2021年初二上冊數學公開課教案
數學家也研究純數學,就是數學本身的實質性內容,而不以任何實際應用為目標。你知道八年級的數學教案應該怎么寫嗎?這次小編給大家整理了2021年初二上冊數學公開課教案,供大家閱讀參考,希望大家喜歡。
2021年初二上冊數學公開課教案1
教學目標:
知識與技能
1.掌握直角三角形的判別條件,并能進行簡單應用;
2.進一步發展數感,增加對勾股數的直觀體驗,培養從實際問題抽象出數學問題的能力,建立數學模型.
3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.
情感態度與價值觀
敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識.
教學重點
運用身邊熟悉的事物,從多種角度發展數感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.
教學難點
會辨析哪些問題應用哪個結論.
課前準備
標有單位長度的細繩、三角板、量角器、題篇
教學過程:
復習引入:
請學生復述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?
創設問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法.
這樣做得到的是一個直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
⒈如何來判斷?(用直角三角板檢驗)
這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關系?
就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)
⒉繼續嘗試:下面的三組數分別是一個三角形的三邊長a,b,c:
5,12,13;6,8,10;8,15,17.
(1)這三組數都滿足a2+b2=c2嗎?
(2)分別以每組數為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
⒊直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
滿足a2+b2=c2的三個正整數,稱為勾股數.
⒋例1一個零件的形狀如左圖所示,按規定這個零件中∠A和∠DBC都應為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?
隨堂練習:
⒈下列幾組數能否作為直角三角形的三邊長?說說你的理由.
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
⒉已知?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.
⒊四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積.
⒋習題1.3
課堂小結:
⒈直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
⒉滿足a2+b2=c2的三個正整數,稱為勾股數.勾股數擴大相同倍數后,仍為勾股數.
§1.3.勾股定理的應用
教學目標
教學知識點:能運用勾股定理及直角三角形的判別條件(即勾股定理的逆定理)解決簡單的實際問題.
能力訓練要求:1.學會觀察圖形,勇于探索圖形間的關系,培養學生的空間觀念.
2.在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數學建模的思想.
情感與價值觀要求:1.通過有趣的問題提高學習數學的興趣.
2.在解決實際問題的過程中,體驗數學學習的實用性,體現人人都學有用的數學.
教學重點難點:
重點:探索、發現給定事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.
難點:利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題.
教學過程
1、創設問題情境,引入新課:
前幾節課我們學習了勾股定理,你還記得它有什么作用嗎?
例如:欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長的梯子?
根據題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.
所以至少需13米長的梯子.
2、講授新課:①、螞蟻怎么走最近
出示問題:有一個圓柱,它的高等于12厘米,底面半徑等于3厘米.在圓行柱的底面A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,需要爬行的的最短路程是多少?(π的值取3).
(1)同學們可自己做一個圓柱,嘗試從A點到B點沿圓柱的側面畫出幾條路線,你覺得哪條路線最短呢?(小組討論)
(2)如圖,將圓柱側面剪開展開成一個長方形,從A點到B點的最短路線是什么?你畫對了嗎?
(3)螞蟻從A點出發,想吃到B點上的食物,它沿圓柱側面爬行的最短路程是多少?(學生分組討論,公布結果)
我們知道,圓柱的側面展開圖是一長方形.好了,現在咱們就用剪刀沿母線AA′將圓柱的側面展開(如下圖).
我們不難發現,剛才幾位同學的走法:
(1)A→A′→B;(2)A→B′→B;
(3)A→D→B;(4)A—→B.
哪條路線是最短呢?你畫對了嗎?
第(4)條路線最短.因為“兩點之間的連線中線段最短”.
②、做一做:教材14頁。李叔叔隨身只帶卷尺檢測AD,BC是否與底邊AB垂直,也就是要檢測∠DAB=90°,∠CBA=90°.連結BD或AC,也就是要檢測△DAB和△CBA是否為直角三角形.很顯然,這是一個需用勾股定理的逆定理來解決的實際問題.
③、隨堂練習
出示投影片
1.甲、乙兩位探險者,到沙漠進行探險.某日早晨8∶00甲先出發,他以6千米/時的速度向東行走.1時后乙出發,他以5千米/時的速度向北行進.上午10∶00,甲、乙兩人相距多遠?
2.如圖,有一個高1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分是0.5米,問這根鐵棒應有多長?
1.分析:首先我們需要根據題意將實際問題轉化成數學模型.
解:(如圖)根據題意,可知A是甲、乙的出發點,10∶00時甲到達B點,則AB=2×6=12(千米);乙到達C點,則AC=1×5=5(千米).
在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙兩人相距13千米.
2.分析:從題意可知,沒有告訴鐵棒是如何插入油桶中,因而鐵棒的長是一個取值范圍而不是固定的長度,所以鐵棒最長時,是插入至底部的A點處,鐵棒最短時是垂直于底面時.
解:設伸入油桶中的長度為x米,則應求最長時和最短時的值.
(1)x2=1.52+22,x2=6.25,x=2.5
所以最長是2.5+0.5=3(米).
(2)x=1.5,最短是1.5+0.5=2(米).
答:這根鐵棒的長應在2~3米之間(包含2米、3米).
3.試一試(課本P15)
在我國古代數學著作《九章算術》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面.請問這個水池的深度和這根蘆葦的長度各為多少?
我們可以將這個實際問題轉化成數學模型.
解:如圖,設水深為x尺,則蘆葦長為(x+1)尺,由勾股定理可求得
(x+1)2=x2+52,x2+2x+1=x2+25
解得x=12
則水池的深度為12尺,蘆葦長13尺.
④、課時小結
這節課我們利用勾股定理和它的逆定理解決了生活中的幾個實際問題.我們從中可以發現用數學知識解決這些實際問題,更為重要的是將它們轉化成數學模型.
⑤、課后作業
課本P25、習題1.52
2021年初二上冊數學公開課教案2
教學目標
1、理解并掌握等腰三角形的判定定理及推論
2、能利用其性質與判定證明線段或角的相等關系.
教學重點:等腰三角形的判定定理及推論的運用
教學難點:正確區分等腰三角形的判定與性質,能夠利用等腰三角形的判定定理證明線段的相等關系.
教學過程:
一、復習等腰三角形的性質
二、新授:
I提出問題,創設情境
出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質專家測得AC的長度就可知河流寬度.
學生們很想知道,這樣估測河流寬度的根據是什么?帶著這個問題,引導學生學習“等腰三角形的判定”.
II引入新課
1.由性質定理的題設和結論的變化,引出研究的內容——在△ABC中,苦∠B=∠C,則AB=AC嗎?
作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關系?
2.引導學生根據圖形,寫出已知、求證.
2、小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).
強調此定理是在一個三角形中把角的相等關系轉化成邊的相等關系的重要依據,類似于性質定理可簡稱“等角對等邊”.
4.引導學生說出引例中地質專家的測量方法的根據.
III例題與練習
1.如圖2
其中△ABC是等腰三角形的是[]
2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據什么?).
②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據什么?).
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.
④若已知AD=4cm,則BC______cm.
3.以問題形式引出推論l______.
4.以問題形式引出推論2______.
例:如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.
分析:引導學生根據題意作出圖形,寫出已知、求證,并分析證明.
練習:5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?
(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?
練習:P53練習1、2、3。
IV課堂小結
1.判定一個三角形是等腰三角形有幾種方法?
2.判定一個三角形是等邊三角形有幾種方法?
3.等腰三角形的性質定理與判定定理有何關系?
4.現在證明線段相等問題,一般應從幾方面考慮?
V布置作業:P56頁習題12.3第5、6題
2021年初二上冊數學公開課教案3
《因式分解》
教學目標:
1、理解運用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的綜合運用。
3、進一步培養學生綜合、分析數學問題的能力。
教學重點:
運用平方差公式分解因式。
教學難點:
高次指數的轉化,提公因式法,平方差公式的靈活運用。
教學案例:
我們數學組的觀課議課主題:
1、關注學生的合作交流
2、如何使學困生能積極參與課堂交流。
在精心備課過程中,我設計了這樣的自學提示:
1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?
2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?
①-x2+y2②-x2-y2③4-9x2
④(x+y)2-(x-y)2⑤a4-b4
3、試總結運用平方差公式因式分解的條件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?
5、試總結因式分解的步驟是什么?
師巡回指導,生自主探究后交流合作。
生交流熱情很高,但把全部問題分析完已用了30分鐘。
生展示自學成果。
生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。
生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對,應分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數或整式的平方差的形式。
生5:a4-b4可分解為(a2+b2)(a2-b2)
生6:不對,a2-b2還能繼續分解為a+b)(a-b)
師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止。……
反思:這節課我備課比較認真,自學提示的設計也動了一番腦筋,為讓學生順利得出運用平方差公式因式分解的'條件,我設計了問題2,為讓學生能更容易總結因式分解的步驟,我又設計了問題4,自認為,本節課一定會上的非常成功,學生的交流、合作,自學展示一定會很精彩,結果卻出乎我的意料,本節課沒有按計劃完成教學任務,學生練習很少,作業有很大一部分同學不能獨立完成,反思這節課主要有以下幾個問題:
(1)我在備課時,過高估計了學生的能力,問題2中的③、④、⑤多數學生剛預習后不能熟練解答,導致在小組交流時,多數學生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學生的注意力,導致難點、重點不突出,若能把問題2改為:
下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。
(2)教師備課時,要考慮學生的知識層次,能力水平,真正把學生放在第一位,要考慮學生的接受能力,安排習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的設計時可寫一些簡單的,像④、⑤可到練習時再出現,發現問題后再強調、歸納,效果也可能會更好。
我及時調整了自學提示的內容,在另一個班也上了這節課。果然,學生的討論有了重點,很快(大約10分鐘)便合作得出了結論,課堂氣氛非常活躍,練習量大,準確率高,但隨之我又發現我在處理課后練習時有點不能應對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試。”生又開始緊張地練習……下課后,無意間發現竟還有好幾個同學課后題沒做。原因是預習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……。看來,以后上課不能單聽學生的齊答,要發揮組長的職責,注重過關落實。給學生一點機動時間,讓學習有困難的學生有機會釋疑,練習不在于多,要注意融會貫通,會舉一反三。
確實,“學海無涯,教海無邊”。我們備課再認真,預設再周全,面對不同的學生,不同的學情,仍然會產生新的問題,“沒有,只有更好!”我會一直探索、努力,不斷完善教學設計,更新教育觀念,直到永遠……
2021年初二上冊數學公開課教案4
一、內容和內容解析
1.內容
三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.
2.內容解析
本節內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現實生活中的真實性,激發學生熱愛生活、勇于探索的思想感情.
理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續以及三角形全等、相似等后繼知識一個準備.
本節的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.
二、目標和目標解析
1.教學目標
(1)理解三角形的高、中線與角平分線等概念.
(2)會用工具畫三角形的高、中線與角平分線.
2. 教學目標解析
(1)經歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.
(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質.
(3)掌握三角形的高、中線與角平分線的畫法.
(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.
三、教學問題診斷分析
三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.
三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.
三角形的角平分線的理解: 三角形的角平分線也是一條線段,角的頂點是一個 端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯系又有本質的區別.
四、教學過程設計
1.拋磚引玉,提出問題
先演示畫三角形的一條高,再給出問題:
(1)任畫一個三角形,你能畫出它的三條高嗎?
(2)同一個三角形的三條高線有什么位置關系?
(3)不同類型的三角形的三條高線的交點位置有什么差別?
師生活動:先讓學生畫圖實踐,教師下位隨機點拔,再讓會畫和不會畫的學生相互交流提點,然后帶著問題討論,最后各小組派代表發言,師生共同歸納概念和畫法.
【設計意圖】這一環節是一個重要的實踐活動,需要學生動手實踐,動口交流,動腦思考,加深理解高線的概念和掌握畫高線的作圖能力.
2.從實踐上升到理論,形成概念
師生活動:
定義:從三角形的一個頂點出發,向對邊引垂線,這個頂點和垂足之間的連線段叫做三角形的高線,簡稱三角形的高.
三角形的高有三條,特別強調:鈍角三角形的高有兩條在三角形外部,一條在三角形內部.直角三角形的兩直角邊就是高線.任何三角形的三條高所在直線交于一點,這點叫三角形的垂心.
歸納:銳角三角形有 條高,它們相交于一點,交點在三角形 ;
直角三角形有 條高 ,它們相交于一點,交點在三角形 ;
鈍角三 角形有 條高,它們所在直線相交于一點,交點在三角形 .
注意:三角形的高是線段.
(幾何語言) ∵AD是ΔABC上的高,
∴AD⊥BC (∠ADB=∠ADC=90).
逆向:∵AD⊥BC垂足是D,
∴AD是ΔABC的邊 BC 上的高.
幾何語言表達可在學完三個定義之后統一學習.便于學生比較記憶形成知識結構.
【設計意圖】讓學生體會由實踐到理論的過程,培養學生的歸納總結能力.
補充說明:要養成習慣,畫好高線后,隨手標明垂直的記號和垂足的字母.
師生活動:結合具體圖形,教師引導學生養成良好的作圖習慣.
【設計意圖】進一步加深學生對幾何符號和幾何語言的熟悉.
3.類比學習,掌握幾何探究的基本方法
用相同的探究方法引導學生學習三角形的中線和角平分線.
師生活動:與高線的探究類似.
2021年初二上冊數學公開課教案5
教學目標
1.知識與技能
會應用平方差公式進行因式分解,發展學生推理能力.
2.過程與方法
經歷探索利用平方差公式進行因式分解的過程,發展學生的逆向思維,感受數學知識的完整性.
3.情感、態度與價值觀
培養學生良好的互動交流的習慣,體會數學在實際問題中的應用價值.
重、難點與關鍵
1.重點:利用平方差公式分解因式.
2.難點:領會因式分解的解題步驟和分解因式的徹底性.
3.關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的方面上來.
教學方法
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.
教學過程
一、觀察探討,體驗新知
【問題牽引】
請同學們計算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導學生完成下面的兩道題目,并運用數學“互逆”的思想,尋找因式分解的規律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數、含字母的代數式(單項式、多項式).
二、范例學習,應用所學
【例1】把下列各式分解因式:(投影顯示或板書)
(1)x2-9y2;(2)16x4-y4;
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路點撥】在觀察中發現1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.
【學生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).