小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數(shù)學(xué)教案 >

初中八年級上學(xué)期的數(shù)學(xué)教案

時(shí)間: 曉晴2 數(shù)學(xué)教案

數(shù)學(xué)能讓你思考任何問題的時(shí)候都比較縝密,而不至于思緒紊亂。還能使你的腦子反映靈活,對突發(fā)事件的處理手段也更理性。今天小編在這給大家整理了一些初中八年級上學(xué)期的數(shù)學(xué)教案,我們一起來看看吧!

初中八年級上學(xué)期的數(shù)學(xué)教案1

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系.

2.內(nèi)容解析

三角形是一種最基本的幾何圖形,是認(rèn)識其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進(jìn)一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學(xué)生對三角形的有關(guān)知識有更為深刻的理解.

本節(jié)課的教學(xué)重點(diǎn):三角形中的相關(guān)概念和三角形三邊關(guān)系.

本節(jié)課的教學(xué)難點(diǎn):三角形的三邊關(guān)系.

二、目標(biāo)和目標(biāo)解析

1.教學(xué)目標(biāo)

(1)了解三角形中的相關(guān)概念,學(xué)會(huì)用符號語言表示三角形中的對應(yīng)元素.

(2)理解并且靈活應(yīng)用三角形三邊關(guān)系.

2.教學(xué)目標(biāo)解析

(1)結(jié)合具體圖形,識三角形的概念及其基本元素.

(2)會(huì)用符號、字母表示三角形中的相關(guān)元素,并會(huì)按邊對三角形進(jìn)行分類.

(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會(huì)運(yùn)用這一性質(zhì)來解決問題.

三、教學(xué)問題診斷分析

在探索三角形三邊關(guān)系的過程中,讓學(xué)生經(jīng)歷觀察、探究、推理、交流等活動(dòng)過程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.

四、教學(xué)過程設(shè)計(jì)

1.創(chuàng)設(shè)情境,提出問題

問題 回憶生活中的三角形實(shí)例,結(jié)合你以前對三角形的了解,請你給三角形下一個(gè)定義.

師生活動(dòng):先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對三角形概念的理解.

【設(shè)計(jì)意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過程,借此培養(yǎng)學(xué)生的語言表述能力,加深學(xué)生對三角形概念的理解.

2.抽象概括,形成概念

動(dòng)態(tài)演示“首尾順次相接”這個(gè)的動(dòng)畫,歸納出三角形的定義.

師生活動(dòng):

三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由抽象到具體的過程,培養(yǎng)學(xué)生的語言表述能力.

補(bǔ)充說明:要求學(xué)生學(xué)會(huì)三角形、三角形的頂點(diǎn)、邊、角的概念以及幾何表達(dá)方法.

師生活動(dòng):結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會(huì)由文字語言向幾何語言的過渡.

【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對三角形中相關(guān)元素的認(rèn)知,并進(jìn)一步熟悉幾何語言在學(xué)習(xí)中的應(yīng)用.

3.概念辨析,應(yīng)用鞏固

如圖,不重復(fù),且不遺漏地識別所有三角形,并用符號語言表示出來.

1.以AB為一邊的三角形有哪些?

2.以∠D為一個(gè)內(nèi)角的三角形有哪些?

3.以E為一個(gè)頂點(diǎn)的三角形有哪些?

4.說出ΔBCD的三個(gè)角.

師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,加深學(xué)生對三角形中相關(guān)元素概念的理解.

4.拓廣延伸,探究分類

我們知道,按照三個(gè)內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對三角形進(jìn)行分類,又應(yīng)該如何分呢?小組之間同學(xué)進(jìn)行交流并說說你們的想法.

師生活動(dòng):通過討論,學(xué)生類比按角的分類方法按邊對三角形進(jìn)行分類,接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強(qiáng)化學(xué)生對三角形按邊分類的理解.

初中八年級上學(xué)期的數(shù)學(xué)教案2

教學(xué)目標(biāo)

1.知識與技能

領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

2.過程與方法

經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

3.情感、態(tài)度與價(jià)值觀

培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

重、難點(diǎn)與關(guān)鍵

1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.

2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.

3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.

教學(xué)方法

采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

教學(xué)過程

一、回顧交流,導(dǎo)入新知

【問題牽引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知識遷移】

2.計(jì)算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

【教師活動(dòng)】引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

【學(xué)生活動(dòng)】從逆向思維的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例學(xué)習(xí),應(yīng)用所學(xué)

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值.

【思路點(diǎn)撥】根據(jù)完全平方式的定義,解此題時(shí)應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.

三、隨堂練習(xí),鞏固深化

課本P170練習(xí)第1、2題.

【探研時(shí)空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、課堂總結(jié),發(fā)展?jié)撃?/p>

由于多項(xiàng)式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項(xiàng)式因式分解的公式,主要的有以下三個(gè):

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在運(yùn)用公式因式分解時(shí),要注意:

(1)每個(gè)公式的形式與特點(diǎn),通過對多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個(gè)公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時(shí),考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時(shí),應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時(shí),應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解.

五、布置作業(yè),專題突破

初中八年級上學(xué)期的數(shù)學(xué)教案3

【學(xué)習(xí)目標(biāo)】

1、會(huì)用十字相乘法進(jìn)行二次三項(xiàng)式的因式分解;

2、通過自己的不斷嘗試,培養(yǎng)耐心和信心,同時(shí)在嘗試中提高觀察能力。

【學(xué)習(xí)重難點(diǎn)】重點(diǎn):能熟練應(yīng)用十字相乘法進(jìn)行的二次三項(xiàng)的因式解。

難點(diǎn):準(zhǔn)確地找出二次三項(xiàng)式中的常數(shù)項(xiàng)分解的兩個(gè)因數(shù)與多項(xiàng)式中的一次項(xiàng)的系數(shù)存在的關(guān)系,并能區(qū)分他們之間的符號關(guān)系。

【學(xué)習(xí)方法】自主探究與小組合作交流相結(jié)合.

模塊一 預(yù)習(xí)反饋

一.學(xué)習(xí)準(zhǔn)備:

(一)、解答下列兩題,觀察各式的特點(diǎn)并回答它們存在的關(guān)系

1.(1)(x+2)(x+3)= (2)(x-2)(x-3)=

(3)(x-2)(x+3)= (4)(x+2)(x-3)=

(5)(x+a)(x+b)=x2+( )x+

2.(1)x2+5x+6=( )( ) (2)x2-5x+6=( )( )

(3)x2+x-6=( )( ) (4)x2-x-6=( )( )

(二)十字相乘法

步驟:(1)列出常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積的各種可能情況;

(2)嘗試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù);

(3)將原多項(xiàng)式分解成的形式。

關(guān)鍵:乘積等于常數(shù)項(xiàng)的兩個(gè)因數(shù),它們的和是一次項(xiàng)系數(shù)

二次項(xiàng)、常數(shù)項(xiàng)分解豎直寫,符號決定常數(shù)式,交叉相乘驗(yàn)中項(xiàng),橫向?qū)懗鰞梢蚴?/p>

例如:x2+7x+12

= (x+3)(x+4)

模塊二 合作探究

探究一:1.在橫線上填+ ,- 符號

(1) x2+4x+3=(x 3)(x 1); (2) x2-2x-3=(x 3)(x 1);

(3) y2-9y+20=(y 4)(y 5); (4) t2+10t-56=(t 4)(t 14)

(5) m2+5m+4=(m 4)(m 1) (6) y2-2y-15=(y 3)(y 5)

歸納總結(jié):用十字相乘法把二次項(xiàng)系數(shù)是“1”的二次三項(xiàng)式分解因式時(shí),

(1).當(dāng)常數(shù)項(xiàng)是正數(shù)時(shí),常數(shù)項(xiàng)分解的兩個(gè)因數(shù)的符號是( ),且這兩個(gè)因數(shù)的符號 與一次項(xiàng)的系數(shù)的符號( )。

(2).當(dāng)常數(shù)項(xiàng)是負(fù)數(shù)時(shí), 常數(shù)項(xiàng)分解的兩個(gè)因數(shù)的符號是( ),其中( )的因數(shù)符號與一次項(xiàng)系數(shù)的符號相同。

(3)對于常數(shù)項(xiàng)分解的兩個(gè)因數(shù),還要看看它們的( )是否等于一次項(xiàng)的( )。

探究二:用十字相乘法分解因式

(1)a2+7a+10 (2) y2-7y+12

(3) x2+x-20 (4) x2-3xy+2y2

探究三:因式分解:

(1) 2x2-7x+3 (2) 2x2+5xy+3y2

模塊三 形成提升

1.因式分解成(x-1)(x+2)的多項(xiàng)式是( )

A.x2-x-2 B. x2+x+2 C. x2+x-2 D. x2-x+2

2.若多項(xiàng)式x2-7x+6=(x+a)(x+b)則a=_____,b=_____。

3. (1)x2+4x+_____=(x+3)(x+1); (2)x2+____x-3=(x-3)(x+1);

4.因式分解:

(1) m2+7m-18 (2)x2-9x+18 (3)3y2+7y -6 (4)x2-7x+10

(5)x2+2x-15 (6)12x2-13x+3    (7)18x2-21xy+5y2

模塊四 小結(jié)反思

一.這一節(jié)課我們一起學(xué)習(xí)了哪些知識和思想方法?

二.本課典型:十字相乘法進(jìn)行二次三項(xiàng)式的因式分解。

三.我的困惑:請寫出來:

課外拓展思維訓(xùn)練:

1.若(x2+y2)(x2+y2-1)=12, 則x2+y2=___________.

2.已知:,那么的值為_____________.

3.若是的因式,則p為( )

A、-15 B、-2 C、8 D、2

4.多項(xiàng)式的公因式是___________.

初中八年級上學(xué)期的數(shù)學(xué)教案4

一、學(xué)習(xí)目標(biāo):1.多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用.

2.多項(xiàng)式除以單項(xiàng)式的運(yùn)算算理.

二、重點(diǎn)難點(diǎn):

重 點(diǎn): 多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用

難 點(diǎn): 探索多項(xiàng)式與單項(xiàng)式相除的運(yùn)算法則的過程

三、合作學(xué)習(xí):

(一) 回顧單項(xiàng)式除以單項(xiàng)式法則

(二) 學(xué)生動(dòng)手,探究新課

1. 計(jì)算下列各式:

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

2. 提問:①說說你是怎樣計(jì)算的 ②還有什么發(fā)現(xiàn)嗎?

(三) 總結(jié)法則

1. 多項(xiàng)式除以單項(xiàng)式:先把這個(gè)多項(xiàng)式的每一項(xiàng)除以___________,再把所得的商______

2. 本質(zhì):把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成______________

四、精講精練

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

隨堂練習(xí): 教科書 練習(xí)

五、小結(jié)

1、單項(xiàng)式的除法法則

2、應(yīng)用單項(xiàng)式除法法則應(yīng)注意:

A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運(yùn)算過程中注意單項(xiàng)式的系數(shù)飽含它前面的符號

B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);

C、被除式單獨(dú)有的字母及其指數(shù),作為商的一個(gè)因式,不要遺漏;

D、要注意運(yùn)算順序,有乘方要先做乘方,有括號先算括號里的,同級運(yùn)算從左到右的順序進(jìn)行.

E、多項(xiàng)式除以單項(xiàng)式法則

初中八年級上學(xué)期的數(shù)學(xué)教案5

教學(xué)目標(biāo)

1.等腰三角形的概念. 2.等腰三角形的性質(zhì). 3.等腰三角形的概念及性質(zhì)的應(yīng)用.

教學(xué)重點(diǎn): 1.等腰三角形的概念及性質(zhì). 2.等腰三角形性質(zhì)的應(yīng)用.

教學(xué)難點(diǎn):等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.

教學(xué)過程

Ⅰ.提出問題,創(chuàng)設(shè)情境

在前面的學(xué)習(xí)中,我們認(rèn)識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個(gè)簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計(jì)一些美麗的圖案.這節(jié)課我們就是從軸對稱的角度來認(rèn)識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

有的三角形是軸對稱圖形,有的三角形不是.

問題:那什么樣的三角形是軸對稱圖形?

滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

我們這節(jié)課就來認(rèn)識一種成軸對稱圖形的三角形──等腰三角形.

Ⅱ.導(dǎo)入新課: 要求學(xué)生通過自己的思考來做一個(gè)等腰三角形.

作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

思考:

1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

2.等腰三角形的兩底角有什么關(guān)系?

3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

結(jié)論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因?yàn)榈妊切蔚膬裳嗟龋园堰@兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對稱軸,并看它的兩個(gè)底角有什么關(guān)系.

沿等腰三角形的頂角的平分線對折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質(zhì):

1.等腰三角形的兩個(gè)底角相等(簡寫成“等邊對等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來證明這些性質(zhì).同學(xué)們現(xiàn)在就動(dòng)手來寫出這些證明過程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,

求:△ABC各角的度數(shù).

分析:根據(jù)等邊對等角的性質(zhì),我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角.

把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.

解:因?yàn)锳B=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對等角).

設(shè)∠A=x,則 ∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過練習(xí)來鞏固這節(jié)課所學(xué)的知識.

Ⅲ.隨堂練習(xí):1.課本P51練習(xí) 1、2、3. 2.閱讀課本P49~P51,然后小結(jié).

Ⅳ.課時(shí)小結(jié)

這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應(yīng)用.等腰三角形是軸對稱圖形,它的兩個(gè)底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們.

Ⅴ.作業(yè): 課本P56習(xí)題12.3第1、2、3、4題.

板書設(shè)計(jì)

12.3.1.1 等腰三角形

一、設(shè)計(jì)方案作出一個(gè)等腰三角形

二、等腰三角形性質(zhì): 1.等邊對等角 2.三線合一

2985 主站蜘蛛池模板: 冷却塔风机厂家_静音冷却塔风机_冷却塔电机维修更换维修-广东特菱节能空调设备有限公司 | 电动车头盔厂家_赠品头盔_安全帽批发_山东摩托车头盔—临沂承福头盔 | 国际高中-国际学校-一站式择校服务-远播国际教育 | 微量水分测定仪_厂家_卡尔费休微量水分测定仪-淄博库仑 | 膜结构_ETFE膜结构_膜结构厂家_膜结构设计-深圳市烨兴智能空间技术有限公司 | 碎石机设备-欧版反击破-欧版颚式破碎机(站)厂家_山东奥凯诺机械 高低温试验箱-模拟高低温试验箱订制-北京普桑达仪器科技有限公司【官网】 | 在线钠离子分析仪-硅酸根离子浓度测定仪-油液水分测定仪价格-北京时代新维测控设备有限公司 | 快速门厂家批发_PVC快速卷帘门_高速门_高速卷帘门-广州万盛门业 快干水泥|桥梁伸缩缝止水胶|伸缩缝装置生产厂家-广东广航交通科技有限公司 | uv机-uv灯-uvled光固化机-生产厂家-蓝盾机电 | SMN-1/SMN-A ABB抽屉开关柜触头夹紧力检测仪-SMN-B/SMN-C-上海徐吉 | 非小号行情 - 专业的区块链、数字藏品行情APP、金色财经官网 | 无锡不干胶标签,卷筒标签,无锡瑞彩包装材料有限公司 | 气密性检测仪_气密性检测设备_防水测试仪_密封测试仪-岳信仪器 | 无菌检查集菌仪,微生物限度仪器-苏州长留仪器百科| 传递窗_超净|洁净工作台_高效过滤器-传递窗厂家广州梓净公司 | 青州搬家公司电话_青州搬家公司哪家好「鸿喜」青州搬家 | 胶辊硫化罐_胶鞋硫化罐_硫化罐厂家-山东鑫泰鑫智能装备有限公司 意大利Frascold/富士豪压缩机_富士豪半封闭压缩机_富士豪活塞压缩机_富士豪螺杆压缩机 | 高铝轻质保温砖_刚玉莫来石砖厂家_轻质耐火砖价格 | 蒸汽热收缩机_蒸汽发生器_塑封机_包膜机_封切收缩机_热收缩包装机_真空机_全自动打包机_捆扎机_封箱机-东莞市中堡智能科技有限公司 | 【官网】博莱特空压机,永磁变频空压机,螺杆空压机-欧能优 | 尾轮组_头轮组_矿用刮板_厢式刮板机_铸石刮板机厂家-双驰机械 | 电机修理_二手电机专家-河北豫通机电设备有限公司(原石家庄冀华高压电机维修中心) | 水成膜泡沫灭火剂_氟蛋白泡沫液_河南新乡骏华消防科技厂家 | 针焰试验仪,灼热丝试验仪,漏电起痕试验仪,水平垂直燃烧试验仪 - 苏州亚诺天下仪器有限公司 | 利浦顿蒸汽发生器厂家-电蒸汽发生器/燃气蒸汽发生器_湖北利浦顿热能科技有限公司官网 | 减速机三参数组合探头|TSM803|壁挂式氧化锆分析仪探头-安徽鹏宸电气有限公司 | 南溪在线-南溪招聘找工作、找房子、找对象,南溪综合生活信息门户! | 二维运动混料机,加热型混料机,干粉混料机-南京腾阳干燥设备厂 | 三轴曲线机-端子插拔力试验机|华杰仪器 | 回转支承-转盘轴承-回转驱动生产厂家-洛阳隆达轴承有限公司 | 长沙印刷厂-包装印刷-画册印刷厂家-湖南省日大彩色印务有限公司 青州搬家公司电话_青州搬家公司哪家好「鸿喜」青州搬家 | 特种电缆厂家-硅橡胶耐高温电缆-耐低温补偿导线-安徽万邦特种电缆有限公司 | 电池高低温试验箱-气态冲击箱-双层电池防爆箱|简户百科 | 无痕胶_可移胶_无痕双面胶带_可移无痕胶厂家-东莞凯峰 | 定做大型恒温循环水浴槽-工业用不锈钢恒温水箱-大容量低温恒温水槽-常州精达仪器 | 粉末包装机,拆包机厂家,价格-上海强牛包装机械设备有限公司 | 兰州UPS电源,兰州山特UPS-兰州万胜商贸 | 烟台条码打印机_烟台条码扫描器_烟台碳带_烟台数据采集终端_烟台斑马打印机-金鹏电子-金鹏电子 | 高硼硅玻璃|水位计玻璃板|光学三棱镜-邯郸奥维玻璃科技有限公司 高温高压釜(氢化反应釜)百科 | 多功能三相相位伏安表-变压器短路阻抗测试仪-上海妙定电气 | 石膏基自流平砂浆厂家-高强石膏基保温隔声自流平-轻质抹灰石膏粉砂浆批发-永康市汇利建设有限公司 |