(xué)生感到困難的一個(gè)地方.

2、教法建議

沒有學(xué)生參與的教學(xué)是不成功的教學(xué),教師為了充分調(diào)動(dòng)主體參與,必須在為學(xué)生提供必要的背景知識的前提下,與學(xué)生一道探索定理在結(jié)構(gòu)上、應(yīng)用上留給我們的啟示.具體說明如下:

(1)強(qiáng)化能力

新課引入,先讓學(xué)生閱讀教材第一部分,然后通過回答教師設(shè)計(jì)的幾個(gè)問題,使學(xué)生明確對三角形按邊分類,做到不重不漏,其中等腰三角形包括等邊三角形,反過來等邊三角形是等腰三角形的一種特例.

通過閱讀,使學(xué)生初步認(rèn)識數(shù)學(xué)概念的含義,發(fā)現(xiàn)疑難;理解領(lǐng)會(huì)數(shù)學(xué)語言(文字語言、符號語言、圖形語言),促進(jìn)數(shù)學(xué)語言內(nèi)化,從而提高學(xué)生的數(shù)學(xué)語言水平、自學(xué)能力及交流能力

(2)主動(dòng)獲取

在得出三角形三條邊關(guān)系定理過程中,針對基礎(chǔ)比較好的學(xué)生,讓學(xué)生考慮回憶第

一冊第一章中學(xué)過的這條公理并給出證明,在這個(gè)基礎(chǔ)上,讓學(xué)生把定理的內(nèi)容敘述出來.(3)激蕩思維

由定理獲得了:判斷三條線段構(gòu)成一個(gè)三角形的一種方法,除了這一種方法外,是否還有其它的判斷方法呢?從而激蕩起學(xué)生思維浪花:方法是什么呢?學(xué)生最初可能很快得到“推論”,此時(shí)瓜熟蒂落,順理成章地引出教材中的推論.在此基礎(chǔ)上,讓學(xué)生通過討論,簡化上述兩種方法,由此得到下面兩種方法.這里,學(xué)生若感到困難,教師可適當(dāng)做提示.方法3:已知線段 , ( ),若第三條線段c滿足 - c則線段 , ,c可組成一個(gè)三角形.教學(xué)中采用這種教學(xué)方法可培養(yǎng)學(xué)生分析問題探索問題的能力,提高學(xué)生對數(shù)學(xué)知識結(jié)構(gòu)完整性的認(rèn)識.

(4)加深理解

進(jìn)行必要的例題講解和適當(dāng)?shù)慕忸}練習(xí),以達(dá)到熟練地運(yùn)用定理及推論.從過程中讓學(xué)生體味到數(shù)學(xué)造化之神奇.也可適當(dāng)指出,此定理及推論不僅提供了判定三條線段是否構(gòu)成三角形的根據(jù),也為今后解決字母取值范圍問題提供了有利的依據(jù).

整個(gè)教學(xué)過程,是學(xué)生主動(dòng)參與,教師及時(shí)點(diǎn)撥,學(xué)生積極探索的過程,教學(xué)過程跌宕起伏,問題逐步深化,學(xué)生思維逐步擴(kuò)展,使學(xué)生在愉快、主動(dòng)中得到發(fā)展.

教學(xué)目標(biāo):

(1)掌握三角形三邊關(guān)系定理及其推論,會(huì)根據(jù)三條線段的長度判斷他們能否構(gòu)成三角形;

(2)弄清三角形按邊的相等關(guān)系的分類;

(3)通過三角形的分類學(xué)習(xí),使學(xué)生知道分類的基本思想,提高學(xué)生歸納概括的能力;

(4)通過三角形三邊關(guān)系定理的學(xué)習(xí),培養(yǎng)學(xué)生轉(zhuǎn)化的能力;

(5)通過等邊三角形是等腰三角形的特例,滲透一般與特殊的辯證關(guān)系.

教學(xué)重點(diǎn):三角形三邊關(guān)系定理及推論

教學(xué)難點(diǎn):三角形按邊分類及利用三角形三邊關(guān)系解題

教學(xué)用具:直尺、微機(jī)

教學(xué)方法:談話、探究式

教學(xué)過程:

1、閱讀新課,回答問題

先讓學(xué)生閱讀教材的第一部分,然后回答下列問題:

(1)這一部分教材中的數(shù)學(xué)概念有哪些?(指出來并給予解釋)

(2)等腰三角形與等邊三角形有什么關(guān)系?

估計(jì)有的學(xué)生可能把等腰三角形和等邊三角形看成獨(dú)立的兩類.

(3)寫出三角形按邊的相等關(guān)系分類的情況.

教師最后板書給出.

(要求學(xué)生之間可互相補(bǔ)充,從一開始就鼓勵(lì)雙邊交流與多邊交流)

2、發(fā)現(xiàn)并推導(dǎo)出三邊關(guān)系定理

問題1:用長度為4cm、 10cm 、16cm的線繩(課前準(zhǔn)備好的)能否搭建一個(gè)三角形?(讓學(xué)生動(dòng)手操作)

問題2:你能解釋上述結(jié)果的原因嗎?

問題3:任何三條線段都能組成一個(gè)三角形嗎?滿足什么條件時(shí),三條線段可組成一個(gè)三角形?

定理:三角形兩邊的和大于第三邊

(發(fā)現(xiàn)過程采用小步子原則,讓學(xué)生在不知不覺中發(fā)現(xiàn)數(shù)學(xué)中的真理)

3、導(dǎo)出三邊關(guān)系定理的推論及其它兩種方法

由前面得到了判斷所給三條線段能否組成三角形的一個(gè)依據(jù).那么是否還有其它方法呢?請同學(xué)們在定理的基礎(chǔ)上來找:

估計(jì)學(xué)生很容易得到推論,讓學(xué)生用自己的語言敘述,教師稍加整理后給出規(guī)范敘述.

推論:三角形兩邊的差小于第三邊

(給每一個(gè)學(xué)生表現(xiàn)個(gè)人數(shù)學(xué)語言表達(dá)才能的機(jī)會(huì))

能否簡化上面定理及推論?從而得到如下兩種判定方法:

(1)、已知線段 , ( ),若第三條線段c滿足 - c則線段 , ,c可組成一個(gè)三角形.

4、三角形三邊關(guān)系定理及推論的應(yīng)用

例1 判斷題:(出示投影)

(1)等邊三角形是等腰三角形

(2)三角形可分為不等邊三角形、等腰三角形和等邊三角形

(3)已知三線段 滿足 ,那么 為邊可構(gòu)成三角形

(4)等腰三角形的腰比底長

(本例主要考察學(xué)生對概念、定理及推論的理解程度,不要求做在本上,只需口答即可)

(本例要求學(xué)生說出解題思路,教師點(diǎn)到為止)

例3 一個(gè)等腰三角形的周長為18 .

(1) 已知腰長是底邊長的2倍,求各邊長.

(2) 其中一邊長4 ,求其他兩邊長.

這是一道有課堂練習(xí)性質(zhì)的例題,允許學(xué)生有3分鐘左右的獨(dú)立思考,允許想出來的同學(xué)表達(dá)自己的想法,其它同學(xué)補(bǔ)充完善.

(數(shù)學(xué)教師的課堂教學(xué)應(yīng)該是敢于放手,盡可能多地給學(xué)生創(chuàng)造展示自己的思維空間和時(shí)間)

例4 草原上有4口油井,位于四邊形ABCD的4個(gè)頂點(diǎn),

如圖1現(xiàn)在要建一個(gè)維修站H,試問H建在何處,

才能使它到4口油井的距離HA+HB+HC+HD為最小,

說明理由.

本例有一定的難度,給出的方法是解決此類型問題常見的極為簡捷的方法,略微構(gòu)造就可以使用三角形三邊關(guān)系定理得出答案.

5、小結(jié)

本節(jié)課我們學(xué)習(xí)了三角形三邊關(guān)系的定理和推論,還知道了定理和推論的一系列靈活運(yùn)用:

(1)判斷三條已知線段能否組成三角形

采用一種較為簡便的判法:若最短邊與較長邊的和大于最長邊,則可構(gòu)成三角形,否則不能.

(2)確定三角形第三邊的取值范圍

兩邊之差<第三邊<兩邊之和

若時(shí)間寬裕,讓學(xué)生經(jīng)討論后自由表述,其他同學(xué)補(bǔ)充,自己將知識系統(tǒng)化,以自己的方式進(jìn)行建構(gòu).

6、布置作業(yè)

a. 書面作業(yè)P41#8、9

b. 思考題:1、在四邊形ABCD中,AC與BD相交于P,求證:

(AB+BC+CD+AD)<ac+bd<ab+bc+cd+ad< p="">

2、用15根等長的火柴棒擺成的三角形中,最長邊最多可以由幾根火柴棒組成?(提示:由上面方法2,a+b+c>2a 又a+b+c<3a得出a的范圍,所以可知最多可以由7根火柴棒組成)

9272 主站蜘蛛池模板: 赛默飞Thermo veritiproPCR仪|ProFlex3 x 32PCR系统|Countess3细胞计数仪|371|3111二氧化碳培养箱|Mirco17R|Mirco21R离心机|仟诺生物 | COD分析仪|氨氮分析仪|总磷分析仪|总氮分析仪-圣湖Greatlake | 踏板力计,制动仪,非接触多功能速度仪,逆反射系数测试仪-创宇 | 珠海网站建设_响应网站建设_珠海建站公司_珠海网站设计与制作_珠海网讯互联 | 丝杆升降机-不锈钢丝杆升降机-非标定制丝杆升降机厂家-山东鑫光减速机有限公司 | 浙江红酒库-冰雕库-气调库-茶叶库安装-医药疫苗冷库-食品物流恒温恒湿车间-杭州领顺实业有限公司 | SOUNDWELL 编码器|电位器|旋转编码器|可调电位器|编码开关厂家-广东升威电子制品有限公司 | 橡胶接头_橡胶软接头_套管伸缩器_管道伸缩器厂家-巩义市远大供水材料有限公司 | 刹车盘机床-刹车盘生产线-龙口亨嘉智能装备 | TYPE-C厂家|TYPE-C接口|TYPE-C防水母座|TYPE-C贴片-深圳步步精 | 台式核磁共振仪,玻璃软化点测定仪,旋转高温粘度计,测温锥和测温块-上海麟文仪器 | 苏州西朗门业-欧盟CE|莱茵UL双认证的快速卷帘门品牌厂家 | 考勤系统_考勤管理系统_网络考勤软件_政企|集团|工厂复杂考勤工时统计排班管理系统_天时考勤 | YJLV22铝芯铠装电缆-MYPTJ矿用高压橡套电缆-天津市电缆总厂 | 双杰天平-国产双杰电子天平-美国双杰-常熟双杰仪器 | 集菌仪_智能集菌仪_全封闭集菌仪_无菌检查集菌仪厂家-那艾 | 建筑消防设施检测系统检测箱-电梯**检测仪器箱-北京宇成伟业科技有限责任公司 | 船用泵,船用离心泵,船用喷射泵,泰州隆华船舶设备有限公司 | 斗式提升机_链式斗提机_带式斗提机厂家无锡市鸿诚输送机械有限公司 | Maneurop/美优乐压缩机,活塞压缩机,型号规格,技术参数,尺寸图片,价格经销商 | 岩棉板|岩棉复合板|聚氨酯夹芯板|岩棉夹芯板|彩钢夹芯板-江苏恒海钢结构 | 上海新光明泵业制造有限公司-电动隔膜泵,气动隔膜泵,卧式|立式离心泵厂家 | 环氧铁红防锈漆_环氧漆_无溶剂环氧涂料_环氧防腐漆-华川涂料 | 无线讲解器-导游讲解器-自助讲解器-分区讲解系统 品牌生产厂家[鹰米讲解-合肥市徽马信息科技有限公司] | 食药成分检测_调料配方还原_洗涤剂化学成分分析_饲料_百检信息科技有限公司 | 汽车润滑油厂家-机油/润滑油代理-高性能机油-领驰慧润滑科技(河北)有限公司 | 合肥角钢_合肥槽钢_安徽镀锌管厂家-昆瑟商贸有限公司 | 杭州翻译公司_驾照翻译_专业人工翻译-杭州以琳翻译有限公司官网 组织研磨机-高通量组织研磨仪-实验室多样品组织研磨机-东方天净 | 恒温水槽与水浴锅-上海熙浩实业有限公司| 超声波焊接机_超音波熔接机_超声波塑焊机十大品牌_塑料超声波焊接设备厂家 | 消泡剂-水处理消泡剂-涂料消泡剂-切削液消泡剂价格-东莞德丰消泡剂厂家 | 创富网-B2B网站|供求信息网|b2b平台|专业电子商务网站 | 智成电子深圳tdk一级代理-提供TDK电容电感贴片蜂鸣器磁芯lambda电源代理经销,TDK代理商有哪些TDK一级代理商排名查询。-深圳tdk一级代理 | 粉丝机械,粉丝烘干机,粉丝生产线-招远市远东粉丝机械有限公司 | 车辆定位管理系统_汽车GPS系统_车载北斗系统 - 朗致物联 | 学叉车培训|叉车证报名|叉车查询|叉车证怎么考-工程机械培训网 | 智能监控-安防监控-监控系统安装-弱电工程公司_成都万全电子 | 汽液过滤网厂家_安平县银锐丝网有限公司| 冷却塔风机厂家_静音冷却塔风机_冷却塔电机维修更换维修-广东特菱节能空调设备有限公司 | 氧化锆纤维_1800度高温退火炉_1800度高温烧结炉-南京理工宇龙新材料股份有限公司 | 广州印刷厂_广州彩印厂-广州艺彩印务有限公司 |